1/* 2 * Initial TCG Implementation for aarch64 3 * 4 * Copyright (c) 2013 Huawei Technologies Duesseldorf GmbH 5 * Written by Claudio Fontana 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or 8 * (at your option) any later version. 9 * 10 * See the COPYING file in the top-level directory for details. 11 */ 12 13#include "qemu/bitops.h" 14 15/* Used for function call generation. */ 16#define TCG_REG_CALL_STACK TCG_REG_SP 17#define TCG_TARGET_STACK_ALIGN 16 18#define TCG_TARGET_CALL_STACK_OFFSET 0 19#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL 20#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL 21#ifdef CONFIG_DARWIN 22# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 23#else 24# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_EVEN 25#endif 26#define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL 27 28/* We're going to re-use TCGType in setting of the SF bit, which controls 29 the size of the operation performed. If we know the values match, it 30 makes things much cleaner. */ 31QEMU_BUILD_BUG_ON(TCG_TYPE_I32 != 0 || TCG_TYPE_I64 != 1); 32 33#ifdef CONFIG_DEBUG_TCG 34static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 35 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 36 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 37 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 38 "x24", "x25", "x26", "x27", "x28", "fp", "x30", "sp", 39 40 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", 41 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", 42 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", 43 "v24", "v25", "v26", "v27", "v28", "fp", "v30", "v31", 44}; 45#endif /* CONFIG_DEBUG_TCG */ 46 47static const int tcg_target_reg_alloc_order[] = { 48 TCG_REG_X20, TCG_REG_X21, TCG_REG_X22, TCG_REG_X23, 49 TCG_REG_X24, TCG_REG_X25, TCG_REG_X26, TCG_REG_X27, 50 TCG_REG_X28, /* we will reserve this for guest_base if configured */ 51 52 TCG_REG_X8, TCG_REG_X9, TCG_REG_X10, TCG_REG_X11, 53 TCG_REG_X12, TCG_REG_X13, TCG_REG_X14, TCG_REG_X15, 54 55 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 56 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7, 57 58 /* X16 reserved as temporary */ 59 /* X17 reserved as temporary */ 60 /* X18 reserved by system */ 61 /* X19 reserved for AREG0 */ 62 /* X29 reserved as fp */ 63 /* X30 reserved as temporary */ 64 65 TCG_REG_V0, TCG_REG_V1, TCG_REG_V2, TCG_REG_V3, 66 TCG_REG_V4, TCG_REG_V5, TCG_REG_V6, TCG_REG_V7, 67 /* V8 - V15 are call-saved, and skipped. */ 68 TCG_REG_V16, TCG_REG_V17, TCG_REG_V18, TCG_REG_V19, 69 TCG_REG_V20, TCG_REG_V21, TCG_REG_V22, TCG_REG_V23, 70 TCG_REG_V24, TCG_REG_V25, TCG_REG_V26, TCG_REG_V27, 71 TCG_REG_V28, TCG_REG_V29, TCG_REG_V30, TCG_REG_V31, 72}; 73 74static const int tcg_target_call_iarg_regs[8] = { 75 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 76 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7 77}; 78 79static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 80{ 81 tcg_debug_assert(kind == TCG_CALL_RET_NORMAL); 82 tcg_debug_assert(slot >= 0 && slot <= 1); 83 return TCG_REG_X0 + slot; 84} 85 86#define TCG_REG_TMP0 TCG_REG_X16 87#define TCG_REG_TMP1 TCG_REG_X17 88#define TCG_REG_TMP2 TCG_REG_X30 89#define TCG_VEC_TMP0 TCG_REG_V31 90 91#define TCG_REG_GUEST_BASE TCG_REG_X28 92 93static bool reloc_pc26(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 94{ 95 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 96 ptrdiff_t offset = target - src_rx; 97 98 if (offset == sextract64(offset, 0, 26)) { 99 /* read instruction, mask away previous PC_REL26 parameter contents, 100 set the proper offset, then write back the instruction. */ 101 *src_rw = deposit32(*src_rw, 0, 26, offset); 102 return true; 103 } 104 return false; 105} 106 107static bool reloc_pc19(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 108{ 109 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 110 ptrdiff_t offset = target - src_rx; 111 112 if (offset == sextract64(offset, 0, 19)) { 113 *src_rw = deposit32(*src_rw, 5, 19, offset); 114 return true; 115 } 116 return false; 117} 118 119static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 120{ 121 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 122 ptrdiff_t offset = target - src_rx; 123 124 if (offset == sextract64(offset, 0, 14)) { 125 *src_rw = deposit32(*src_rw, 5, 14, offset); 126 return true; 127 } 128 return false; 129} 130 131static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 132 intptr_t value, intptr_t addend) 133{ 134 tcg_debug_assert(addend == 0); 135 switch (type) { 136 case R_AARCH64_JUMP26: 137 case R_AARCH64_CALL26: 138 return reloc_pc26(code_ptr, (const tcg_insn_unit *)value); 139 case R_AARCH64_CONDBR19: 140 return reloc_pc19(code_ptr, (const tcg_insn_unit *)value); 141 case R_AARCH64_TSTBR14: 142 return reloc_pc14(code_ptr, (const tcg_insn_unit *)value); 143 default: 144 g_assert_not_reached(); 145 } 146} 147 148#define TCG_CT_CONST_AIMM 0x100 149#define TCG_CT_CONST_LIMM 0x200 150#define TCG_CT_CONST_ZERO 0x400 151#define TCG_CT_CONST_MONE 0x800 152#define TCG_CT_CONST_ORRI 0x1000 153#define TCG_CT_CONST_ANDI 0x2000 154#define TCG_CT_CONST_CMP 0x4000 155 156#define ALL_GENERAL_REGS 0xffffffffu 157#define ALL_VECTOR_REGS 0xffffffff00000000ull 158 159/* Match a constant valid for addition (12-bit, optionally shifted). */ 160static inline bool is_aimm(uint64_t val) 161{ 162 return (val & ~0xfff) == 0 || (val & ~0xfff000) == 0; 163} 164 165/* Match a constant valid for logical operations. */ 166static inline bool is_limm(uint64_t val) 167{ 168 /* Taking a simplified view of the logical immediates for now, ignoring 169 the replication that can happen across the field. Match bit patterns 170 of the forms 171 0....01....1 172 0..01..10..0 173 and their inverses. */ 174 175 /* Make things easier below, by testing the form with msb clear. */ 176 if ((int64_t)val < 0) { 177 val = ~val; 178 } 179 if (val == 0) { 180 return false; 181 } 182 val += val & -val; 183 return (val & (val - 1)) == 0; 184} 185 186/* Return true if v16 is a valid 16-bit shifted immediate. */ 187static bool is_shimm16(uint16_t v16, int *cmode, int *imm8) 188{ 189 if (v16 == (v16 & 0xff)) { 190 *cmode = 0x8; 191 *imm8 = v16 & 0xff; 192 return true; 193 } else if (v16 == (v16 & 0xff00)) { 194 *cmode = 0xa; 195 *imm8 = v16 >> 8; 196 return true; 197 } 198 return false; 199} 200 201/* Return true if v32 is a valid 32-bit shifted immediate. */ 202static bool is_shimm32(uint32_t v32, int *cmode, int *imm8) 203{ 204 if (v32 == (v32 & 0xff)) { 205 *cmode = 0x0; 206 *imm8 = v32 & 0xff; 207 return true; 208 } else if (v32 == (v32 & 0xff00)) { 209 *cmode = 0x2; 210 *imm8 = (v32 >> 8) & 0xff; 211 return true; 212 } else if (v32 == (v32 & 0xff0000)) { 213 *cmode = 0x4; 214 *imm8 = (v32 >> 16) & 0xff; 215 return true; 216 } else if (v32 == (v32 & 0xff000000)) { 217 *cmode = 0x6; 218 *imm8 = v32 >> 24; 219 return true; 220 } 221 return false; 222} 223 224/* Return true if v32 is a valid 32-bit shifting ones immediate. */ 225static bool is_soimm32(uint32_t v32, int *cmode, int *imm8) 226{ 227 if ((v32 & 0xffff00ff) == 0xff) { 228 *cmode = 0xc; 229 *imm8 = (v32 >> 8) & 0xff; 230 return true; 231 } else if ((v32 & 0xff00ffff) == 0xffff) { 232 *cmode = 0xd; 233 *imm8 = (v32 >> 16) & 0xff; 234 return true; 235 } 236 return false; 237} 238 239/* Return true if v32 is a valid float32 immediate. */ 240static bool is_fimm32(uint32_t v32, int *cmode, int *imm8) 241{ 242 if (extract32(v32, 0, 19) == 0 243 && (extract32(v32, 25, 6) == 0x20 244 || extract32(v32, 25, 6) == 0x1f)) { 245 *cmode = 0xf; 246 *imm8 = (extract32(v32, 31, 1) << 7) 247 | (extract32(v32, 25, 1) << 6) 248 | extract32(v32, 19, 6); 249 return true; 250 } 251 return false; 252} 253 254/* Return true if v64 is a valid float64 immediate. */ 255static bool is_fimm64(uint64_t v64, int *cmode, int *imm8) 256{ 257 if (extract64(v64, 0, 48) == 0 258 && (extract64(v64, 54, 9) == 0x100 259 || extract64(v64, 54, 9) == 0x0ff)) { 260 *cmode = 0xf; 261 *imm8 = (extract64(v64, 63, 1) << 7) 262 | (extract64(v64, 54, 1) << 6) 263 | extract64(v64, 48, 6); 264 return true; 265 } 266 return false; 267} 268 269/* 270 * Return non-zero if v32 can be formed by MOVI+ORR. 271 * Place the parameters for MOVI in (cmode, imm8). 272 * Return the cmode for ORR; the imm8 can be had via extraction from v32. 273 */ 274static int is_shimm32_pair(uint32_t v32, int *cmode, int *imm8) 275{ 276 int i; 277 278 for (i = 6; i > 0; i -= 2) { 279 /* Mask out one byte we can add with ORR. */ 280 uint32_t tmp = v32 & ~(0xffu << (i * 4)); 281 if (is_shimm32(tmp, cmode, imm8) || 282 is_soimm32(tmp, cmode, imm8)) { 283 break; 284 } 285 } 286 return i; 287} 288 289/* Return true if V is a valid 16-bit or 32-bit shifted immediate. */ 290static bool is_shimm1632(uint32_t v32, int *cmode, int *imm8) 291{ 292 if (v32 == deposit32(v32, 16, 16, v32)) { 293 return is_shimm16(v32, cmode, imm8); 294 } else { 295 return is_shimm32(v32, cmode, imm8); 296 } 297} 298 299static bool tcg_target_const_match(int64_t val, int ct, 300 TCGType type, TCGCond cond, int vece) 301{ 302 if (ct & TCG_CT_CONST) { 303 return 1; 304 } 305 if (type == TCG_TYPE_I32) { 306 val = (int32_t)val; 307 } 308 309 if (ct & TCG_CT_CONST_CMP) { 310 if (is_tst_cond(cond)) { 311 ct |= TCG_CT_CONST_LIMM; 312 } else { 313 ct |= TCG_CT_CONST_AIMM; 314 } 315 } 316 317 if ((ct & TCG_CT_CONST_AIMM) && (is_aimm(val) || is_aimm(-val))) { 318 return 1; 319 } 320 if ((ct & TCG_CT_CONST_LIMM) && is_limm(val)) { 321 return 1; 322 } 323 if ((ct & TCG_CT_CONST_ZERO) && val == 0) { 324 return 1; 325 } 326 if ((ct & TCG_CT_CONST_MONE) && val == -1) { 327 return 1; 328 } 329 330 switch (ct & (TCG_CT_CONST_ORRI | TCG_CT_CONST_ANDI)) { 331 case 0: 332 break; 333 case TCG_CT_CONST_ANDI: 334 val = ~val; 335 /* fallthru */ 336 case TCG_CT_CONST_ORRI: 337 if (val == deposit64(val, 32, 32, val)) { 338 int cmode, imm8; 339 return is_shimm1632(val, &cmode, &imm8); 340 } 341 break; 342 default: 343 /* Both bits should not be set for the same insn. */ 344 g_assert_not_reached(); 345 } 346 347 return 0; 348} 349 350enum aarch64_cond_code { 351 COND_EQ = 0x0, 352 COND_NE = 0x1, 353 COND_CS = 0x2, /* Unsigned greater or equal */ 354 COND_HS = COND_CS, /* ALIAS greater or equal */ 355 COND_CC = 0x3, /* Unsigned less than */ 356 COND_LO = COND_CC, /* ALIAS Lower */ 357 COND_MI = 0x4, /* Negative */ 358 COND_PL = 0x5, /* Zero or greater */ 359 COND_VS = 0x6, /* Overflow */ 360 COND_VC = 0x7, /* No overflow */ 361 COND_HI = 0x8, /* Unsigned greater than */ 362 COND_LS = 0x9, /* Unsigned less or equal */ 363 COND_GE = 0xa, 364 COND_LT = 0xb, 365 COND_GT = 0xc, 366 COND_LE = 0xd, 367 COND_AL = 0xe, 368 COND_NV = 0xf, /* behaves like COND_AL here */ 369}; 370 371static const enum aarch64_cond_code tcg_cond_to_aarch64[] = { 372 [TCG_COND_EQ] = COND_EQ, 373 [TCG_COND_NE] = COND_NE, 374 [TCG_COND_LT] = COND_LT, 375 [TCG_COND_GE] = COND_GE, 376 [TCG_COND_LE] = COND_LE, 377 [TCG_COND_GT] = COND_GT, 378 /* unsigned */ 379 [TCG_COND_LTU] = COND_LO, 380 [TCG_COND_GTU] = COND_HI, 381 [TCG_COND_GEU] = COND_HS, 382 [TCG_COND_LEU] = COND_LS, 383 /* bit test */ 384 [TCG_COND_TSTEQ] = COND_EQ, 385 [TCG_COND_TSTNE] = COND_NE, 386}; 387 388typedef enum { 389 LDST_ST = 0, /* store */ 390 LDST_LD = 1, /* load */ 391 LDST_LD_S_X = 2, /* load and sign-extend into Xt */ 392 LDST_LD_S_W = 3, /* load and sign-extend into Wt */ 393} AArch64LdstType; 394 395/* We encode the format of the insn into the beginning of the name, so that 396 we can have the preprocessor help "typecheck" the insn vs the output 397 function. Arm didn't provide us with nice names for the formats, so we 398 use the section number of the architecture reference manual in which the 399 instruction group is described. */ 400typedef enum { 401 /* Compare and branch (immediate). */ 402 I3201_CBZ = 0x34000000, 403 I3201_CBNZ = 0x35000000, 404 405 /* Conditional branch (immediate). */ 406 I3202_B_C = 0x54000000, 407 408 /* Test and branch (immediate). */ 409 I3205_TBZ = 0x36000000, 410 I3205_TBNZ = 0x37000000, 411 412 /* Unconditional branch (immediate). */ 413 I3206_B = 0x14000000, 414 I3206_BL = 0x94000000, 415 416 /* Unconditional branch (register). */ 417 I3207_BR = 0xd61f0000, 418 I3207_BLR = 0xd63f0000, 419 I3207_RET = 0xd65f0000, 420 421 /* AdvSIMD load/store single structure. */ 422 I3303_LD1R = 0x0d40c000, 423 424 /* Load literal for loading the address at pc-relative offset */ 425 I3305_LDR = 0x58000000, 426 I3305_LDR_v64 = 0x5c000000, 427 I3305_LDR_v128 = 0x9c000000, 428 429 /* Load/store exclusive. */ 430 I3306_LDXP = 0xc8600000, 431 I3306_STXP = 0xc8200000, 432 433 /* Load/store register. Described here as 3.3.12, but the helper 434 that emits them can transform to 3.3.10 or 3.3.13. */ 435 I3312_STRB = 0x38000000 | LDST_ST << 22 | MO_8 << 30, 436 I3312_STRH = 0x38000000 | LDST_ST << 