1 /* 2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * * Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * * Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * * Neither the name of the Open Source and Linux Lab nor the 13 * names of its contributors may be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "qemu/main-loop.h" 30 #include "cpu.h" 31 #include "exec/helper-proto.h" 32 #include "qemu/host-utils.h" 33 #include "exec/exec-all.h" 34 #include "exec/cpu_ldst.h" 35 #include "exec/address-spaces.h" 36 #include "qemu/timer.h" 37 #include "fpu/softfloat.h" 38 39 #ifdef CONFIG_USER_ONLY 40 /* tb_invalidate_phys_range */ 41 #include "accel/tcg/translate-all.h" 42 #endif 43 44 #ifndef CONFIG_USER_ONLY 45 46 void xtensa_cpu_do_unaligned_access(CPUState *cs, 47 vaddr addr, MMUAccessType access_type, 48 int mmu_idx, uintptr_t retaddr) 49 { 50 XtensaCPU *cpu = XTENSA_CPU(cs); 51 CPUXtensaState *env = &cpu->env; 52 53 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) && 54 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) { 55 cpu_restore_state(CPU(cpu), retaddr, true); 56 HELPER(exception_cause_vaddr)(env, 57 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr); 58 } 59 } 60 61 void tlb_fill(CPUState *cs, target_ulong vaddr, int size, 62 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 63 { 64 XtensaCPU *cpu = XTENSA_CPU(cs); 65 CPUXtensaState *env = &cpu->env; 66 uint32_t paddr; 67 uint32_t page_size; 68 unsigned access; 69 int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx, 70 &paddr, &page_size, &access); 71 72 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n", 73 __func__, vaddr, access_type, mmu_idx, paddr, ret); 74 75 if (ret == 0) { 76 tlb_set_page(cs, 77 vaddr & TARGET_PAGE_MASK, 78 paddr & TARGET_PAGE_MASK, 79 access, mmu_idx, page_size); 80 } else { 81 cpu_restore_state(cs, retaddr, true); 82 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr); 83 } 84 } 85 86 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr, 87 bool is_write, bool is_exec, int opaque, 88 unsigned size) 89 { 90 XtensaCPU *cpu = XTENSA_CPU(cs); 91 CPUXtensaState *env = &cpu->env; 92 93 HELPER(exception_cause_vaddr)(env, env->pc, 94 is_exec ? 95 INSTR_PIF_ADDR_ERROR_CAUSE : 96 LOAD_STORE_PIF_ADDR_ERROR_CAUSE, 97 is_exec ? addr : cs->mem_io_vaddr); 98 } 99 100 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr) 101 { 102 uint32_t paddr; 103 uint32_t page_size; 104 unsigned access; 105 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0, 106 &paddr, &page_size, &access); 107 if (ret == 0) { 108 tb_invalidate_phys_addr(&address_space_memory, paddr, 109 MEMTXATTRS_UNSPECIFIED); 110 } 111 } 112 113 #else 114 115 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr) 116 { 117 mmap_lock(); 118 tb_invalidate_phys_range(vaddr, vaddr + 1); 119 mmap_unlock(); 120 } 121 122 #endif 123 124 void HELPER(exception)(CPUXtensaState *env, uint32_t excp) 125 { 126 CPUState *cs = CPU(xtensa_env_get_cpu(env)); 127 128 cs->exception_index = excp; 129 if (excp == EXCP_YIELD) { 130 env->yield_needed = 0; 131 } 132 if (excp == EXCP_DEBUG) { 133 env->exception_taken = 0; 134 } 135 cpu_loop_exit(cs); 136 } 137 138 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause) 139 { 140 uint32_t vector; 141 142 env->pc = pc; 143 if (env->sregs[PS] & PS_EXCM) { 144 if (env->config->ndepc) { 145 env->sregs[DEPC] = pc; 146 } else { 147 env->sregs[EPC1] = pc; 148 } 149 vector = EXC_DOUBLE; 150 } else { 151 env->sregs[EPC1] = pc; 152 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL; 153 } 154 155 env->sregs[EXCCAUSE] = cause; 156 env->sregs[PS] |= PS_EXCM; 157 158 HELPER(exception)(env, vector); 159 } 160 161 void HELPER(exception_cause_vaddr)(CPUXtensaState *env, 162 uint32_t pc, uint32_t cause, uint32_t vaddr) 163 { 164 env->sregs[EXCVADDR] = vaddr; 165 HELPER(exception_cause)(env, pc, cause); 166 } 167 168 void debug_exception_env(CPUXtensaState *env, uint32_t cause) 169 { 170 if (xtensa_get_cintlevel(env) < env->config->debug_level) { 171 HELPER(debug_exception)(env, env->pc, cause); 172 } 173 } 174 175 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause) 176 { 177 unsigned level = env->config->debug_level; 178 179 env->pc = pc; 180 env->sregs[DEBUGCAUSE] = cause; 181 env->sregs[EPC1 + level - 1] = pc; 182 env->sregs[EPS2 + level - 2] = env->sregs[PS]; 183 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM | 184 (level << PS_INTLEVEL_SHIFT); 185 HELPER(exception)(env, EXC_DEBUG); 186 } 187 188 static void copy_window_from_phys(CPUXtensaState *env, 189 uint32_t window, uint32_t phys, uint32_t n) 190 { 191 assert(phys < env->config->nareg); 192 if (phys + n <= env->config->nareg) { 193 memcpy(env->regs + window, env->phys_regs + phys, 194 n * sizeof(uint32_t)); 195 } else { 196 uint32_t n1 = env->config->nareg - phys; 197 memcpy(env->regs + window, env->phys_regs + phys, 198 n1 * sizeof(uint32_t)); 199 memcpy(env->regs + window + n1, env->phys_regs, 200 (n - n1) * sizeof(uint32_t)); 201 } 202 } 203 204 static void copy_phys_from_window(CPUXtensaState *env, 205 uint32_t phys, uint32_t window, uint32_t n) 206 { 207 assert(phys < env->config->nareg); 208 if (phys + n <= env->config->nareg) { 209 memcpy(env->phys_regs + phys, env->regs + window, 210 n * sizeof(uint32_t)); 211 } else { 212 uint32_t n1 = env->config->nareg - phys; 213 memcpy(env->phys_regs + phys, env->regs + window, 214 n1 * sizeof(uint32_t)); 215 memcpy(env->phys_regs, env->regs + window + n1, 216 (n - n1) * sizeof(uint32_t)); 217 } 218 } 219 220 221 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env) 222 { 223 return a & (env->config->nareg / 4 - 1); 224 } 225 226 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env) 227 { 228 return 1 << windowbase_bound(a, env); 229 } 230 231 void xtensa_sync_window_from_phys(CPUXtensaState *env) 232 { 233 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16); 234 } 235 236 void xtensa_sync_phys_from_window(CPUXtensaState *env) 237 { 238 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16); 239 } 240 241 static void xtensa_rotate_window_abs(CPUXtensaState *env, uint32_t position) 242 { 243 xtensa_sync_phys_from_window(env); 244 env->sregs[WINDOW_BASE] = windowbase_bound(position, env); 245 xtensa_sync_window_from_phys(env); 246 } 247 248 void xtensa_rotate_window(CPUXtensaState *env, uint32_t delta) 249 { 250 xtensa_rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta); 251 } 252 253 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v) 254 { 255 xtensa_rotate_window_abs(env, v); 256 } 257 258 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm) 259 { 260 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT; 261 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { 262 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n", 263 pc, env->sregs[PS]); 264 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE); 265 } else { 266 uint32_t windowstart = xtensa_replicate_windowstart(env) >> 267 (env->sregs[WINDOW_BASE] + 1); 268 269 if (windowstart & ((1 << callinc) - 1)) { 270 HELPER(window_check)(env, pc, callinc); 271 } 272 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - imm; 273 xtensa_rotate_window(env, callinc); 274 env->sregs[WINDOW_START] |= 275 windowstart_bit(env->sregs[WINDOW_BASE], env); 276 } 277 } 278 279 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w) 280 { 281 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); 282 uint32_t windowstart = xtensa_replicate_windowstart(env) >> 283 (env->sregs[WINDOW_BASE] + 1); 284 uint32_t n = ctz32(windowstart) + 1; 285 286 assert(n <= w); 287 288 xtensa_rotate_window(env, n); 289 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | 290 (windowbase << PS_OWB_SHIFT) | PS_EXCM; 291 env->sregs[EPC1] = env->pc = pc; 292 293 switch (ctz32(windowstart >> n)) { 294 case 0: 295 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4); 296 break; 297 case 1: 298 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8); 299 break; 300 default: 301 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12); 302 break; 303 } 304 } 305 306 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc) 307 { 308 int n = (env->regs[0] >> 30) & 0x3; 309 int m = 0; 310 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); 311 uint32_t windowstart = env->sregs[WINDOW_START]; 312 uint32_t ret_pc = 0; 313 314 if (windowstart & windowstart_bit(windowbase - 1, env)) { 315 m = 1; 316 } else if (windowstart & windowstart_bit(windowbase - 2, env)) { 317 m = 2; 318 } else if (windowstart & windowstart_bit(windowbase - 3, env)) { 319 m = 3; 320 } 321 322 if (n == 0 || (m != 0 && m != n) || 323 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { 324 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), " 325 "PS = %08x, m = %d, n = %d\n", 326 pc, env->sregs[PS], m, n); 327 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE); 328 } else { 329 int owb = windowbase; 330 331 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff); 332 333 xtensa_rotate_window(env, -n); 334 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) { 335 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env); 336 } else { 337 /* window underflow */ 338 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | 339 (windowbase << PS_OWB_SHIFT) | PS_EXCM; 340 env->sregs[EPC1] = env->pc = pc; 341 342 if (n == 1) { 343 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4); 344 } else if (n == 2) { 345 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8); 346 } else if (n == 3) { 347 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12); 348 } 349 } 350 } 351 return ret_pc; 352 } 353 354 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4) 355 { 356 xtensa_rotate_window(env, imm4); 357 } 358 359 void xtensa_restore_owb(CPUXtensaState *env) 360 { 361 xtensa_rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT); 362 } 363 364 void HELPER(restore_owb)(CPUXtensaState *env) 365 { 366 xtensa_restore_owb