22 | MO_16 << 30, 437 I3312_STRW = 0x38000000 | LDST_ST << 22 | MO_32 << 30, 438 I3312_STRX = 0x38000000 | LDST_ST << 22 | MO_64 << 30, 439 440 I3312_LDRB = 0x38000000 | LDST_LD << 22 | MO_8 << 30, 441 I3312_LDRH = 0x38000000 | LDST_LD << 22 | MO_16 << 30, 442 I3312_LDRW = 0x38000000 | LDST_LD << 22 | MO_32 << 30, 443 I3312_LDRX = 0x38000000 | LDST_LD << 22 | MO_64 << 30, 444 445 I3312_LDRSBW = 0x38000000 | LDST_LD_S_W << 22 | MO_8 << 30, 446 I3312_LDRSHW = 0x38000000 | LDST_LD_S_W << 22 | MO_16 << 30, 447 448 I3312_LDRSBX = 0x38000000 | LDST_LD_S_X << 22 | MO_8 << 30, 449 I3312_LDRSHX = 0x38000000 | LDST_LD_S_X << 22 | MO_16 << 30, 450 I3312_LDRSWX = 0x38000000 | LDST_LD_S_X << 22 | MO_32 << 30, 451 452 I3312_LDRVS = 0x3c000000 | LDST_LD << 22 | MO_32 << 30, 453 I3312_STRVS = 0x3c000000 | LDST_ST << 22 | MO_32 << 30, 454 455 I3312_LDRVD = 0x3c000000 | LDST_LD << 22 | MO_64 << 30, 456 I3312_STRVD = 0x3c000000 | LDST_ST << 22 | MO_64 << 30, 457 458 I3312_LDRVQ = 0x3c000000 | 3 << 22 | 0 << 30, 459 I3312_STRVQ = 0x3c000000 | 2 << 22 | 0 << 30, 460 461 I3312_TO_I3310 = 0x00200800, 462 I3312_TO_I3313 = 0x01000000, 463 464 /* Load/store register pair instructions. */ 465 I3314_LDP = 0x28400000, 466 I3314_STP = 0x28000000, 467 468 /* Add/subtract immediate instructions. */ 469 I3401_ADDI = 0x11000000, 470 I3401_ADDSI = 0x31000000, 471 I3401_SUBI = 0x51000000, 472 I3401_SUBSI = 0x71000000, 473 474 /* Bitfield instructions. */ 475 I3402_BFM = 0x33000000, 476 I3402_SBFM = 0x13000000, 477 I3402_UBFM = 0x53000000, 478 479 /* Extract instruction. */ 480 I3403_EXTR = 0x13800000, 481 482 /* Logical immediate instructions. */ 483 I3404_ANDI = 0x12000000, 484 I3404_ORRI = 0x32000000, 485 I3404_EORI = 0x52000000, 486 I3404_ANDSI = 0x72000000, 487 488 /* Move wide immediate instructions. */ 489 I3405_MOVN = 0x12800000, 490 I3405_MOVZ = 0x52800000, 491 I3405_MOVK = 0x72800000, 492 493 /* PC relative addressing instructions. */ 494 I3406_ADR = 0x10000000, 495 I3406_ADRP = 0x90000000, 496 497 /* Add/subtract extended register instructions. */ 498 I3501_ADD = 0x0b200000, 499 500 /* Add/subtract shifted register instructions (without a shift). */ 501 I3502_ADD = 0x0b000000, 502 I3502_ADDS = 0x2b000000, 503 I3502_SUB = 0x4b000000, 504 I3502_SUBS = 0x6b000000, 505 506 /* Add/subtract shifted register instructions (with a shift). */ 507 I3502S_ADD_LSL = I3502_ADD, 508 509 /* Add/subtract with carry instructions. */ 510 I3503_ADC = 0x1a000000, 511 I3503_SBC = 0x5a000000, 512 513 /* Conditional select instructions. */ 514 I3506_CSEL = 0x1a800000, 515 I3506_CSINC = 0x1a800400, 516 I3506_CSINV = 0x5a800000, 517 I3506_CSNEG = 0x5a800400, 518 519 /* Data-processing (1 source) instructions. */ 520 I3507_CLZ = 0x5ac01000, 521 I3507_RBIT = 0x5ac00000, 522 I3507_REV = 0x5ac00000, /* + size << 10 */ 523 524 /* Data-processing (2 source) instructions. */ 525 I3508_LSLV = 0x1ac02000, 526 I3508_LSRV = 0x1ac02400, 527 I3508_ASRV = 0x1ac02800, 528 I3508_RORV = 0x1ac02c00, 529 I3508_SMULH = 0x9b407c00, 530 I3508_UMULH = 0x9bc07c00, 531 I3508_UDIV = 0x1ac00800, 532 I3508_SDIV = 0x1ac00c00, 533 534 /* Data-processing (3 source) instructions. */ 535 I3509_MADD = 0x1b000000, 536 I3509_MSUB = 0x1b008000, 537 538 /* Logical shifted register instructions (without a shift). */ 539 I3510_AND = 0x0a000000, 540 I3510_BIC = 0x0a200000, 541 I3510_ORR = 0x2a000000, 542 I3510_ORN = 0x2a200000, 543 I3510_EOR = 0x4a000000, 544 I3510_EON = 0x4a200000, 545 I3510_ANDS = 0x6a000000, 546 547 /* Logical shifted register instructions (with a shift). */ 548 I3502S_AND_LSR = I3510_AND | (1 << 22), 549 550 /* AdvSIMD copy */ 551 I3605_DUP = 0x0e000400, 552 I3605_INS = 0x4e001c00, 553 I3605_UMOV = 0x0e003c00, 554 555 /* AdvSIMD modified immediate */ 556 I3606_MOVI = 0x0f000400, 557 I3606_MVNI = 0x2f000400, 558 I3606_BIC = 0x2f001400, 559 I3606_ORR = 0x0f001400, 560 561 /* AdvSIMD scalar shift by immediate */ 562 I3609_SSHR = 0x5f000400, 563 I3609_SSRA = 0x5f001400, 564 I3609_SHL = 0x5f005400, 565 I3609_USHR = 0x7f000400, 566 I3609_USRA = 0x7f001400, 567 I3609_SLI = 0x7f005400, 568 569 /* AdvSIMD scalar three same */ 570 I3611_SQADD = 0x5e200c00, 571 I3611_SQSUB = 0x5e202c00, 572 I3611_CMGT = 0x5e203400, 573 I3611_CMGE = 0x5e203c00, 574 I3611_SSHL = 0x5e204400, 575 I3611_ADD = 0x5e208400, 576 I3611_CMTST = 0x5e208c00, 577 I3611_UQADD = 0x7e200c00, 578 I3611_UQSUB = 0x7e202c00, 579 I3611_CMHI = 0x7e203400, 580 I3611_CMHS = 0x7e203c00, 581 I3611_USHL = 0x7e204400, 582 I3611_SUB = 0x7e208400, 583 I3611_CMEQ = 0x7e208c00, 584 585 /* AdvSIMD scalar two-reg misc */ 586 I3612_CMGT0 = 0x5e208800, 587 I3612_CMEQ0 = 0x5e209800, 588 I3612_CMLT0 = 0x5e20a800, 589 I3612_ABS = 0x5e20b800, 590 I3612_CMGE0 = 0x7e208800, 591 I3612_CMLE0 = 0x7e209800, 592 I3612_NEG = 0x7e20b800, 593 594 /* AdvSIMD shift by immediate */ 595 I3614_SSHR = 0x0f000400, 596 I3614_SSRA = 0x0f001400, 597 I3614_SHL = 0x0f005400, 598 I3614_SLI = 0x2f005400, 599 I3614_USHR = 0x2f000400, 600 I3614_USRA = 0x2f001400, 601 602 /* AdvSIMD three same. */ 603 I3616_ADD = 0x0e208400, 604 I3616_AND = 0x0e201c00, 605 I3616_BIC = 0x0e601c00, 606 I3616_BIF = 0x2ee01c00, 607 I3616_BIT = 0x2ea01c00, 608 I3616_BSL = 0x2e601c00, 609 I3616_EOR = 0x2e201c00, 610 I3616_MUL = 0x0e209c00, 611 I3616_ORR = 0x0ea01c00, 612 I3616_ORN = 0x0ee01c00, 613 I3616_SUB = 0x2e208400, 614 I3616_CMGT = 0x0e203400, 615 I3616_CMGE = 0x0e203c00, 616 I3616_CMTST = 0x0e208c00, 617 I3616_CMHI = 0x2e203400, 618 I3616_CMHS = 0x2e203c00, 619 I3616_CMEQ = 0x2e208c00, 620 I3616_SMAX = 0x0e206400, 621 I3616_SMIN = 0x0e206c00, 622 I3616_SSHL = 0x0e204400, 623 I3616_SQADD = 0x0e200c00, 624 I3616_SQSUB = 0x0e202c00, 625 I3616_UMAX = 0x2e206400, 626 I3616_UMIN = 0x2e206c00, 627 I3616_UQADD = 0x2e200c00, 628 I3616_UQSUB = 0x2e202c00, 629 I3616_USHL = 0x2e204400, 630 631 /* AdvSIMD two-reg misc. */ 632 I3617_CMGT0 = 0x0e208800, 633 I3617_CMEQ0 = 0x0e209800, 634 I3617_CMLT0 = 0x0e20a800, 635 I3617_CMGE0 = 0x2e208800, 636 I3617_CMLE0 = 0x2e209800, 637 I3617_NOT = 0x2e205800, 638 I3617_ABS = 0x0e20b800, 639 I3617_NEG = 0x2e20b800, 640 641 /* System instructions. */ 642 NOP = 0xd503201f, 643 DMB_ISH = 0xd50338bf, 644 DMB_LD = 0x00000100, 645 DMB_ST = 0x00000200, 646 647 BTI_C = 0xd503245f, 648 BTI_J = 0xd503249f, 649 BTI_JC = 0xd50324df, 650} AArch64Insn; 651 652static inline uint32_t tcg_in32(TCGContext *s) 653{ 654 uint32_t v = *(uint32_t *)s->code_ptr; 655 return v; 656} 657 658/* Emit an opcode with "type-checking" of the format. */ 659#define tcg_out_insn(S, FMT, OP, ...) \ 660 glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__) 661 662static void tcg_out_insn_3303(TCGContext *s, AArch64Insn insn, bool q, 663 TCGReg rt, TCGReg rn, unsigned size) 664{ 665 tcg_out32(s, insn | (rt & 0x1f) | (rn << 5) | (size << 10) | (q << 30)); 666} 667 668static void tcg_out_insn_3305(TCGContext *s, AArch64Insn insn, 669 int imm19, TCGReg rt) 670{ 671 tcg_out32(s, insn | (imm19 & 0x7ffff) << 5 | rt); 672} 673 674static void tcg_out_insn_3306(TCGContext *s, AArch64Insn insn, TCGReg rs, 675 TCGReg rt, TCGReg rt2, TCGReg rn) 676{ 677 tcg_out32(s, insn | rs << 16 | rt2 << 10 | rn << 5 | rt); 678} 679 680static void tcg_out_insn_3201(TCGContext *s, AArch64Insn insn, TCGType ext, 681 TCGReg rt, int imm19) 682{ 683 tcg_out32(s, insn | ext << 31 | (imm19 & 0x7ffff) << 5 | rt); 684} 685 686static void tcg_out_insn_3202(TCGContext *s, AArch64Insn insn, 687 TCGCond c, int imm19) 688{ 689 tcg_out32(s, insn | tcg_cond_to_aarch64[c] | (imm19 & 0x7ffff) << 5); 690} 691 692static void tcg_out_insn_3205(TCGContext *s, AArch64Insn insn, 693 TCGReg rt, int imm6, int imm14) 694{ 695 insn |= (imm6 & 0x20) << (31 - 5); 696 insn |= (imm6 & 0x1f) << 19; 697 tcg_out32(s, insn | (imm14 & 0x3fff) << 5 | rt); 698} 699 700static void tcg_out_insn_3206(TCGContext *s, AArch64Insn insn, int imm26) 701{ 702 tcg_out32(s, insn | (imm26 & 0x03ffffff)); 703} 704 705static void tcg_out_insn_3207(TCGContext *s, AArch64Insn insn, TCGReg rn) 706{ 707 tcg_out32(s, insn | rn << 5); 708} 709 710static void tcg_out_insn_3314(TCGContext *s, AArch64Insn insn, 711 TCGReg r1, TCGReg r2, TCGReg rn, 712 tcg_target_long ofs, bool pre, bool w) 713{ 714 insn |= 1u << 31; /* ext */ 715 insn |= pre << 24; 716 insn |= w << 23; 717 718 tcg_debug_assert(ofs >= -0x200 && ofs < 0x200 && (ofs & 7) == 0); 719 insn |= (ofs & (0x7f << 3)) << (15 - 3); 720 721 tcg_out32(s, insn | r2 << 10 | rn << 5 | r1); 722} 723 724static void tcg_out_insn_3401(TCGContext *s, AArch64Insn insn, TCGType ext, 725 TCGReg rd, TCGReg rn, uint64_t aimm) 726{ 727 if (aimm > 0xfff) { 728 tcg_debug_assert((aimm & 0xfff) == 0); 729 aimm >>= 12; 730 tcg_debug_assert(aimm <= 0xfff); 731 aimm |= 1 << 12; /* apply LSL 12 */ 732 } 733 tcg_out32(s, insn | ext << 31 | aimm << 10 | rn << 5 | rd); 734} 735 736/* This function can be used for both 3.4.2 (Bitfield) and 3.4.4 737 (Logical immediate). Both insn groups have N, IMMR and IMMS fields 738 that feed the DecodeBitMasks pseudo function. */ 739static void tcg_out_insn_3402(TCGContext *s, AArch64Insn insn, TCGType ext, 740 TCGReg rd, TCGReg rn, int n, int immr, int imms) 741{ 742 tcg_out32(s, insn | ext << 31 | n << 22 | immr << 16 | imms << 10 743 | rn << 5 | rd); 744} 745 746#define tcg_out_insn_3404 tcg_out_insn_3402 747 748static void tcg_out_insn_3403(TCGContext *s, AArch64Insn insn, TCGType ext, 749 TCGReg rd, TCGReg rn, TCGReg rm, int imms) 750{ 751 tcg_out32(s, insn | ext << 31 | ext << 22 | rm << 16 | imms << 10 752 | rn << 5 | rd); 753} 754 755/* This function is used for the Move (wide immediate) instruction group. 756 Note that SHIFT is a full shift count, not the 2 bit HW field. */ 757static void tcg_out_insn_3405(TCGContext *s, AArch64Insn insn, TCGType ext, 758 TCGReg rd, uint16_t half, unsigned shift) 759{ 760 tcg_debug_assert((shift & ~0x30) == 0); 761 tcg_out32(s, insn | ext << 31 | shift << (21 - 4) | half << 5 | rd); 762} 763 764static void tcg_out_insn_3406(TCGContext *s, AArch64Insn insn, 765 TCGReg rd, int64_t disp) 766{ 767 tcg_out32(s, insn | (disp & 3) << 29 | (disp & 0x1ffffc) << (5 - 2) | rd); 768} 769 770static inline void tcg_out_insn_3501(TCGContext *s, AArch64Insn insn, 771 TCGType sf, TCGReg rd, TCGReg rn, 772 TCGReg rm, int opt, int imm3) 773{ 774 tcg_out32(s, insn | sf << 31 | rm << 16 | opt << 13 | 775 imm3 << 10 | rn << 5 | rd); 776} 777 778/* This function is for both 3.5.2 (Add/Subtract shifted register), for 779 the rare occasion when we actually want to supply a shift amount. */ 780static inline void tcg_out_insn_3502S(TCGContext *s, AArch64Insn insn, 781 TCGType ext, TCGReg rd, TCGReg rn, 782 TCGReg rm, int imm6) 783{ 784 tcg_out32(s, insn | ext << 31 | rm << 16 | imm6 << 10 | rn << 5 | rd); 785} 786 787/* This function is for 3.5.2 (Add/subtract shifted register), 788 and 3.5.10 (Logical shifted register), for the vast majorty of cases 789 when we don't want to apply a shift. Thus it can also be used for 790 3.5.3 (Add/subtract with carry) and 3.5.8 (Data processing 2 source). */ 791static void tcg_out_insn_3502(TCGContext *s, AArch64Insn insn, TCGType ext, 792 TCGReg rd, TCGReg rn, TCGReg rm) 793{ 794 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd); 795} 796 797#define tcg_out_insn_3503 tcg_out_insn_3502 798#define tcg_out_insn_3508 tcg_out_insn_3502 799#define tcg_out_insn_3510 tcg_out_insn_3502 800 801static void tcg_out_insn_3506(TCGContext *s, AArch64Insn insn, TCGType ext, 802 TCGReg rd, TCGReg rn, TCGReg rm, TCGCond c) 803{ 804 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd 805 | tcg_cond_to_aarch64[c] << 12); 806} 807 808static void tcg_out_insn_3507(TCGContext *s, AArch64Insn insn, TCGType ext, 809 TCGReg rd, TCGReg rn) 810{ 811 tcg_out32(s, insn | ext << 31 | rn << 5 | rd); 812} 813 814static void tcg_out_insn_3509(TCGContext *s, AArch64Insn insn, TCGType ext, 815 TCGReg rd, TCGReg rn, TCGReg rm, TCGReg ra) 816{ 817 tcg_out32(s, insn | ext << 31 | rm << 16 | ra << 10 | rn << 5 | rd); 818} 819 820static void tcg_out_insn_3605(TCGContext *s, AArch64Insn insn, bool q, 821 TCGReg rd, TCGReg rn, int dst_idx, int src_idx) 822{ 823 /* Note that bit 11 set means general register input. Therefore 824 we can handle both register sets with one function. */ 825 tcg_out32(s, insn | q << 30 | (dst_idx << 16) | (src_idx << 11) 826 | (rd & 0x1f) | (~rn & 0x20) << 6 | (rn & 0x1f) << 5); 827} 828 829static void tcg_out_insn_3606(TCGContext *s, AArch64Insn insn, bool q, 830 TCGReg rd, bool op, int cmode, uint8_t imm8) 831{ 832 tcg_out32(s, insn | q << 30 | op << 29 | cmode << 12 | (rd & 0x1f) 833 | (imm8 & 0xe0) << (16 - 5) | (imm8 & 0x1f) << 5); 834} 835 836static void tcg_out_insn_3609(TCGContext *s, AArch64Insn insn, 837 TCGReg rd, TCGReg rn, unsigned immhb) 838{ 839 tcg_out32(s, insn | immhb << 16 | (rn & 0x1f) << 5 | (rd & 0x1f)); 840} 841 842static void tcg_out_insn_3611(TCGContext *s, AArch64Insn insn, 843 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 844{ 845 tcg_out32(s, insn | (size << 22) | (rm & 0x1f) << 16 846 | (rn & 0x1f) << 5 | (rd & 0x1f)); 847} 848 849static void tcg_out_insn_3612(TCGContext *s, AArch64Insn insn, 850 unsigned size, TCGReg rd, TCGReg rn) 851{ 852 tcg_out32(s, insn | (size << 22) | (rn & 0x1f) << 5 | (rd & 0x1f)); 853} 854 855static void tcg_out_insn_3614(TCGContext *s, AArch64Insn insn, bool q, 856 TCGReg rd, TCGReg rn, unsigned immhb) 857{ 858 tcg_out32(s, insn | q << 30 | immhb << 16 859 | (rn & 0x1f) << 5 | (rd & 0x1f)); 860} 861 862static void tcg_out_insn_3616(TCGContext *s, AArch64Insn insn, bool q, 863 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 864{ 865 tcg_out32(s, insn | q << 30 | (size << 22) | (rm & 0x1f) << 16 866 | (rn & 0x1f) << 5 | (rd & 0x1f)); 867} 868 869static void tcg_out_insn_3617(TCGContext *s, AArch64Insn insn, bool q, 870 unsigned size, TCGReg rd, TCGReg rn) 871{ 872 tcg_out32(s, insn | q << 30 | (size << 22) 873 | (rn & 0x1f) << 5 | (rd & 0x1f)); 874} 875 876static void tcg_out_insn_3310(TCGContext *s, AArch64Insn insn, 877 TCGReg rd, TCGReg base, TCGType ext, 878 TCGReg regoff) 879{ 880 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 881 tcg_out32(s, insn | I3312_TO_I3310 | regoff << 16 | 882 0x4000 | ext << 13 | base << 5 | (rd & 0x1f)); 883} 884 885static void tcg_out_insn_3312(TCGContext *s, AArch64Insn insn, 886 TCGReg rd, TCGReg rn, intptr_t offset) 887{ 888 tcg_out32(s, insn | (offset & 0x1ff) << 12 | rn << 5 | (rd & 0x1f)); 889} 890 891static void tcg_out_insn_3313(TCGContext *s, AArch64Insn insn, 892 TCGReg rd, TCGReg rn, uintptr_t scaled_uimm) 893{ 894 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 895 tcg_out32(s, insn | I3312_TO_I3313 | scaled_uimm << 10 896 | rn << 5 | (rd & 0x1f)); 897} 898 899static void tcg_out_bti(TCGContext *s, AArch64Insn insn) 900{ 901 /* 902 * While BTI insns are nops on hosts without FEAT_BTI, 903 * there is no point in emitting them in that case either. 904 */ 905 if (cpuinfo & CPUINFO_BTI) { 906 tcg_out32(s, insn); 907 } 908} 909 910/* Register to register move using ORR (shifted register with no shift). */ 911static void tcg_out_movr(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rm) 912{ 913 tcg_out_insn(s, 3510, ORR, ext, rd, TCG_REG_XZR, rm); 914} 915 916/* Register to register move using ADDI (move to/from SP). */ 917static void tcg_out_movr_sp(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rn) 918{ 919 tcg_out_insn(s, 3401, ADDI, ext, rd, rn, 0); 920} 921 922/* This function is used for the Logical (immediate) instruction group. 923 The value of LIMM must satisfy IS_LIMM. See the comment above about 924 only supporting simplified logical immediates. */ 925static void tcg_out_logicali(TCGContext *s, AArch64Insn insn, TCGType ext, 926 TCGReg rd, TCGReg rn, uint64_t limm) 927{ 928 unsigned h, l, r, c; 929 930 tcg_debug_assert(is_limm(limm)); 931 932 h = clz64(limm); 933 l = ctz64(limm); 934 if (l == 0) { 935 r = 0; /* form 0....01....1 */ 936 c = ctz64(~limm) - 1; 937 if (h == 0) { 938 r = clz64(~limm); /* form 1..10..01..1 */ 939 c += r; 940 } 941 } else { 942 r = 64 - l; /* form 1....10....0 or 0..01..10..0 */ 943 c = r - h - 1; 944 } 945 if (ext == TCG_TYPE_I32) { 946 r &= 31; 947 c &= 31; 948 } 949 950 tcg_out_insn_3404(s, insn, ext, rd, rn, ext, r, c); 951} 952 953static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 954 TCGReg rd, int64_t v64) 955{ 956 bool q = type == TCG_TYPE_V128; 957 int cmode, imm8, i; 958 959 /* Test all bytes equal first. */ 960 if (vece == MO_8) { 961 imm8 = (uint8_t)v64; 962 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0xe, imm8); 963 return; 964 } 965 966 /* 967 * Test all bytes 0x00 or 0xff second. This can match cases that 968 * might otherwise take 2 or 3 insns for MO_16 or MO_32 below. 969 */ 970 for (i = imm8 = 0; i < 8; i++) { 971 uint8_t byte = v64 >> (i * 8); 972 if (byte == 0xff) { 973 imm8 |= 1 << i; 974 } else if (byte != 0) { 975 goto fail_bytes; 976 } 977 } 978 tcg_out_insn(s, 3606, MOVI, q, rd, 1, 0xe, imm8); 979 return; 980 fail_bytes: 981 982 /* 983 * Tests for various replications. For each element width, if we 984 * cannot find an expansion there's no point checking a larger 985 * width because we already know by replication it cannot match. 986 */ 987 if (vece == MO_16) { 988 uint16_t v16 = v64; 989 990 if (is_shimm16(v16, &cmode, &imm8)) { 991 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 992 return; 993 } 994 if (is_shimm16(~v16, &cmode, &imm8)) { 995 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 996 return; 997 } 998 999 /* 1000 * Otherwise, all remaining constants can be loaded in two insns: 1001 * rd = v16 & 0xff, rd |= v16 & 0xff00. 1002 */ 1003 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0x8, v16 & 0xff); 1004 tcg_out_insn(s, 3606, ORR, q, rd, 0, 0xa, v16 >> 8); 1005 return; 1006 } else if (vece == MO_32) { 1007 uint32_t v32 = v64; 1008 uint32_t n32 = ~v32; 1009 1010 if (is_shimm32(v32, &cmode, &imm8) || 1011 is_soimm32(v32, &cmode, &imm8) || 1012 is_fimm32(v32, &cmode, &imm8)) { 1013 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 1014 return; 1015 } 1016 if (is_shimm32(n32, &cmode, &imm8) || 1017 is_soimm32(n32, &cmode, &imm8)) { 1018 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 1019 return; 1020 } 1021 1022 /* 1023 * Restrict the set of constants to those we can load with 1024 * two instructions. Others we load from the pool. 1025 */ 1026 i = is_shimm32_pair(v32, &cmode, &imm8); 1027 if (i) { 1028 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 1029 tcg_out_insn(s, 3606, ORR, q, rd, 0, i, extract32(v32, i * 4, 8)); 1030 return; 1031 } 1032 i = is_shimm32_pair(n32, &cmode, &imm8); 1033 if (i) { 1034 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 1035 tcg_out_insn(s, 3606, BIC, q, rd, 0, i, extract32(n32, i * 4, 8)); 1036 return; 1037 } 1038 } else if (is_fimm64(v64, &cmode, &imm8)) { 1039 tcg_out_insn(s, 3606, MOVI, q, rd, 1, cmode, imm8); 1040 return; 1041 } 1042 1043 /* 1044 * As a last resort, load from the constant pool. Sadly there 1045 * is no LD1R (literal), so store the full 16-byte vector. 1046 */ 1047 if (type == TCG_TYPE_V128) { 1048 new_pool_l2(s, R_AARCH64_CONDBR19, s->code_ptr, 0, v64, v64); 1049 tcg_out_insn(s, 3305, LDR_v128, 0, rd); 1050 } else { 1051 new_pool_label(s, v64, R_AARCH64_CONDBR19, s->code_ptr, 0); 1052 tcg_out_insn(s, 3305, LDR_v64, 0, rd); 1053 } 1054} 1055 1056static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 1057 TCGReg rd, TCGReg rs) 1058{ 1059 int is_q = type - TCG_TYPE_V64; 1060 tcg_out_insn(s, 3605, DUP, is_q, rd, rs, 1 << vece, 0); 1061 return true; 1062} 1063 1064static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 1065 TCGReg r, TCGReg base, intptr_t offset) 1066{ 1067 TCGReg temp = TCG_REG_TMP0; 1068 1069 if (offset < -0xffffff || offset > 0xffffff) { 1070 tcg_out_movi(s, TCG_TYPE_PTR, temp, offset); 1071 tcg_out_insn(s, 3502, ADD, 1, temp, temp, base); 1072 base = temp; 1073 } else { 1074 AArch64Insn add_insn = I3401_ADDI; 1075 1076 if (offset < 0) { 1077 add_insn = I3401_SUBI; 1078 offset = -offset; 1079 } 1080 if (offset & 0xfff000) { 1081 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff000); 1082 base = temp; 1083 } 1084 if (offset & 0xfff) { 1085 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff); 1086 base = temp; 1087 } 1088 } 1089 tcg_out_insn(s, 3303, LD1R, type == TCG_TYPE_V128, r, base, vece); 1090 return true; 1091} 1092 1093static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg rd, 1094 tcg_target_long value) 1095{ 1096 tcg_target_long svalue = value; 1097 tcg_target_long ivalue = ~value; 1098 tcg_target_long t0, t1, t2; 1099 int s0, s1; 1100 AArch64Insn opc; 1101 1102 switch (type) { 1103 case TCG_TYPE_I32: 1104 case TCG_TYPE_I64: 1105 tcg_debug_assert(rd < 32); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 1111 /* For 32-bit values, discard potential garbage in value. For 64-bit 1112 values within [2**31, 2**32-1], we can create smaller sequences by 1113 interpreting this as a negative 32-bit number, while ensuring that 1114 the high 32 bits are cleared by setting SF=0. */ 1115 if (type == TCG_TYPE_I32 || (value & ~0xffffffffull) == 0) { 1116 svalue = (int32_t)value; 1117 value = (uint32_t)value; 1118 ivalue = (uint32_t)ivalue; 1119 type = TCG_TYPE_I32; 1120 } 1121 1122 /* Speed things up by handling the common case of small positive 1123 and negative values specially. */ 1124 if ((value & ~0xffffull) == 0) { 1125 tcg_out_insn(s, 3405, MOVZ, type, rd, value, 0); 1126 return; 1127 } else if ((ivalue & ~0xffffull) == 0) { 1128 tcg_out_insn(s, 3405, MOVN, type, rd, ivalue, 0); 1129 return; 1130 } 1131 1132 /* Check for bitfield immediates. For the benefit of 32-bit quantities, 1133 use the sign-extended value. That lets us match rotated values such 1134 as 0xff0000ff with the same 64-bit logic matching 0xffffffffff0000ff. */ 1135 if (is_limm(svalue)) { 1136 tcg_out_logicali(s, I3404_ORRI, type, rd, TCG_REG_XZR, svalue); 1137 return; 1138 } 1139 1140 /* Look for host pointer values within 4G of the PC. This happens 1141 often when loading pointers to QEMU's own data structures. */ 1142 if (type == TCG_TYPE_I64) { 1143 intptr_t src_rx = (intptr_t)tcg_splitwx_to_rx(s->code_ptr); 1144 tcg_target_long disp = value - src_rx; 1145 if (disp == sextract64(disp, 0, 21)) { 1146 tcg_out_insn(s, 3406, ADR, rd, disp); 1147 return; 1148 } 1149 disp = (value >> 12) - (src_rx >> 12); 1150 if (disp == sextract64(disp, 0, 21)) { 1151 tcg_out_insn(s, 3406, ADRP, rd, disp); 1152 if (value & 0xfff) { 1153 tcg_out_insn(s, 3401, ADDI, type, rd, rd, value & 0xfff); 1154 } 1155 return; 1156 } 1157 } 1158 1159 /* Would it take fewer insns to begin with MOVN? */ 1160 if (ctpop64(value) >= 32) { 1161 t0 = ivalue; 1162 opc = I3405_MOVN; 1163 } else { 1164 t0 = value; 1165 opc = I3405_MOVZ; 1166 } 1167 s0 = ctz64(t0) & (63 & -16); 1168 t1 = t0 & ~(0xffffull << s0); 1169 s1 = ctz64(t1) & (63 & -16); 1170 t2 = t1 & ~(0xffffull << s1); 1171 if (t2 == 0) { 1172 tcg_out_insn_3405(s, opc, type, rd, t0 >> s0, s0); 1173 if (t1 != 0) { 1174 tcg_out_insn(s, 3405, MOVK, type, rd, value >> s1, s1); 1175 } 1176 return; 1177 } 1178 1179 /* For more than 2 insns, dump it into the constant pool. */ 1180 new_pool_label(s, value, R_AARCH64_CONDBR19, s->code_ptr, 0); 1181 tcg_out_insn(s, 3305, LDR, 0, rd); 1182} 1183 1184static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1185{ 1186 return false; 1187} 1188 1189static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1190 tcg_target_long imm) 1191{ 1192 /* This function is only used for passing structs by reference. */ 1193 g_assert_not_reached(); 1194} 1195 1196/* Define something more legible for general use. */ 1197#define tcg_out_ldst_r tcg_out_insn_3310 1198 1199static void tcg_out_ldst(TCGContext *s, AArch64Insn insn, TCGReg rd, 1200 TCGReg rn, intptr_t offset, int lgsize) 1201{ 1202 /* If the offset is naturally aligned and in range, then we can 1203 use the scaled uimm12 encoding */ 1204 if (offset >= 0 && !(offset & ((1 << lgsize) - 1))) { 1205 uintptr_t scaled_uimm = offset >> lgsize; 1206 if (scaled_uimm <= 0xfff) { 1207 tcg_out_insn_3313(s, insn, rd, rn, scaled_uimm); 1208 return; 1209 } 1210 } 1211 1212 /* Small signed offsets can use the unscaled encoding. */ 1213 if (offset >= -256 && offset < 256) { 1214 tcg_out_insn_3312(s, insn, rd, rn, offset); 1215 return; 1216 } 1217 1218 /* Worst-case scenario, move offset to temp register, use reg offset. */ 1219 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, offset); 1220 tcg_out_ldst_r(s, insn, rd, rn, TCG_TYPE_I64, TCG_REG_TMP0); 1221} 1222 1223static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 1224{ 1225 if (ret == arg) { 1226 return true; 1227 } 1228 switch (type) { 1229 case TCG_TYPE_I32: 1230 case TCG_TYPE_I64: 1231 if (ret < 32 && arg < 32) { 1232 tcg_out_movr(s, type, ret, arg); 1233 break; 1234 } else if (ret < 32) { 1235 tcg_out_insn(s, 3605, UMOV, type, ret, arg, 0, 0); 1236 break; 1237 } else if (arg < 32) { 1238 tcg_out_insn(s, 3605, INS, 0, ret, arg, 4 << type, 0); 1239 break; 1240 } 1241 /* FALLTHRU */ 1242 1243 case TCG_TYPE_V64: 1244 tcg_debug_assert(ret >= 32 && arg >= 32); 1245 tcg_out_insn(s, 3616, ORR, 0, 0, ret, arg, arg); 1246 break; 1247 case TCG_TYPE_V128: 1248 tcg_debug_assert(ret >= 32 && arg >= 32); 1249 tcg_out_insn(s, 3616, ORR, 1, 0, ret, arg, arg); 1250 break; 1251 1252 default: 1253 g_assert_not_reached(); 1254 } 1255 return true; 1256} 1257 1258static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1259 TCGReg base, intptr_t ofs) 1260{ 1261 AArch64Insn insn; 1262 int lgsz; 1263 1264 switch (type) { 1265 case TCG_TYPE_I32: 1266 insn = (ret < 32 ? I3312_LDRW : I3312_LDRVS); 1267 lgsz = 2; 1268 break; 1269 case TCG_TYPE_I64: 1270 insn = (ret < 32 ? I3312_LDRX : I3312_LDRVD); 1271 lgsz = 3; 1272 break; 1273 case TCG_TYPE_V64: 1274 insn = I3312_LDRVD; 1275 lgsz = 3; 1276 break; 1277 case TCG_TYPE_V128: 1278 insn = I3312_LDRVQ; 1279 lgsz = 4; 1280 break; 1281 default: 1282 g_assert_not_reached(); 1283 } 1284 tcg_out_ldst(s, insn, ret, base, ofs, lgsz); 1285} 1286 1287static void tcg_out_st(TCGContext *s, TCGType type, TCGReg src, 1288 TCGReg base, intptr_t ofs) 1289{ 1290 AArch64Insn insn; 1291 int lgsz; 1292 1293 switch (type) { 1294 case TCG_TYPE_I32: 1295 insn = (src < 32 ? I3312_STRW : I3312_STRVS); 1296 lgsz = 2; 1297 break; 1298 case TCG_TYPE_I64: 1299 insn = (src < 32 ? I3312_STRX : I3312_STRVD); 1300 lgsz = 3; 1301 break; 1302 case TCG_TYPE_V64: 1303 insn = I3312_STRVD; 1304 lgsz = 3; 1305 break; 1306 case TCG_TYPE_V128: 1307 insn = I3312_STRVQ; 1308 lgsz = 4; 1309 break; 1310 default: 1311 g_assert_not_reached(); 1312 } 1313 tcg_out_ldst(s, insn, src, base, ofs, lgsz); 1314} 1315 1316static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1317 TCGReg base, intptr_t ofs) 1318{ 1319 if (type <= TCG_TYPE_I64 && val == 0) { 1320 tcg_out_st(s, type, TCG_REG_XZR, base, ofs); 1321 return true; 1322 } 1323 return false; 1324} 1325 1326static inline void tcg_out_bfm(TCGContext *s, TCGType ext, TCGReg rd, 1327 TCGReg rn, unsigned int a, unsigned int b) 1328{ 1329 tcg_out_insn(s, 3402, BFM, ext, rd, rn, ext, a, b); 1330} 1331 1332static inline void tcg_out_ubfm(TCGContext *s, TCGType ext, TCGReg rd, 1333 TCGReg rn, unsigned int a, unsigned int b) 1334{ 1335 tcg_out_insn(s, 3402, UBFM, ext, rd, rn, ext, a, b); 1336} 1337 1338static inline void tcg_out_sbfm(TCGContext *s, TCGType ext, TCGReg rd, 1339 TCGReg rn, unsigned int a, unsigned int b) 1340{ 1341 tcg_out_insn(s, 3402, SBFM, ext, rd, rn, ext, a, b); 1342} 1343 1344static inline void tcg_out_extr(TCGContext *s, TCGType ext, TCGReg rd, 1345 TCGReg rn, TCGReg rm, unsigned int a) 1346{ 1347 tcg_out_insn(s, 3403, EXTR, ext, rd, rn, rm, a); 1348} 1349 1350static inline void tcg_out_dep(TCGContext *s, TCGType ext, TCGReg rd, 1351 TCGReg rn, unsigned lsb, unsigned width) 1352{ 1353 unsigned size = ext ? 64 : 32; 1354 unsigned a = (size - lsb) & (size - 1); 1355 unsigned b = width - 1; 1356 tcg_out_bfm(s, ext, rd, rn, a, b); 1357} 1358 1359static void tgen_cmp(TCGContext *s, TCGType ext, TCGCond cond, 1360 TCGReg a, TCGReg b) 1361{ 1362 if (is_tst_cond(cond)) { 1363 tcg_out_insn(s, 3510, ANDS, ext, TCG_REG_XZR, a, b); 1364 } else { 1365 tcg_out_insn(s, 3502, SUBS, ext, TCG_REG_XZR, a, b); 1366 } 1367} 1368 1369static void tgen_cmpi(TCGContext *s, TCGType ext, TCGCond cond, 1370 TCGReg a, tcg_target_long b) 1371{ 1372 if (is_tst_cond(cond)) { 1373 tcg_out_logicali(s, I3404_ANDSI, ext, TCG_REG_XZR, a, b); 1374 } else if (b >= 0) { 1375 tcg_debug_assert(is_aimm(b)); 1376 tcg_out_insn(s, 3401, SUBSI, ext, TCG_REG_XZR, a, b); 1377 } else { 1378 tcg_debug_assert(is_aimm(-b)); 1379 tcg_out_insn(s, 3401, ADDSI, ext, TCG_REG_XZR, a, -b); 1380 } 1381} 1382 1383static void tcg_out_cmp(TCGContext *s, TCGType ext, TCGCond cond, TCGReg a, 1384 tcg_target_long b, bool const_b) 1385{ 1386 if (const_b) { 1387 tgen_cmpi(s, ext, cond, a, b); 1388 } else { 1389 tgen_cmp(s, ext, cond, a, b); 1390 } 1391} 1392 1393static void tcg_out_goto(TCGContext *s, const tcg_insn_unit *target) 1394{ 1395 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1396 tcg_debug_assert(offset == sextract64(offset, 0, 26)); 1397 tcg_out_insn(s, 3206, B, offset); 1398} 1399 1400static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *target) 1401{ 1402 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1403 if (offset == sextract64(offset, 0, 26)) { 1404 tcg_out_insn(s, 3206, BL, offset); 1405 } else { 1406 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, (intptr_t)target); 1407 tcg_out_insn(s, 3207, BLR, TCG_REG_TMP0); 1408 } 1409} 1410 1411static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target, 1412 const TCGHelperInfo *info) 1413{ 1414 tcg_out_call_int(s, target); 1415} 1416 1417static inline void tcg_out_goto_label(TCGContext *s, TCGLabel *l) 1418{ 1419 if (!l->has_value) { 1420 tcg_out_reloc(s, s->code_ptr, R_AARCH64_JUMP26, l, 0); 1421 tcg_out_insn(s, 3206, B, 0); 1422 } else { 1423 tcg_out_goto(s, l->u.value_ptr); 1424 } 1425} 1426 1427static void tgen_brcond(TCGContext *s, TCGType type, TCGCond c, 1428 TCGReg a, TCGReg b, TCGLabel *l) 1429{ 1430 tgen_cmp(s, type, c, a, b); 1431 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1432 tcg_out_insn(s, 3202, B_C, c, 0); 1433} 1434 1435static void tgen_brcondi(TCGContext *s, TCGType ext, TCGCond c, 1436 TCGReg a, tcg_target_long b, TCGLabel *l) 1437{ 1438 int tbit = -1; 1439 bool need_cmp = true; 1440 1441 switch (c) { 1442 case TCG_COND_EQ: 1443 case TCG_COND_NE: 1444 /* cmp xN,0; b.ne L -> cbnz xN,L */ 1445 if (b == 0) { 1446 need_cmp = false; 1447 } 1448 break; 1449 case TCG_COND_LT: 1450 case TCG_COND_GE: 1451 /* cmp xN,0; b.mi L -> tbnz xN,63,L */ 1452 if (b == 0) { 1453 c = (c == TCG_COND_LT ? TCG_COND_TSTNE : TCG_COND_TSTEQ); 1454 tbit = ext ? 63 : 31; 1455 need_cmp = false; 1456 } 1457 break; 1458 case TCG_COND_TSTEQ: 1459 case TCG_COND_TSTNE: 1460 /* tst xN,0xffffffff; b.ne L -> cbnz wN,L */ 1461 if (b == UINT32_MAX) { 1462 c = tcg_tst_eqne_cond(c); 1463 ext = TCG_TYPE_I32; 1464 need_cmp = false; 1465 break; 1466 } 1467 /* tst xN,1<<B; b.ne L -> tbnz xN,B,L */ 1468 if (is_power_of_2(b)) { 1469 tbit = ctz64(b); 1470 need_cmp = false; 1471 } 1472 break; 1473 default: 1474 break; 1475 } 1476 1477 if (need_cmp) { 1478 tgen_cmpi(s, ext, c, a, b); 1479 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1480 tcg_out_insn(s, 3202, B_C, c, 0); 1481 return; 1482 } 1483 1484 if (tbit >= 0) { 1485 tcg_out_reloc(s, s->code_ptr, R_AARCH64_TSTBR14, l, 0); 1486 switch (c) { 1487 case TCG_COND_TSTEQ: 1488 tcg_out_insn(s, 3205, TBZ, a, tbit, 0); 1489 break; 1490 case TCG_COND_TSTNE: 1491 tcg_out_insn(s, 3205, TBNZ, a, tbit, 0); 1492 break; 1493 default: 1494 g_assert_not_reached(); 1495 } 1496 } else { 1497 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1498 switch (c) { 1499 case TCG_COND_EQ: 1500 tcg_out_insn(s, 3201, CBZ, ext, a, 0); 1501 break; 1502 case TCG_COND_NE: 1503 tcg_out_insn(s, 3201, CBNZ, ext, a, 0); 1504 break; 1505 default: 1506 g_assert_not_reached(); 1507 } 1508 } 1509} 1510 1511static const TCGOutOpBrcond outop_brcond = { 1512 .base.static_constraint = C_O0_I2(r, rC), 1513 .out_rr = tgen_brcond, 1514 .out_ri = tgen_brcondi, 1515}; 1516 1517static inline void tcg_out_rev(TCGContext *s, int ext, MemOp s_bits, 1518 TCGReg rd, TCGReg rn) 1519{ 1520 /* REV, REV16, REV32 */ 1521 tcg_out_insn_3507(s, I3507_REV | (s_bits << 10), ext, rd, rn); 1522} 1523 1524static inline void tcg_out_sxt(TCGContext *s, TCGType ext, MemOp s_bits, 1525 TCGReg rd, TCGReg rn) 1526{ 1527 /* Using ALIASes SXTB, SXTH, SXTW, of SBFM Xd, Xn, #0, #7|15|31 */ 1528 int bits = (8 << s_bits) - 1; 1529 tcg_out_sbfm(s, ext, rd, rn, 0, bits); 1530} 1531 1532static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1533{ 1534 tcg_out_sxt(s, type, MO_8, rd, rn); 1535} 1536 1537static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1538{ 1539 tcg_out_sxt(s, type, MO_16, rd, rn); 1540} 1541 1542static void tcg_out_ext32s(TCGContext *s, TCGReg rd, TCGReg rn) 1543{ 1544 tcg_out_sxt(s, TCG_TYPE_I64, MO_32, rd, rn); 1545} 1546 1547static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1548{ 1549 tcg_out_ext32s(s, rd, rn); 1550} 1551 1552static inline void tcg_out_uxt(TCGContext *s, MemOp s_bits, 1553 TCGReg rd, TCGReg rn) 1554{ 1555 /* Using ALIASes UXTB, UXTH of UBFM Wd, Wn, #0, #7|15 */ 1556 int bits = (8 << s_bits) - 1; 1557 tcg_out_ubfm(s, 0, rd, rn, 0, bits); 1558} 1559 1560static void tcg_out_ext8u(TCGContext *s, TCGReg rd, TCGReg rn) 1561{ 1562 tcg_out_uxt(s, MO_8, rd, rn); 1563} 1564 1565static void tcg_out_ext16u(TCGContext *s, TCGReg rd, TCGReg rn) 1566{ 1567 tcg_out_uxt(s, MO_16, rd, rn); 1568} 1569 1570static void tcg_out_ext32u(TCGContext *s, TCGReg rd, TCGReg rn) 1571{ 1572 tcg_out_movr(s, TCG_TYPE_I32, rd, rn); 1573} 1574 1575static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1576{ 1577 tcg_out_ext32u(s, rd, rn); 1578} 1579 1580static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rn) 1581{ 1582 tcg_out_mov(s, TCG_TYPE_I32, rd, rn); 1583} 1584 1585static void tcg_out_addsub2(TCGContext *s, TCGType ext, TCGReg rl, 1586 TCGReg rh, TCGReg al, TCGReg ah, 1587 tcg_target_long bl, tcg_target_long bh, 1588 bool const_bl, bool const_bh, bool sub) 1589{ 1590 TCGReg orig_rl = rl; 1591 AArch64Insn insn; 1592 1593 if (rl == ah || (!const_bh && rl == bh)) { 1594 rl = TCG_REG_TMP0; 1595 } 1596 1597 if (const_bl) { 1598 if (bl < 0) { 1599 bl = -bl; 1600 insn = sub ? I3401_ADDSI : I3401_SUBSI; 1601 } else { 1602 insn = sub ? I3401_SUBSI : I3401_ADDSI; 1603 } 1604 1605 if (unlikely(al == TCG_REG_XZR)) { 1606 /* ??? We want to allow al to be zero for the benefit of 1607 negation via subtraction. However, that leaves open the 1608 possibility of adding 0+const in the low part, and the 1609 immediate add instructions encode XSP not XZR. Don't try 1610 anything more elaborate here than loading another zero. */ 1611 al = TCG_REG_TMP0; 1612 tcg_out_movi(s, ext, al, 0); 1613 } 1614 tcg_out_insn_3401(s, insn, ext, rl, al, bl); 1615 } else { 1616 tcg_out_insn_3502(s, sub ? I3502_SUBS : I3502_ADDS, ext, rl, al, bl); 1617 } 1618 1619 insn = I3503_ADC; 1620 if (const_bh) { 1621 /* Note that the only two constants we support are 0 and -1, and 1622 that SBC = rn + ~rm + c, so adc -1 is sbc 0, and vice-versa. */ 1623 if ((bh != 0) ^ sub) { 1624 insn = I3503_SBC; 1625 } 1626 bh = TCG_REG_XZR; 1627 } else if (sub) { 1628 insn = I3503_SBC; 1629 } 1630 tcg_out_insn_3503(s, insn, ext, rh, ah, bh); 1631 1632 tcg_out_mov(s, ext, orig_rl, rl); 1633} 1634 1635static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1636{ 1637 static const uint32_t sync[] = { 1638 [0 ... TCG_MO_ALL] = DMB_ISH | DMB_LD | DMB_ST, 1639 [TCG_MO_ST_ST] = DMB_ISH | DMB_ST, 1640 [TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1641 [TCG_MO_LD_ST] = DMB_ISH | DMB_LD, 1642 [TCG_MO_LD_ST | TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1643 }; 1644 tcg_out32(s, sync[a0 & TCG_MO_ALL]); 1645} 1646 1647typedef struct { 1648 TCGReg base; 1649 TCGReg index; 1650 TCGType index_ext; 1651 TCGAtomAlign aa; 1652} HostAddress; 1653 1654bool tcg_target_has_memory_bswap(MemOp memop) 1655{ 1656 return false; 1657} 1658 1659static const TCGLdstHelperParam ldst_helper_param = { 1660 .ntmp = 1, .tmp = { TCG_REG_TMP0 } 1661}; 1662 1663static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1664{ 1665 MemOp opc = get_memop(lb->oi); 1666 1667 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1668 return false; 1669 } 1670 1671 tcg_out_ld_helper_args(s, lb, &ldst_helper_param); 1672 tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SIZE]); 1673 tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param); 1674 tcg_out_goto(s, lb->raddr); 1675 return true; 1676} 1677 1678static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1679{ 1680 MemOp opc = get_memop(lb->oi); 1681 1682 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1683 return false; 1684 } 1685 1686 tcg_out_st_helper_args(s, lb, &ldst_helper_param); 1687 tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE]); 1688 tcg_out_goto(s, lb->raddr); 1689 return true; 1690} 1691 1692/* We expect to use a 7-bit scaled negative offset from ENV. */ 1693#define MIN_TLB_MASK_TABLE_OFS -512 1694 1695/* 1696 * For system-mode, perform the TLB load and compare. 1697 * For user-mode, perform any required alignment tests. 1698 * In both cases, return a TCGLabelQemuLdst structure if the slow path 1699 * is required and fill in @h with the host address for the fast path. 1700 */ 1701static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 1702 TCGReg addr_reg, MemOpIdx oi, 1703 bool is_ld) 1704{ 1705 TCGType addr_type = s->addr_type; 1706 TCGLabelQemuLdst *ldst = NULL; 1707 MemOp opc = get_memop(oi); 1708 MemOp s_bits = opc & MO_SIZE; 1709 unsigned a_mask; 1710 1711 h->aa = atom_and_align_for_opc(s, opc, 1712 have_lse2 ? MO_ATOM_WITHIN16 1713 : MO_ATOM_IFALIGN, 1714 s_bits == MO_128); 1715 a_mask = (1 << h->aa.align) - 1; 1716 1717 if (tcg_use_softmmu) { 1718 unsigned s_mask = (1u << s_bits) - 1; 1719 unsigned mem_index = get_mmuidx(oi); 1720 TCGReg addr_adj; 1721 TCGType mask_type; 1722 uint64_t compare_mask; 1723 1724 ldst = new_ldst_label(s); 1725 ldst->is_ld = is_ld; 1726 ldst->oi = oi; 1727 ldst->addr_reg = addr_reg; 1728 1729 mask_type = (s->page_bits + s->tlb_dyn_max_bits > 32 1730 ? TCG_TYPE_I64 : TCG_TYPE_I32); 1731 1732 /* Load cpu->neg.tlb.f[mmu_idx].{mask,table} into {tmp0,tmp1}. */ 1733 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, mask) != 0); 1734 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, table) != 8); 1735 tcg_out_insn(s, 3314, LDP, TCG_REG_TMP0, TCG_REG_TMP1, TCG_AREG0, 1736 tlb_mask_table_ofs(s, mem_index), 1, 0); 1737 1738 /* Extract the TLB index from the address into X0. */ 1739 tcg_out_insn(s, 3502S, AND_LSR, mask_type == TCG_TYPE_I64, 1740 TCG_REG_TMP0, TCG_REG_TMP0, addr_reg, 1741 s->page_bits - CPU_TLB_ENTRY_BITS); 1742 1743 /* Add the tlb_table pointer, forming the CPUTLBEntry address. */ 1744 tcg_out_insn(s, 3502, ADD, 1, TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_TMP0); 1745 1746 /* Load the tlb comparator into TMP0, and the fast path addend. */ 1747 QEMU_BUILD_BUG_ON(HOST_BIG_ENDIAN); 1748 tcg_out_ld(s, addr_type, TCG_REG_TMP0, TCG_REG_TMP1, 1749 is_ld ? offsetof(CPUTLBEntry, addr_read) 1750 : offsetof(CPUTLBEntry, addr_write)); 1751 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, 1752 offsetof(CPUTLBEntry, addend)); 1753 1754 /* 1755 * For aligned accesses, we check the first byte and include 1756 * the alignment bits within the address. For unaligned access, 1757 * we check that we don't cross pages using the address of the 1758 * last byte of the access. 1759 */ 1760 if (a_mask >= s_mask) { 1761 addr_adj = addr_reg; 1762 } else { 1763 addr_adj = TCG_REG_TMP2; 1764 tcg_out_insn(s, 3401, ADDI, addr_type, 1765 addr_adj, addr_reg, s_mask - a_mask); 1766 } 1767 compare_mask = (uint64_t)s->page_mask | a_mask; 1768 1769 /* Store the page mask part of the address into TMP2. */ 1770 tcg_out_logicali(s, I3404_ANDI, addr_type, TCG_REG_TMP2, 1771 addr_adj, compare_mask); 1772 1773 /* Perform the address comparison. */ 1774 tcg_out_cmp(s, addr_type, TCG_COND_NE, TCG_REG_TMP0, TCG_REG_TMP2, 0); 1775 1776 /* If not equal, we jump to the slow path. */ 1777 ldst->label_ptr[0] = s->code_ptr; 1778 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1779 1780 h->base = TCG_REG_TMP1; 1781 h->index = addr_reg; 1782 h->index_ext = addr_type; 1783 } else { 1784 if (a_mask) { 1785 ldst = new_ldst_label(s); 1786 1787 ldst->is_ld = is_ld; 1788 ldst->oi = oi; 1789 ldst->addr_reg = addr_reg; 1790 1791 /* tst addr, #mask */ 1792 tcg_out_logicali(s, I3404_ANDSI, 0, TCG_REG_XZR, addr_reg, a_mask); 1793 1794 /* b.ne slow_path */ 1795 ldst->label_ptr[0] = s->code_ptr; 1796 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1797 } 1798 1799 if (guest_base || addr_type == TCG_TYPE_I32) { 1800 h->base = TCG_REG_GUEST_BASE; 1801 h->index = addr_reg; 1802 h->index_ext = addr_type; 1803 } else { 1804 h->base = addr_reg; 1805 h->index = TCG_REG_XZR; 1806 h->index_ext = TCG_TYPE_I64; 1807 } 1808 } 1809 1810 return ldst; 1811} 1812 1813static void tcg_out_qemu_ld_direct(TCGContext *s, MemOp memop, TCGType ext, 1814 TCGReg data_r, HostAddress h) 1815{ 1816 switch (memop & MO_SSIZE) { 1817 case MO_UB: 1818 tcg_out_ldst_r(s, I3312_LDRB, data_r, h.base, h.index_ext, h.index); 1819 break; 1820 case MO_SB: 1821 tcg_out_ldst_r(s, ext ? I3312_LDRSBX : I3312_LDRSBW, 1822 data_r, h.base, h.index_ext, h.index); 1823 break; 1824 case MO_UW: 1825 tcg_out_ldst_r(s, I3312_LDRH, data_r, h.base, h.index_ext, h.index); 1826 break; 1827 case MO_SW: 1828 tcg_out_ldst_r(s, (ext ? I3312_LDRSHX : I3312_LDRSHW), 1829 data_r, h.base, h.index_ext, h.index); 1830 break; 1831 case MO_UL: 1832 tcg_out_ldst_r(s, I3312_LDRW, data_r, h.base, h.index_ext, h.index); 1833 break; 1834 case MO_SL: 1835 tcg_out_ldst_r(s, I3312_LDRSWX, data_r, h.base, h.index_ext, h.index); 1836 break; 1837 case MO_UQ: 1838 tcg_out_ldst_r(s, I3312_LDRX, data_r, h.base, h.index_ext, h.index); 1839 break; 1840 default: 1841 g_assert_not_reached(); 1842 } 1843} 1844 1845static void tcg_out_qemu_st_direct(TCGContext *s, MemOp memop, 1846 TCGReg data_r, HostAddress h) 1847{ 1848 switch (memop & MO_SIZE) { 1849 case MO_8: 1850 tcg_out_ldst_r(s, I3312_STRB, data_r, h.base, h.index_ext, h.index); 1851 break; 1852 case MO_16: 1853 tcg_out_ldst_r(s, I3312_STRH, data_r, h.base, h.index_ext, h.index); 1854 break; 1855 case MO_32: 1856 tcg_out_ldst_r(s, I3312_STRW, data_r, h.base, h.index_ext, h.index); 1857 break; 1858 case MO_64: 1859 tcg_out_ldst_r(s, I3312_STRX, data_r, h.base, h.index_ext, h.index); 1860 break; 1861 default: 1862 g_assert_not_reached(); 1863 } 1864} 1865 1866static void tcg_out_qemu_ld(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1867 MemOpIdx oi, TCGType data_type) 1868{ 1869 TCGLabelQemuLdst *ldst; 1870 HostAddress h; 1871 1872 ldst = prepare_host_addr(s, &h, addr_reg, oi, true); 1873 tcg_out_qemu_ld_direct(s, get_memop(oi), data_type, data_reg, h); 1874 1875 if (ldst) { 1876 ldst->type = data_type; 1877 ldst->datalo_reg = data_reg; 1878 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1879 } 1880} 1881 1882static void tcg_out_qemu_st(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1883 MemOpIdx oi, TCGType data_type) 1884{ 1885 TCGLabelQemuLdst *ldst; 1886 HostAddress h; 1887 1888 ldst = prepare_host_addr(s, &h, addr_reg, oi, false); 1889 tcg_out_qemu_st_direct(s, get_memop(oi), data_reg, h); 1890 1891 if (ldst) { 1892 ldst->type = data_type; 1893 ldst->datalo_reg = data_reg; 1894 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1895 } 1896} 1897 1898static void tcg_out_qemu_ldst_i128(TCGContext *s, TCGReg datalo, TCGReg datahi, 1899 TCGReg addr_reg, MemOpIdx oi, bool is_ld) 1900{ 1901 TCGLabelQemuLdst *ldst; 1902 HostAddress h; 1903 TCGReg base; 1904 bool use_pair; 1905 1906 ldst = prepare_host_addr(s, &h, addr_reg, oi, is_ld); 1907 1908 /* Compose the final address, as LDP/STP have no indexing. */ 1909 if (h.index == TCG_REG_XZR) { 1910 base = h.base; 1911 } else { 1912 base = TCG_REG_TMP2; 1913 if (h.index_ext == TCG_TYPE_I32) { 1914 /* add base, base, index, uxtw */ 1915 tcg_out_insn(s, 3501, ADD, TCG_TYPE_I64, base, 1916 h.base, h.index, MO_32, 0); 1917 } else { 1918 /* add base, base, index */ 1919 tcg_out_insn(s, 3502, ADD, 1, base, h.base, h.index); 1920 } 1921 } 1922 1923 use_pair = h.aa.atom < MO_128 || have_lse2; 1924 1925 if (!use_pair) { 1926 tcg_insn_unit *branch = NULL; 1927 TCGReg ll, lh, sl, sh; 1928 1929 /* 1930 * If we have already checked for 16-byte alignment, that's all 1931 * we need. Otherwise we have determined that misaligned atomicity 1932 * may be handled with two 8-byte loads. 1933 */ 1934 if (h.aa.align < MO_128) { 1935 /* 1936 * TODO: align should be MO_64, so we only need test bit 3, 1937 * which means we could use TBNZ instead of ANDS+B_C. 1938 */ 1939 tcg_out_logicali(s, I3404_ANDSI, 0, TCG_REG_XZR, addr_reg, 15); 1940 branch = s->code_ptr; 1941 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1942 use_pair = true; 1943 } 1944 1945 if (is_ld) { 1946 /* 1947 * 16-byte atomicity without LSE2 requires LDXP+STXP loop: 1948 * ldxp lo, hi, [base] 1949 * stxp t0, lo, hi, [base] 1950 * cbnz t0, .-8 1951 * Require no overlap between data{lo,hi} and base. 1952 */ 1953 if (datalo == base || datahi == base) { 1954 tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_TMP2, base); 1955 base = TCG_REG_TMP2; 1956 } 1957 ll = sl = datalo; 1958 lh = sh = datahi; 1959 } else { 1960 /* 1961 * 16-byte atomicity without LSE2 requires LDXP+STXP loop: 1962 * 1: ldxp t0, t1, [base] 1963 * stxp t0, lo, hi, [base] 1964 * cbnz t0, 1b 1965 */ 1966 tcg_debug_assert(base != TCG_REG_TMP0 && base != TCG_REG_TMP1); 1967 ll = TCG_REG_TMP0; 1968 lh = TCG_REG_TMP1; 1969 sl = datalo; 1970 sh = datahi; 1971 } 1972 1973 tcg_out_insn(s, 3306, LDXP, TCG_REG_XZR, ll, lh, base); 1974 tcg_out_insn(s, 3306, STXP, TCG_REG_TMP0, sl, sh, base); 1975 tcg_out_insn(s, 3201, CBNZ, 0, TCG_REG_TMP0, -2); 1976 1977 if (use_pair) { 1978 /* "b .+8", branching across the one insn of use_pair. */ 1979 tcg_out_insn(s, 3206, B, 2); 1980 reloc_pc19(branch, tcg_splitwx_to_rx(s->code_ptr)); 1981 } 1982 } 1983 1984 if (use_pair) { 1985 if (is_ld) { 1986 tcg_out_insn(s, 3314, LDP, datalo, datahi, base, 0, 1, 0); 1987 } else { 1988 tcg_out_insn(s, 3314, STP, datalo, datahi, base, 0, 1, 0); 1989 } 1990 } 1991 1992 if (ldst) { 1993 ldst->type = TCG_TYPE_I128; 1994 ldst->datalo_reg = datalo; 1995 ldst->datahi_reg = datahi; 1996 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1997 } 1998} 1999 2000static const tcg_insn_unit *tb_ret_addr; 2001 2002static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 2003{ 2004 const tcg_insn_unit *target; 2005 ptrdiff_t offset; 2006 2007 /* Reuse the zeroing that exists for goto_ptr. */ 2008 if (a0 == 0) { 2009 target = tcg_code_gen_epilogue; 2010 } else { 2011 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_X0, a0); 2012 target = tb_ret_addr; 2013 } 2014 2015 offset = tcg_pcrel_diff(s, target) >> 2; 2016 if (offset == sextract64(offset, 0, 26)) { 2017 tcg_out_insn(s, 3206, B, offset); 2018 } else { 2019 /* 2020 * Only x16/x17 generate BTI type Jump (2), 2021 * other registers generate BTI type Jump|Call (3). 2022 */ 2023 QEMU_BUILD_BUG_ON(TCG_REG_TMP0 != TCG_REG_X16); 2024 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, (intptr_t)target); 2025 tcg_out_insn(s, 3207, BR, TCG_REG_TMP0); 2026 } 2027} 2028 2029static void tcg_out_goto_tb(TCGContext *s, int which) 2030{ 2031 /* 2032 * Direct branch, or indirect address load, will be patched 2033 * by tb_target_set_jmp_target. Assert indirect load offset 2034 * in range early, regardless of direct branch distance. 2035 */ 2036 intptr_t i_off = tcg_pcrel_diff(s, (void *)get_jmp_target_addr(s, which)); 2037 tcg_debug_assert(i_off == sextract64(i_off, 0, 21)); 2038 2039 set_jmp_insn_offset(s, which); 2040 tcg_out32(s, I3206_B); 2041 tcg_out_insn(s, 3207, BR, TCG_REG_TMP0); 2042 set_jmp_reset_offset(s, which); 2043 tcg_out_bti(s, BTI_J); 2044} 2045 2046void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 2047 uintptr_t jmp_rx, uintptr_t jmp_rw) 2048{ 2049 uintptr_t d_addr = tb->jmp_target_addr[n]; 2050 ptrdiff_t d_offset = d_addr - jmp_rx; 2051 tcg_insn_unit insn; 2052 2053 /* Either directly branch, or indirect branch load. */ 2054 if (d_offset == sextract64(d_offset, 0, 28)) { 2055 insn = deposit32(I3206_B, 0, 26, d_offset >> 2); 2056 } else { 2057 uintptr_t i_addr = (uintptr_t)&tb->jmp_target_addr[n]; 2058 ptrdiff_t i_offset = i_addr - jmp_rx; 2059 2060 /* Note that we asserted this in range in tcg_out_goto_tb. */ 2061 insn = deposit32(I3305_LDR | TCG_REG_TMP0, 5, 19, i_offset >> 2); 2062 } 2063 qatomic_set((uint32_t *)jmp_rw, insn); 2064 flush_idcache_range(jmp_rx, jmp_rw, 4); 2065} 2066 2067 2068static void tgen_add(TCGContext *s, TCGType type, 2069 TCGReg a0, TCGReg a1, TCGReg a2) 2070{ 2071 tcg_out_insn(s, 3502, ADD, type, a0, a1, a2); 2072} 2073 2074static void tgen_addi(TCGContext *s, TCGType type, 2075 TCGReg a0, TCGReg a1, tcg_target_long a2) 2076{ 2077 if (a2 >= 0) { 2078 tcg_out_insn(s, 3401, ADDI, type, a0, a1, a2); 2079 } else { 2080 tcg_out_insn(s, 3401, SUBI, type, a0, a1, -a2); 2081 } 2082} 2083 2084static const TCGOutOpBinary outop_add = { 2085 .base.static_constraint = C_O1_I2(r, r, rA), 2086 .out_rrr = tgen_add, 2087 .out_rri = tgen_addi, 2088}; 2089 2090static void tgen_and(TCGContext *s, TCGType type, 2091 TCGReg a0, TCGReg a1, TCGReg a2) 2092{ 2093 tcg_out_insn(s, 3510, AND, type, a0, a1, a2); 2094} 2095 2096static void tgen_andi(TCGContext *s, TCGType type, 2097 TCGReg a0, TCGReg a1, tcg_target_long a2) 2098{ 2099 tcg_out_logicali(s, I3404_ANDI, type, a0, a1, a2); 2100} 2101 2102static const TCGOutOpBinary outop_and = { 2103 .base.static_constraint = C_O1_I2(r, r, rL), 2104 .out_rrr = tgen_and, 2105 .out_rri = tgen_andi, 2106}; 2107 2108static void tgen_andc(TCGContext *s, TCGType type, 2109 TCGReg a0, TCGReg a1, TCGReg a2) 2110{ 2111 tcg_out_insn(s, 3510, BIC, type, a0, a1, a2); 2112} 2113 2114static const TCGOutOpBinary outop_andc = { 2115 .base.static_constraint = C_O1_I2(r, r, r), 2116 .out_rrr = tgen_andc, 2117}; 2118 2119static void tgen_clz(TCGContext *s, TCGType type, 2120 TCGReg a0, TCGReg a1, TCGReg a2) 2121{ 2122 tcg_out_cmp(s, type, TCG_COND_NE, a1, 0, true); 2123 tcg_out_insn(s, 3507, CLZ, type, TCG_REG_TMP0, a1); 2124 tcg_out_insn(s, 3506, CSEL, type, a0, TCG_REG_TMP0, a2, TCG_COND_NE); 2125} 2126 2127static void tgen_clzi(TCGContext *s, TCGType type, 2128 TCGReg a0, TCGReg a1, tcg_target_long a2) 2129{ 2130 if (a2 == (type == TCG_TYPE_I32 ? 32 : 64)) { 2131 tcg_out_insn(s, 3507, CLZ, type, a0, a1); 2132 return; 2133 } 2134 2135 tcg_out_cmp(s, type, TCG_COND_NE, a1, 0, true); 2136 tcg_out_insn(s, 3507, CLZ, type, a0, a1); 2137 2138 switch (a2) { 2139 case -1: 2140 tcg_out_insn(s, 3506, CSINV, type, a0, a0, TCG_REG_XZR, TCG_COND_NE); 2141 break; 2142 case 0: 2143 tcg_out_insn(s, 3506, CSEL, type, a0, a0, TCG_REG_XZR, TCG_COND_NE); 2144 break; 2145 default: 2146 tcg_out_movi(s, type, TCG_REG_TMP0, a2); 2147 tcg_out_insn(s, 3506, CSEL, type, a0, a0, TCG_REG_TMP0, TCG_COND_NE); 2148 break; 2149 } 2150} 2151 2152static const TCGOutOpBinary outop_clz = { 2153 .base.static_constraint = C_O1_I2(r, r, rAL), 2154 .out_rrr = tgen_clz, 2155 .out_rri = tgen_clzi, 2156}; 2157 2158static const TCGOutOpUnary outop_ctpop = { 2159 .base.static_constraint = C_NotImplemented, 2160}; 2161 2162static void tgen_ctz(TCGContext *s, TCGType type, 2163 TCGReg a0, TCGReg a1, TCGReg a2) 2164{ 2165 tcg_out_insn(s, 3507, RBIT, type, TCG_REG_TMP0, a1); 2166 tgen_clz(s, type, a0, TCG_REG_TMP0, a2); 2167} 2168 2169static void tgen_ctzi(TCGContext *s, TCGType type, 2170 TCGReg a0, TCGReg a1, tcg_target_long a2) 2171{ 2172 tcg_out_insn(s, 3507, RBIT, type, TCG_REG_TMP0, a1); 2173 tgen_clzi(s, type, a0, TCG_REG_TMP0, a2); 2174} 2175 2176static const TCGOutOpBinary outop_ctz = { 2177 .base.static_constraint = C_O1_I2(r, r, rAL), 2178 .out_rrr = tgen_ctz, 2179 .out_rri = tgen_ctzi, 2180}; 2181 2182static void tgen_divs(TCGContext *s, TCGType type, 2183 TCGReg a0, TCGReg a1, TCGReg a2) 2184{ 2185 tcg_out_insn(s, 3508, SDIV, type, a0, a1, a2); 2186} 2187 2188static const TCGOutOpBinary outop_divs = { 2189 .base.static_constraint = C_O1_I2(r, r, r), 2190 .out_rrr = tgen_divs, 2191}; 2192 2193static const TCGOutOpDivRem outop_divs2 = { 2194 .base.static_constraint = C_NotImplemented, 2195}; 2196 2197static void tgen_divu(TCGContext *s, TCGType type, 2198 TCGReg a0, TCGReg a1, TCGReg a2) 2199{ 2200 tcg_out_insn(s, 3508, UDIV, type, a0, a1, a2); 2201} 2202 2203static const TCGOutOpBinary outop_divu = { 2204 .base.static_constraint = C_O1_I2(r, r, r), 2205 .out_rrr = tgen_divu, 2206}; 2207 2208static const TCGOutOpDivRem outop_divu2 = { 2209 .base.static_constraint = C_NotImplemented, 2210}; 2211 2212static void tgen_eqv(TCGContext *s, TCGType type, 2213 TCGReg a0, TCGReg a1, TCGReg a2) 2214{ 2215 tcg_out_insn(s, 3510, EON, type, a0, a1, a2); 2216} 2217 2218static const TCGOutOpBinary outop_eqv = { 2219 .base.static_constraint = C_O1_I2(r, r, r), 2220 .out_rrr = tgen_eqv, 2221}; 2222 2223static void tgen_mul(TCGContext *s, TCGType type, 2224 TCGReg a0, TCGReg a1, TCGReg a2) 2225{ 2226 tcg_out_insn(s, 3509, MADD, type, a0, a1, a2, TCG_REG_XZR); 2227} 2228 2229static const TCGOutOpBinary outop_mul = { 2230 .base.static_constraint = C_O1_I2(r, r, r), 2231 .out_rrr = tgen_mul, 2232}; 2233 2234static const TCGOutOpMul2 outop_muls2 = { 2235 .base.static_constraint = C_NotImplemented, 2236}; 2237 2238static TCGConstraintSetIndex cset_mulh(TCGType type, unsigned flags) 2239{ 2240 return type == TCG_TYPE_I64 ? C_O1_I2(r, r, r) : C_NotImplemented; 2241} 2242 2243static void tgen_mulsh(TCGContext *s, TCGType type, 2244 TCGReg a0, TCGReg a1, TCGReg a2) 2245{ 2246 tcg_out_insn(s, 3508, SMULH, TCG_TYPE_I64, a0, a1, a2); 2247} 2248 2249static const TCGOutOpBinary outop_mulsh = { 2250 .base.static_constraint = C_Dynamic, 2251 .base.dynamic_constraint = cset_mulh, 2252 .out_rrr = tgen_mulsh, 2253}; 2254 2255static const TCGOutOpMul2 outop_mulu2 = { 2256 .base.static_constraint = C_NotImplemented, 2257}; 2258 2259static void tgen_muluh(TCGContext *s, TCGType type, 2260 TCGReg a0, TCGReg a1, TCGReg a2) 2261{ 2262 tcg_out_insn(s, 3508, UMULH, TCG_TYPE_I64, a0, a1, a2); 2263} 2264 2265static const TCGOutOpBinary outop_muluh = { 2266 .base.static_constraint = C_Dynamic, 2267 .base.dynamic_constraint = cset_mulh, 2268 .out_rrr = tgen_muluh, 2269}; 2270 2271static const TCGOutOpBinary outop_nand = { 2272 .base.static_constraint = C_NotImplemented, 2273}; 2274 2275static const TCGOutOpBinary outop_nor = { 2276 .base.static_constraint = C_NotImplemented, 2277}; 2278 2279static void tgen_or(TCGContext *s, TCGType type, 2280 TCGReg a0, TCGReg a1, TCGReg a2) 2281{ 2282 tcg_out_insn(s, 3510, ORR, type, a0, a1, a2); 2283} 2284 2285static void tgen_ori(TCGContext *s, TCGType type, 2286 TCGReg a0, TCGReg a1, tcg_target_long a2) 2287{ 2288 tcg_out_logicali(s, I3404_ORRI, type, a0, a1, a2); 2289} 2290 2291static const TCGOutOpBinary outop_or = { 2292 .base.static_constraint = C_O1_I2(r, r, rL), 2293 .out_rrr = tgen_or, 2294 .out_rri = tgen_ori, 2295}; 2296 2297static void tgen_orc(TCGContext *s, TCGType type, 2298 TCGReg a0, TCGReg a1, TCGReg a2) 2299{ 2300 tcg_out_insn(s, 3510, ORN, type, a0, a1, a2); 2301} 2302 2303static const TCGOutOpBinary outop_orc = { 2304 .base.static_constraint = C_O1_I2(r, r, r), 2305 .out_rrr = tgen_orc, 2306}; 2307 2308static void tgen_rems(TCGContext *s, TCGType type, 2309 TCGReg a0, TCGReg a1, TCGReg a2) 2310{ 2311 tcg_out_insn(s, 3508, SDIV, type, TCG_REG_TMP0, a1, a2); 2312 tcg_out_insn(s, 3509, MSUB, type, a0, TCG_REG_TMP0, a2, a1); 2313} 2314 2315static const TCGOutOpBinary outop_rems = { 2316 .base.static_constraint = C_O1_I2(r, r, r), 2317 .out_rrr = tgen_rems, 2318}; 2319 2320static void tgen_remu(TCGContext *s, TCGType type, 2321 TCGReg a0, TCGReg a1, TCGReg a2) 2322{ 2323 tcg_out_insn(s, 3508, UDIV, type, TCG_REG_TMP0, a1, a2); 2324 tcg_out_insn(s, 3509, MSUB, type, a0, TCG_REG_TMP0, a2, a1); 2325} 2326 2327static const TCGOutOpBinary outop_remu = { 2328 .base.static_constraint = C_O1_I2(r, r, r), 2329 .out_rrr = tgen_remu, 2330}; 2331 2332static const TCGOutOpBinary outop_rotl = { 2333 .base.static_constraint = C_NotImplemented, 2334}; 2335 2336static void tgen_rotr(TCGContext *s, TCGType type, 2337 TCGReg a0, TCGReg a1, TCGReg a2) 2338{ 2339 tcg_out_insn(s, 3508, RORV, type, a0, a1, a2); 2340} 2341 2342static void tgen_rotri(TCGContext *s, TCGType type, 2343 TCGReg a0, TCGReg a1, tcg_target_long a2) 2344{ 2345 int max = type == TCG_TYPE_I32 ? 31 : 63; 2346 tcg_out_extr(s, type, a0, a1, a1, a2 & max); 2347} 2348 2349static const TCGOutOpBinary outop_rotr = { 2350 .base.static_constraint = C_O1_I2(r, r, ri), 2351 .out_rrr = tgen_rotr, 2352 .out_rri = tgen_rotri, 2353}; 2354 2355static void tgen_sar(TCGContext *s, TCGType type, 2356 TCGReg a0, TCGReg a1, TCGReg a2) 2357{ 2358 tcg_out_insn(s, 3508, ASRV, type, a0, a1, a2); 2359} 2360 2361static void tgen_sari(TCGContext *s, TCGType type, 2362 TCGReg a0, TCGReg a1, tcg_target_long a2) 2363{ 2364 int max = type == TCG_TYPE_I32 ? 31 : 63; 2365 tcg_out_sbfm(s, type, a0, a1, a2 & max, max); 2366} 2367 2368static const TCGOutOpBinary outop_sar = { 2369 .base.static_constraint = C_O1_I2(r, r, ri), 2370 .out_rrr = tgen_sar, 2371 .out_rri = tgen_sari, 2372}; 2373 2374static void tgen_shl(TCGContext *s, TCGType type, 2375 TCGReg a0, TCGReg a1, TCGReg a2) 2376{ 2377 tcg_out_insn(s, 3508, LSLV, type, a0, a1, a2); 2378} 2379 2380static void tgen_shli(TCGContext *s, TCGType type, 2381 TCGReg a0, TCGReg a1, tcg_target_long a2) 2382{ 2383 int max = type == TCG_TYPE_I32 ? 31 : 63; 2384 tcg_out_ubfm(s, type, a0, a1, -a2 & max, ~a2 & max); 2385} 2386 2387static const TCGOutOpBinary outop_shl = { 2388 .base.static_constraint = C_O1_I2(r, r, ri), 2389 .out_rrr = tgen_shl, 2390 .out_rri = tgen_shli, 2391}; 2392 2393static void tgen_shr(TCGContext *s, TCGType type, 2394 TCGReg a0, TCGReg a1, TCGReg a2) 2395{ 2396 tcg_out_insn(s, 3508, LSRV, type, a0, a1, a2); 2397} 2398 2399static void tgen_shri(TCGContext *s, TCGType type, 2400 TCGReg a0, TCGReg a1, tcg_target_long a2) 2401{ 2402 int max = type == TCG_TYPE_I32 ? 31 : 63; 2403 tcg_out_ubfm(s, type, a0, a1, a2 & max, max); 2404} 2405 2406static const TCGOutOpBinary outop_shr = { 2407 .base.static_constraint = C_O1_I2(r, r, ri), 2408 .out_rrr = tgen_shr, 2409 .out_rri = tgen_shri, 2410}; 2411 2412static void tgen_sub(TCGContext *s, TCGType type, 2413 TCGReg a0, TCGReg a1, TCGReg a2) 2414{ 2415 tcg_out_insn(s, 3502, SUB, type, a0, a1, a2); 2416} 2417 2418static const TCGOutOpSubtract outop_sub = { 2419 .base.static_constraint = C_O1_I2(r, r, r), 2420 .out_rrr = tgen_sub, 2421}; 2422 2423static void tgen_xor(TCGContext *s, TCGType type, 2424 TCGReg a0, TCGReg a1, TCGReg a2) 2425{ 2426 tcg_out_insn(s, 3510, EOR, type, a0, a1, a2); 2427} 2428 2429static void tgen_xori(TCGContext *s, TCGType type, 2430 TCGReg a0, TCGReg a1, tcg_target_long a2) 2431{ 2432 tcg_out_logicali(s, I3404_EORI, type, a0, a1, a2); 2433} 2434 2435static const TCGOutOpBinary outop_xor = { 2436 .base.static_constraint = C_O1_I2(r, r, rL), 2437 .out_rrr = tgen_xor, 2438 .out_rri = tgen_xori, 2439}; 2440 2441static void tgen_bswap16(TCGContext *s, TCGType type, 2442 TCGReg a0, TCGReg a1, unsigned flags) 2443{ 2444 tcg_out_rev(s, TCG_TYPE_I32, MO_16, a0, a1); 2445 if (flags & TCG_BSWAP_OS) { 2446 /* Output must be sign-extended. */ 2447 tcg_out_ext16s(s, type, a0, a0); 2448 } else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 2449 /* Output must be zero-extended, but input isn't. */ 2450 tcg_out_ext16u(s, a0, a0); 2451 } 2452} 2453 2454static const TCGOutOpBswap outop_bswap16 = { 2455 .base.static_constraint = C_O1_I1(r, r), 2456 .out_rr = tgen_bswap16, 2457}; 2458 2459static void tgen_bswap32(TCGContext *s, TCGType type, 2460 TCGReg a0, TCGReg a1, unsigned flags) 2461{ 2462 tcg_out_rev(s, TCG_TYPE_I32, MO_32, a0, a1); 2463 if (flags & TCG_BSWAP_OS) { 2464 tcg_out_ext32s(s, a0, a0); 2465 } 2466} 2467 2468static const TCGOutOpBswap outop_bswap32 = { 2469 .base.static_constraint = C_O1_I1(r, r), 2470 .out_rr = tgen_bswap32, 2471}; 2472 2473static void tgen_bswap64(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2474{ 2475 tcg_out_rev(s, TCG_TYPE_I64, MO_64, a0, a1); 2476} 2477 2478static const TCGOutOpUnary outop_bswap64 = { 2479 .base.static_constraint = C_O1_I1(r, r), 2480 .out_rr = tgen_bswap64, 2481}; 2482 2483static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2484{ 2485 tgen_sub(s, type, a0, TCG_REG_XZR, a1); 2486} 2487 2488static const TCGOutOpUnary outop_neg = { 2489 .base.static_constraint = C_O1_I1(r, r), 2490 .out_rr = tgen_neg, 2491}; 2492 2493static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2494{ 2495 tgen_orc(s, type, a0, TCG_REG_XZR, a1); 2496} 2497 2498static const TCGOutOpUnary outop_not = { 2499 .base.static_constraint = C_O1_I1(r, r), 2500 .out_rr = tgen_not, 2501}; 2502 2503static void tgen_cset(TCGContext *s, TCGCond cond, TCGReg ret) 2504{ 2505 /* Use CSET alias of CSINC Wd, WZR, WZR, invert(cond). */ 2506 tcg_out_insn(s, 3506, CSINC, TCG_TYPE_I32, ret, TCG_REG_XZR, 2507 TCG_REG_XZR, tcg_invert_cond(cond)); 2508} 2509 2510static void tgen_setcond(TCGContext *s, TCGType type, TCGCond cond, 2511 TCGReg a0, TCGReg a1, TCGReg a2) 2512{ 2513 tgen_cmp(s, type, cond, a1, a2); 2514 tgen_cset(s, cond, a0); 2515} 2516 2517static void tgen_setcondi(TCGContext *s, TCGType type, TCGCond cond, 2518 TCGReg a0, TCGReg a1, tcg_target_long a2) 2519{ 2520 tgen_cmpi(s, type, cond, a1, a2); 2521 tgen_cset(s, cond, a0); 2522} 2523 2524static const TCGOutOpSetcond outop_setcond = { 2525 .base.static_constraint = C_O1_I2(r, r, rC), 2526 .out_rrr = tgen_setcond, 2527 .out_rri = tgen_setcondi, 2528}; 2529 2530static void tgen_csetm(TCGContext *s, TCGType ext, TCGCond cond, TCGReg ret) 2531{ 2532 /* Use CSETM alias of CSINV Wd, WZR, WZR, invert(cond). */ 2533 tcg_out_insn(s, 3506, CSINV, ext, ret, TCG_REG_XZR, 2534 TCG_REG_XZR, tcg_invert_cond(cond)); 2535} 2536 2537static void tgen_negsetcond(TCGContext *s, TCGType type, TCGCond cond, 2538 TCGReg a0, TCGReg a1, TCGReg a2) 2539{ 2540 tgen_cmp(s, type, cond, a1, a2); 2541 tgen_csetm(s, type, cond, a0); 2542} 2543 2544static void tgen_negsetcondi(TCGContext *s, TCGType type, TCGCond cond, 2545 TCGReg a0, TCGReg a1, tcg_target_long a2) 2546{ 2547 tgen_cmpi(s, type, cond, a1, a2); 2548 tgen_csetm(s, type, cond, a0); 2549} 2550 2551static const TCGOutOpSetcond outop_negsetcond = { 2552 .base.static_constraint = C_O1_I2(r, r, rC), 2553 .out_rrr = tgen_negsetcond, 2554 .out_rri = tgen_negsetcondi, 2555}; 2556 2557static void tgen_movcond(TCGContext *s, TCGType type, TCGCond cond, 2558 TCGReg ret, TCGReg c1, TCGArg c2, bool const_c2, 2559 TCGArg vt, bool const_vt, TCGArg vf, bool const_vf) 2560{ 2561 tcg_out_cmp(s, type, cond, c1, c2, const_c2); 2562 tcg_out_insn(s, 3506, CSEL, type, ret, vt, vf, cond); 2563} 2564 2565static const TCGOutOpMovcond outop_movcond = { 2566 .base.static_constraint = C_O1_I4(r, r, rC, rz, rz), 2567 .out = tgen_movcond, 2568}; 2569 2570static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType ext, 2571 const TCGArg args[TCG_MAX_OP_ARGS], 2572 const int const_args[TCG_MAX_OP_ARGS]) 2573{ 2574 /* Hoist the loads of the most common arguments. */ 2575 TCGArg a0 = args[0]; 2576 TCGArg a1 = args[1]; 2577 TCGArg a2 = args[2]; 2578 2579 switch (opc) { 2580 case INDEX_op_goto_ptr: 2581 tcg_out_insn(s, 3207, BR, a0); 2582 break; 2583 2584 case INDEX_op_br: 2585 tcg_out_goto_label(s, arg_label(a0)); 2586 break; 2587 2588 case INDEX_op_ld8u_i32: 2589 case INDEX_op_ld8u_i64: 2590 tcg_out_ldst(s, I3312_LDRB, a0, a1, a2, 0); 2591 break; 2592 case INDEX_op_ld8s_i32: 2593 tcg_out_ldst(s, I3312_LDRSBW, a0, a1, a2, 0); 2594 break; 2595 case INDEX_op_ld8s_i64: 2596 tcg_out_ldst(s, I3312_LDRSBX, a0, a1, a2, 0); 2597 break; 2598 case INDEX_op_ld16u_i32: 2599 case INDEX_op_ld16u_i64: 2600 tcg_out_ldst(s, I3312_LDRH, a0, a1, a2, 1); 2601 break; 2602 case INDEX_op_ld16s_i32: 2603 tcg_out_ldst(s, I3312_LDRSHW, a0, a1, a2, 1); 2604 break; 2605 case INDEX_op_ld16s_i64: 2606 tcg_out_ldst(s, I3312_LDRSHX, a0, a1, a2, 1); 2607 break; 2608 case INDEX_op_ld_i32: 2609 case INDEX_op_ld32u_i64: 2610 tcg_out_ldst(s, I3312_LDRW, a0, a1, a2, 2); 2611 break; 2612 case INDEX_op_ld32s_i64: 2613 tcg_out_ldst(s, I3312_LDRSWX, a0, a1, a2, 2); 2614 break; 2615 case INDEX_op_ld_i64: 2616 tcg_out_ldst(s, I3312_LDRX, a0, a1, a2, 3); 2617 break; 2618 2619 case INDEX_op_st8_i32: 2620 case INDEX_op_st8_i64: 2621 tcg_out_ldst(s, I3312_STRB, a0, a1, a2, 0); 2622 break; 2623 case INDEX_op_st16_i32: 2624 case INDEX_op_st16_i64: 2625 tcg_out_ldst(s, I3312_STRH, a0, a1, a2, 1); 2626 break; 2627 case INDEX_op_st_i32: 2628 case INDEX_op_st32_i64: 2629 tcg_out_ldst(s, I3312_STRW, a0, a1, a2, 2); 2630 break; 2631 case INDEX_op_st_i64: 2632 tcg_out_ldst(s, I3312_STRX, a0, a1, a2, 3); 2633 break; 2634 2635 case INDEX_op_qemu_ld_i32: 2636 case INDEX_op_qemu_ld_i64: 2637 tcg_out_qemu_ld(s, a0, a1, a2, ext); 2638 break; 2639 case INDEX_op_qemu_st_i32: 2640 case INDEX_op_qemu_st_i64: 2641 tcg_out_qemu_st(s, a0, a1, a2, ext); 2642 break; 2643 case INDEX_op_qemu_ld_i128: 2644 tcg_out_qemu_ldst_i128(s, a0, a1, a2, args[3], true); 2645 break; 2646 case INDEX_op_qemu_st_i128: 2647 tcg_out_qemu_ldst_i128(s, a0, a1, a2, args[3], false); 2648 break; 2649 2650 case INDEX_op_deposit_i64: 2651 case INDEX_op_deposit_i32: 2652 tcg_out_dep(s, ext, a0, a2, args[3], args[4]); 2653 break; 2654 2655 case INDEX_op_extract_i64: 2656 case INDEX_op_extract_i32: 2657 if (a2 == 0) { 2658 uint64_t mask = MAKE_64BIT_MASK(0, args[3]); 2659 tcg_out_logicali(s, I3404_ANDI, ext, a0, a1, mask); 2660 } else { 2661 tcg_out_ubfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2662 } 2663 break; 2664 2665 case INDEX_op_sextract_i64: 2666 case INDEX_op_sextract_i32: 2667 tcg_out_sbfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2668 break; 2669 2670 case INDEX_op_extract2_i64: 2671 case INDEX_op_extract2_i32: 2672 tcg_out_extr(s, ext, a0, a2, a1, args[3]); 2673 break; 2674 2675 case INDEX_op_add2_i32: 2676 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, a2, args[3], 2677 (int32_t)args[4], args[5], const_args[4], 2678 const_args[5], false); 2679 break; 2680 case INDEX_op_add2_i64: 2681 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, a2, args[3], args[4], 2682 args[5], const_args[4], const_args[5], false); 2683 break; 2684 case INDEX_op_sub2_i32: 2685 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, a2, args[3], 2686 (int32_t)args[4], args[5], const_args[4], 2687 const_args[5], true); 2688 break; 2689 case INDEX_op_sub2_i64: 2690 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, a2, args[3], args[4], 2691 args[5], const_args[4], const_args[5], true); 2692 break; 2693 2694 case INDEX_op_mb: 2695 tcg_out_mb(s, a0); 2696 break; 2697 2698 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2699 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 2700 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 2701 case INDEX_op_ext_i32_i64: /* Always emitted via tcg_reg_alloc_op. */ 2702 case INDEX_op_extu_i32_i64: 2703 case INDEX_op_extrl_i64_i32: 2704 default: 2705 g_assert_not_reached(); 2706 } 2707} 2708 2709static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 2710 unsigned vecl, unsigned vece, 2711 const TCGArg args[TCG_MAX_OP_ARGS], 2712 const int const_args[TCG_MAX_OP_ARGS]) 2713{ 2714 static const AArch64Insn cmp_vec_insn[16] = { 2715 [TCG_COND_EQ] = I3616_CMEQ, 2716 [TCG_COND_GT] = I3616_CMGT, 2717 [TCG_COND_GE] = I3616_CMGE, 2718 [TCG_COND_GTU] = I3616_CMHI, 2719 [TCG_COND_GEU] = I3616_CMHS, 2720 }; 2721 static const AArch64Insn cmp_scalar_insn[16] = { 2722 [TCG_COND_EQ] = I3611_CMEQ, 2723 [TCG_COND_GT] = I3611_CMGT, 2724 [TCG_COND_GE] = I3611_CMGE, 2725 [TCG_COND_GTU] = I3611_CMHI, 2726 [TCG_COND_GEU] = I3611_CMHS, 2727 }; 2728 static const AArch64Insn cmp0_vec_insn[16] = { 2729 [TCG_COND_EQ] = I3617_CMEQ0, 2730 [TCG_COND_GT] = I3617_CMGT0, 2731 [TCG_COND_GE] = I3617_CMGE0, 2732 [TCG_COND_LT] = I3617_CMLT0, 2733 [TCG_COND_LE] = I3617_CMLE0, 2734 }; 2735 static const AArch64Insn cmp0_scalar_insn[16] = { 2736 [TCG_COND_EQ] = I3612_CMEQ0, 2737 [TCG_COND_GT] = I3612_CMGT0, 2738 [TCG_COND_GE] = I3612_CMGE0, 2739 [TCG_COND_LT] = I3612_CMLT0, 2740 [TCG_COND_LE] = I3612_CMLE0, 2741 }; 2742 2743 TCGType type = vecl + TCG_TYPE_V64; 2744 unsigned is_q = vecl; 2745 bool is_scalar = !is_q && vece == MO_64; 2746 TCGArg a0, a1, a2, a3; 2747 int cmode, imm8; 2748 2749 a0 = args[0]; 2750 a1 = args[1]; 2751 a2 = args[2]; 2752 2753 switch (opc) { 2754 case INDEX_op_ld_vec: 2755 tcg_out_ld(s, type, a0, a1, a2); 2756 break; 2757 case INDEX_op_st_vec: 2758 tcg_out_st(s, type, a0, a1, a2); 2759 break; 2760 case INDEX_op_dupm_vec: 2761 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 2762 break; 2763 case INDEX_op_add_vec: 2764 if (is_scalar) { 2765 tcg_out_insn(s, 3611, ADD, vece, a0, a1, a2); 2766 } else { 2767 tcg_out_insn(s, 3616, ADD, is_q, vece, a0, a1, a2); 2768 } 2769 break; 2770 case INDEX_op_sub_vec: 2771 if (is_scalar) { 2772 tcg_out_insn(s, 3611, SUB, vece, a0, a1, a2); 2773 } else { 2774 tcg_out_insn(s, 3616, SUB, is_q, vece, a0, a1, a2); 2775 } 2776 break; 2777 case INDEX_op_mul_vec: 2778 tcg_out_insn(s, 3616, MUL, is_q, vece, a0, a1, a2); 2779 break; 2780 case INDEX_op_neg_vec: 2781 if (is_scalar) { 2782 tcg_out_insn(s, 3612, NEG, vece, a0, a1); 2783 } else { 2784 tcg_out_insn(s, 3617, NEG, is_q, vece, a0, a1); 2785 } 2786 break; 2787 case INDEX_op_abs_vec: 2788 if (is_scalar) { 2789 tcg_out_insn(s, 3612, ABS, vece, a0, a1); 2790 } else { 2791 tcg_out_insn(s, 3617, ABS, is_q, vece, a0, a1); 2792 } 2793 break; 2794 case INDEX_op_and_vec: 2795 if (const_args[2]) { 2796 is_shimm1632(~a2, &cmode, &imm8); 2797 if (a0 == a1) { 2798 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2799 return; 2800 } 2801 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2802 a2 = a0; 2803 } 2804 tcg_out_insn(s, 3616, AND, is_q, 0, a0, a1, a2); 2805 break; 2806 case INDEX_op_or_vec: 2807 if (const_args[2]) { 2808 is_shimm1632(a2, &cmode, &imm8); 2809 if (a0 == a1) { 2810 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2811 return; 2812 } 2813 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2814 a2 = a0; 2815 } 2816 tcg_out_insn(s, 3616, ORR, is_q, 0, a0, a1, a2); 2817 break; 2818 case INDEX_op_andc_vec: 2819 if (const_args[2]) { 2820 is_shimm1632(a2, &cmode, &imm8); 2821 if (a0 == a1) { 2822 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2823 return; 2824 } 2825 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2826 a2 = a0; 2827 } 2828 tcg_out_insn(s, 3616, BIC, is_q, 0, a0, a1, a2); 2829 break; 2830 case INDEX_op_orc_vec: 2831 if (const_args[2]) { 2832 is_shimm1632(~a2, &cmode, &imm8); 2833 if (a0 == a1) { 2834 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2835 return; 2836 } 2837 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2838 a2 = a0; 2839 } 2840 tcg_out_insn(s, 3616, ORN, is_q, 0, a0, a1, a2); 2841 break; 2842 case INDEX_op_xor_vec: 2843 tcg_out_insn(s, 3616, EOR, is_q, 0, a0, a1, a2); 2844 break; 2845 case INDEX_op_ssadd_vec: 2846 if (is_scalar) { 2847 tcg_out_insn(s, 3611, SQADD, vece, a0, a1, a2); 2848 } else { 2849 tcg_out_insn(s, 3616, SQADD, is_q, vece, a0, a1, a2); 2850 } 2851 break; 2852 case INDEX_op_sssub_vec: 2853 if (is_scalar) { 2854 tcg_out_insn(s, 3611, SQSUB, vece, a0, a1, a2); 2855 } else { 2856 tcg_out_insn(s, 3616, SQSUB, is_q, vece, a0, a1, a2); 2857 } 2858 break; 2859 case INDEX_op_usadd_vec: 2860 if (is_scalar) { 2861 tcg_out_insn(s, 3611, UQADD, vece, a0, a1, a2); 2862 } else { 2863 tcg_out_insn(s, 3616, UQADD, is_q, vece, a0, a1, a2); 2864 } 2865 break; 2866 case INDEX_op_ussub_vec: 2867 if (is_scalar) { 2868 tcg_out_insn(s, 3611, UQSUB, vece, a0, a1, a2); 2869 } else { 2870 tcg_out_insn(s, 3616, UQSUB, is_q, vece, a0, a1, a2); 2871 } 2872 break; 2873 case INDEX_op_smax_vec: 2874 tcg_out_insn(s, 3616, SMAX, is_q, vece, a0, a1, a2); 2875 break; 2876 case INDEX_op_smin_vec: 2877 tcg_out_insn(s, 3616, SMIN, is_q, vece, a0, a1, a2); 2878 break; 2879 case INDEX_op_umax_vec: 2880 tcg_out_insn(s, 3616, UMAX, is_q, vece, a0, a1, a2); 2881 break; 2882 case INDEX_op_umin_vec: 2883 tcg_out_insn(s, 3616, UMIN, is_q, vece, a0, a1, a2); 2884 break; 2885 case INDEX_op_not_vec: 2886 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a1); 2887 break; 2888 case INDEX_op_shli_vec: 2889 if (is_scalar) { 2890 tcg_out_insn(s, 3609, SHL, a0, a1, a2 + (8 << vece)); 2891 } else { 2892 tcg_out_insn(s, 3614, SHL, is_q, a0, a1, a2 + (8 << vece)); 2893 } 2894 break; 2895 case INDEX_op_shri_vec: 2896 if (is_scalar) { 2897 tcg_out_insn(s, 3609, USHR, a0, a1, (16 << vece) - a2); 2898 } else { 2899 tcg_out_insn(s, 3614, USHR, is_q, a0, a1, (16 << vece) - a2); 2900 } 2901 break; 2902 case INDEX_op_sari_vec: 2903 if (is_scalar) { 2904 tcg_out_insn(s, 3609, SSHR, a0, a1, (16 << vece) - a2); 2905 } else { 2906 tcg_out_insn(s, 3614, SSHR, is_q, a0, a1, (16 << vece) - a2); 2907 } 2908 break; 2909 case INDEX_op_aa64_sli_vec: 2910 if (is_scalar) { 2911 tcg_out_insn(s, 3609, SLI, a0, a2, args[3] + (8 << vece)); 2912 } else { 2913 tcg_out_insn(s, 3614, SLI, is_q, a0, a2, args[3] + (8 << vece)); 2914 } 2915 break; 2916 case INDEX_op_shlv_vec: 2917 if (is_scalar) { 2918 tcg_out_insn(s, 3611, USHL, vece, a0, a1, a2); 2919 } else { 2920 tcg_out_insn(s, 3616, USHL, is_q, vece, a0, a1, a2); 2921 } 2922 break; 2923 case INDEX_op_aa64_sshl_vec: 2924 if (is_scalar) { 2925 tcg_out_insn(s, 3611, SSHL, vece, a0, a1, a2); 2926 } else { 2927 tcg_out_insn(s, 3616, SSHL, is_q, vece, a0, a1, a2); 2928 } 2929 break; 2930 case INDEX_op_cmp_vec: 2931 { 2932 TCGCond cond = args[3]; 2933 AArch64Insn insn; 2934 2935 switch (cond) { 2936 case TCG_COND_NE: 2937 if (const_args[2]) { 2938 if (is_scalar) { 2939 tcg_out_insn(s, 3611, CMTST, vece, a0, a1, a1); 2940 } else { 2941 tcg_out_insn(s, 3616, CMTST, is_q, vece, a0, a1, a1); 2942 } 2943 } else { 2944 if (is_scalar) { 2945 tcg_out_insn(s, 3611, CMEQ, vece, a0, a1, a2); 2946 } else { 2947 tcg_out_insn(s, 3616, CMEQ, is_q, vece, a0, a1, a2); 2948 } 2949 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a0); 2950 } 2951 break; 2952 2953 case TCG_COND_TSTNE: 2954 case TCG_COND_TSTEQ: 2955 if (const_args[2]) { 2956 /* (x & 0) == 0 */ 2957 tcg_out_dupi_vec(s, type, MO_8, a0, 2958 -(cond == TCG_COND_TSTEQ)); 2959 break; 2960 } 2961 if (is_scalar) { 2962 tcg_out_insn(s, 3611, CMTST, vece, a0, a1, a2); 2963 } else { 2964 tcg_out_insn(s, 3616, CMTST, is_q, vece, a0, a1, a2); 2965 } 2966 if (cond == TCG_COND_TSTEQ) { 2967 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a0); 2968 } 2969 break; 2970 2971 default: 2972 if (const_args[2]) { 2973 if (is_scalar) { 2974 insn = cmp0_scalar_insn[cond]; 2975 if (insn) { 2976 tcg_out_insn_3612(s, insn, vece, a0, a1); 2977 break; 2978 } 2979 } else { 2980 insn = cmp0_vec_insn[cond]; 2981 if (insn) { 2982 tcg_out_insn_3617(s, insn, is_q, vece, a0, a1); 2983 break; 2984 } 2985 } 2986 tcg_out_dupi_vec(s, type, MO_8, TCG_VEC_TMP0, 0); 2987 a2 = TCG_VEC_TMP0; 2988 } 2989 if (is_scalar) { 2990 insn = cmp_scalar_insn[cond]; 2991 if (insn == 0) { 2992 TCGArg t; 2993 t = a1, a1 = a2, a2 = t; 2994 cond = tcg_swap_cond(cond); 2995 insn = cmp_scalar_insn[cond]; 2996 tcg_debug_assert(insn != 0); 2997 } 2998 tcg_out_insn_3611(s, insn, vece, a0, a1, a2); 2999 } else { 3000 insn = cmp_vec_insn[cond]; 3001 if (insn == 0) { 3002 TCGArg t; 3003 t = a1, a1 = a2, a2 = t; 3004 cond = tcg_swap_cond(cond); 3005 insn = cmp_vec_insn[cond]; 3006 tcg_debug_assert(insn != 0); 3007 } 3008 tcg_out_insn_3616(s, insn, is_q, vece, a0, a1, a2); 3009 } 3010 break; 3011 } 3012 } 3013 break; 3014 3015 case INDEX_op_bitsel_vec: 3016 a3 = args[3]; 3017 if (a0 == a3) { 3018 tcg_out_insn(s, 3616, BIT, is_q, 0, a0, a2, a1); 3019 } else if (a0 == a2) { 3020 tcg_out_insn(s, 3616, BIF, is_q, 0, a0, a3, a1); 3021 } else { 3022 if (a0 != a1) { 3023 tcg_out_mov(s, type, a0, a1); 3024 } 3025 tcg_out_insn(s, 3616, BSL, is_q, 0, a0, a2, a3); 3026 } 3027 break; 3028 3029 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 3030 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 3031 default: 3032 g_assert_not_reached(); 3033 } 3034} 3035 3036int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 3037{ 3038 switch (opc) { 3039 case INDEX_op_add_vec: 3040 case INDEX_op_sub_vec: 3041 case INDEX_op_and_vec: 3042 case INDEX_op_or_vec: 3043 case INDEX_op_xor_vec: 3044 case INDEX_op_andc_vec: 3045 case INDEX_op_orc_vec: 3046 case INDEX_op_neg_vec: 3047 case INDEX_op_abs_vec: 3048 case INDEX_op_not_vec: 3049 case INDEX_op_cmp_vec: 3050 case INDEX_op_shli_vec: 3051 case INDEX_op_shri_vec: 3052 case INDEX_op_sari_vec: 3053 case INDEX_op_ssadd_vec: 3054 case INDEX_op_sssub_vec: 3055 case INDEX_op_usadd_vec: 3056 case INDEX_op_ussub_vec: 3057 case INDEX_op_shlv_vec: 3058 case INDEX_op_bitsel_vec: 3059 return 1; 3060 case INDEX_op_rotli_vec: 3061 case INDEX_op_shrv_vec: 3062 case INDEX_op_sarv_vec: 3063 case INDEX_op_rotlv_vec: 3064 case INDEX_op_rotrv_vec: 3065 return -1; 3066 case INDEX_op_mul_vec: 3067 case INDEX_op_smax_vec: 3068 case INDEX_op_smin_vec: 3069 case INDEX_op_umax_vec: 3070 case INDEX_op_umin_vec: 3071 return vece < MO_64; 3072 3073 default: 3074 return 0; 3075 } 3076} 3077 3078void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 3079 TCGArg a0, ...) 3080{ 3081 va_list va; 3082 TCGv_vec v0, v1, v2, t1, t2, c1; 3083 TCGArg a2; 3084 3085 va_start(va, a0); 3086 v0 = temp_tcgv_vec(arg_temp(a0)); 3087 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 3088 a2 = va_arg(va, TCGArg); 3089 va_end(va); 3090 3091 switch (opc) { 3092 case INDEX_op_rotli_vec: 3093 t1 = tcg_temp_new_vec(type); 3094 tcg_gen_shri_vec(vece, t1, v1, -a2 & ((8 << vece) - 1)); 3095 vec_gen_4(INDEX_op_aa64_sli_vec, type, vece, 3096 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(v1), a2); 3097 tcg_temp_free_vec(t1); 3098 break; 3099 3100 case INDEX_op_shrv_vec: 3101 case INDEX_op_sarv_vec: 3102 /* Right shifts are negative left shifts for AArch64. */ 3103 v2 = temp_tcgv_vec(arg_temp(a2)); 3104 t1 = tcg_temp_new_vec(type); 3105 tcg_gen_neg_vec(vece, t1, v2); 3106 opc = (opc == INDEX_op_shrv_vec 3107 ? INDEX_op_shlv_vec : INDEX_op_aa64_sshl_vec); 3108 vec_gen_3(opc, type, vece, tcgv_vec_arg(v0), 3109 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3110 tcg_temp_free_vec(t1); 3111 break; 3112 3113 case INDEX_op_rotlv_vec: 3114 v2 = temp_tcgv_vec(arg_temp(a2)); 3115 t1 = tcg_temp_new_vec(type); 3116 c1 = tcg_constant_vec(type, vece, 8 << vece); 3117 tcg_gen_sub_vec(vece, t1, v2, c1); 3118 /* Right shifts are negative left shifts for AArch64. */ 3119 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 3120 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3121 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(v0), 3122 tcgv_vec_arg(v1), tcgv_vec_arg(v2)); 3123 tcg_gen_or_vec(vece, v0, v0, t1); 3124 tcg_temp_free_vec(t1); 3125 break; 3126 3127 case INDEX_op_rotrv_vec: 3128 v2 = temp_tcgv_vec(arg_temp(a2)); 3129 t1 = tcg_temp_new_vec(type); 3130 t2 = tcg_temp_new_vec(type); 3131 c1 = tcg_constant_vec(type, vece, 8 << vece); 3132 tcg_gen_neg_vec(vece, t1, v2); 3133 tcg_gen_sub_vec(vece, t2, c1, v2); 3134 /* Right shifts are negative left shifts for AArch64. */ 3135 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 3136 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3137 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t2), 3138 tcgv_vec_arg(v1), tcgv_vec_arg(t2)); 3139 tcg_gen_or_vec(vece, v0, t1, t2); 3140 tcg_temp_free_vec(t1); 3141 tcg_temp_free_vec(t2); 3142 break; 3143 3144 default: 3145 g_assert_not_reached(); 3146 } 3147} 3148 3149static TCGConstraintSetIndex 3150tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags) 3151{ 3152 switch (op) { 3153 case INDEX_op_goto_ptr: 3154 return C_O0_I1(r); 3155 3156 case INDEX_op_ld8u_i32: 3157 case INDEX_op_ld8s_i32: 3158 case INDEX_op_ld16u_i32: 3159 case INDEX_op_ld16s_i32: 3160 case INDEX_op_ld_i32: 3161 case INDEX_op_ld8u_i64: 3162 case INDEX_op_ld8s_i64: 3163 case INDEX_op_ld16u_i64: 3164 case INDEX_op_ld16s_i64: 3165 case INDEX_op_ld32u_i64: 3166 case INDEX_op_ld32s_i64: 3167 case INDEX_op_ld_i64: 3168 case INDEX_op_ext_i32_i64: 3169 case INDEX_op_extu_i32_i64: 3170 case INDEX_op_extract_i32: 3171 case INDEX_op_extract_i64: 3172 case INDEX_op_sextract_i32: 3173 case INDEX_op_sextract_i64: 3174 return C_O1_I1(r, r); 3175 3176 case INDEX_op_st8_i32: 3177 case INDEX_op_st16_i32: 3178 case INDEX_op_st_i32: 3179 case INDEX_op_st8_i64: 3180 case INDEX_op_st16_i64: 3181 case INDEX_op_st32_i64: 3182 case INDEX_op_st_i64: 3183 return C_O0_I2(rz, r); 3184 3185 case INDEX_op_qemu_ld_i32: 3186 case INDEX_op_qemu_ld_i64: 3187 return C_O1_I1(r, r); 3188 case INDEX_op_qemu_ld_i128: 3189 return C_O2_I1(r, r, r); 3190 case INDEX_op_qemu_st_i32: 3191 case INDEX_op_qemu_st_i64: 3192 return C_O0_I2(rz, r); 3193 case INDEX_op_qemu_st_i128: 3194 return C_O0_I3(rz, rz, r); 3195 3196 case INDEX_op_deposit_i32: 3197 case INDEX_op_deposit_i64: 3198 return C_O1_I2(r, 0, rz); 3199 3200 case INDEX_op_extract2_i32: 3201 case INDEX_op_extract2_i64: 3202 return C_O1_I2(r, rz, rz); 3203 3204 case INDEX_op_add2_i32: 3205 case INDEX_op_add2_i64: 3206 case INDEX_op_sub2_i32: 3207 case INDEX_op_sub2_i64: 3208 return C_O2_I4(r, r, rz, rz, rA, rMZ); 3209 3210 case INDEX_op_add_vec: 3211 case INDEX_op_sub_vec: 3212 case INDEX_op_mul_vec: 3213 case INDEX_op_xor_vec: 3214 case INDEX_op_ssadd_vec: 3215 case INDEX_op_sssub_vec: 3216 case INDEX_op_usadd_vec: 3217 case INDEX_op_ussub_vec: 3218 case INDEX_op_smax_vec: 3219 case INDEX_op_smin_vec: 3220 case INDEX_op_umax_vec: 3221 case INDEX_op_umin_vec: 3222 case INDEX_op_shlv_vec: 3223 case INDEX_op_shrv_vec: 3224 case INDEX_op_sarv_vec: 3225 case INDEX_op_aa64_sshl_vec: 3226 return C_O1_I2(w, w, w); 3227 case INDEX_op_not_vec: 3228 case INDEX_op_neg_vec: 3229 case INDEX_op_abs_vec: 3230 case INDEX_op_shli_vec: 3231 case INDEX_op_shri_vec: 3232 case INDEX_op_sari_vec: 3233 return C_O1_I1(w, w); 3234 case INDEX_op_ld_vec: 3235 case INDEX_op_dupm_vec: 3236 return C_O1_I1(w, r); 3237 case INDEX_op_st_vec: 3238 return C_O0_I2(w, r); 3239 case INDEX_op_dup_vec: 3240 return C_O1_I1(w, wr); 3241 case INDEX_op_or_vec: 3242 case INDEX_op_andc_vec: 3243 return C_O1_I2(w, w, wO); 3244 case INDEX_op_and_vec: 3245 case INDEX_op_orc_vec: 3246 return C_O1_I2(w, w, wN); 3247 case INDEX_op_cmp_vec: 3248 return C_O1_I2(w, w, wZ); 3249 case INDEX_op_bitsel_vec: 3250 return C_O1_I3(w, w, w, w); 3251 case INDEX_op_aa64_sli_vec: 3252 return C_O1_I2(w, 0, w); 3253 3254 default: 3255 return C_NotImplemented; 3256 } 3257} 3258 3259static void tcg_target_init(TCGContext *s) 3260{ 3261 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffffu; 3262 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffffu; 3263 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull; 3264 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull; 3265 3266 tcg_target_call_clobber_regs = -1ull; 3267 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X19); 3268 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X20); 3269 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X21); 3270 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X22); 3271 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X23); 3272 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X24); 3273 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X25); 3274 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X26); 3275 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X27); 3276 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X28); 3277 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X29); 3278 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V8); 3279 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V9); 3280 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V10); 3281 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V11); 3282 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V12); 3283 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V13); 3284 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V14); 3285 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V15); 3286 3287 s->reserved_regs = 0; 3288 tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); 3289 tcg_regset_set_reg(s->reserved_regs, TCG_REG_FP); 3290 tcg_regset_set_reg(s->reserved_regs, TCG_REG_X18); /* platform register */ 3291 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP0); 3292 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); 3293 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP2); 3294 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP0); 3295} 3296 3297/* Saving pairs: (X19, X20) .. (X27, X28), (X29(fp), X30(lr)). */ 3298#define PUSH_SIZE ((30 - 19 + 1) * 8) 3299 3300#define FRAME_SIZE \ 3301 ((PUSH_SIZE \ 3302 + TCG_STATIC_CALL_ARGS_SIZE \ 3303 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 3304 + TCG_TARGET_STACK_ALIGN - 1) \ 3305 & ~(TCG_TARGET_STACK_ALIGN - 1)) 3306 3307/* We're expecting a 2 byte uleb128 encoded value. */ 3308QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 3309 3310/* We're expecting to use a single ADDI insn. */ 3311QEMU_BUILD_BUG_ON(FRAME_SIZE - PUSH_SIZE > 0xfff); 3312 3313static void tcg_target_qemu_prologue(TCGContext *s) 3314{ 3315 TCGReg r; 3316 3317 tcg_out_bti(s, BTI_C); 3318 3319 /* Push (FP, LR) and allocate space for all saved registers. */ 3320 tcg_out_insn(s, 3314, STP, TCG_REG_FP, TCG_REG_LR, 3321 TCG_REG_SP, -PUSH_SIZE, 1, 1); 3322 3323 /* Set up frame pointer for canonical unwinding. */ 3324 tcg_out_movr_sp(s, TCG_TYPE_I64, TCG_REG_FP, TCG_REG_SP); 3325 3326 /* Store callee-preserved regs x19..x28. */ 3327 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 3328 int ofs = (r - TCG_REG_X19 + 2) * 8; 3329 tcg_out_insn(s, 3314, STP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3330 } 3331 3332 /* Make stack space for TCG locals. */ 3333 tcg_out_insn(s, 3401, SUBI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3334 FRAME_SIZE - PUSH_SIZE); 3335 3336 /* Inform TCG about how to find TCG locals with register, offset, size. */ 3337 tcg_set_frame(s, TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE, 3338 CPU_TEMP_BUF_NLONGS * sizeof(long)); 3339 3340 if (!tcg_use_softmmu) { 3341 /* 3342 * Note that XZR cannot be encoded in the address base register slot, 3343 * as that actually encodes SP. Depending on the guest, we may need 3344 * to zero-extend the guest address via the address index register slot, 3345 * therefore we need to load even a zero guest base into a register. 3346 */ 3347 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_GUEST_BASE, guest_base); 3348 tcg_regset_set_reg(s->reserved_regs, TCG_REG_GUEST_BASE); 3349 } 3350 3351 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 3352 tcg_out_insn(s, 3207, BR, tcg_target_call_iarg_regs[1]); 3353 3354 /* 3355 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 3356 * and fall through to the rest of the epilogue. 3357 */ 3358 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 3359 tcg_out_bti(s, BTI_J); 3360 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_X0, 0); 3361 3362 /* TB epilogue */ 3363 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 3364 tcg_out_bti(s, BTI_J); 3365 3366 /* Remove TCG locals stack space. */ 3367 tcg_out_insn(s, 3401, ADDI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3368 FRAME_SIZE - PUSH_SIZE); 3369 3370 /* Restore registers x19..x28. */ 3371 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 3372 int ofs = (r - TCG_REG_X19 + 2) * 8; 3373 tcg_out_insn(s, 3314, LDP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3374 } 3375 3376 /* Pop (FP, LR), restore SP to previous frame. */ 3377 tcg_out_insn(s, 3314, LDP, TCG_REG_FP, TCG_REG_LR, 3378 TCG_REG_SP, PUSH_SIZE, 0, 1); 3379 tcg_out_insn(s, 3207, RET, TCG_REG_LR); 3380} 3381 3382static void tcg_out_tb_start(TCGContext *s) 3383{ 3384 tcg_out_bti(s, BTI_J); 3385} 3386 3387static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 3388{ 3389 int i; 3390 for (i = 0; i < count; ++i) { 3391 p[i] = NOP; 3392 } 3393} 3394 3395typedef struct { 3396 DebugFrameHeader h; 3397 uint8_t fde_def_cfa[4]; 3398 uint8_t fde_reg_ofs[24]; 3399} DebugFrame; 3400 3401#define ELF_HOST_MACHINE EM_AARCH64 3402 3403static const DebugFrame debug_frame = { 3404 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 3405 .h.cie.id = -1, 3406 .h.cie.version = 1, 3407 .h.cie.code_align = 1, 3408 .h.cie.data_align = 0x78, /* sleb128 -8 */ 3409 .h.cie.return_column = TCG_REG_LR, 3410 3411 /* Total FDE size does not include the "len" member. */ 3412 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 3413 3414 .fde_def_cfa = { 3415 12, TCG_REG_SP, /* DW_CFA_def_cfa sp, ... */ 3416 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 3417 (FRAME_SIZE >> 7) 3418 }, 3419 .fde_reg_ofs = { 3420 0x80 + 28, 1, /* DW_CFA_offset, x28, -8 */ 3421 0x80 + 27, 2, /* DW_CFA_offset, x27, -16 */ 3422 0x80 + 26, 3, /* DW_CFA_offset, x26, -24 */ 3423 0x80 + 25, 4, /* DW_CFA_offset, x25, -32 */ 3424 0x80 + 24, 5, /* DW_CFA_offset, x24, -40 */ 3425 0x80 + 23, 6, /* DW_CFA_offset, x23, -48 */ 3426 0x80 + 22, 7, /* DW_CFA_offset, x22, -56 */ 3427 0x80 + 21, 8, /* DW_CFA_offset, x21, -64 */ 3428 0x80 + 20, 9, /* DW_CFA_offset, x20, -72 */ 3429 0x80 + 19, 10, /* DW_CFA_offset, x1p, -80 */ 3430 0x80 + 30, 11, /* DW_CFA_offset, lr, -88 */ 3431 0x80 + 29, 12, /* DW_CFA_offset, fp, -96 */ 3432 } 3433}; 3434 3435void tcg_register_jit(const void *buf, size_t buf_size) 3436{ 3437 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 3438} 3439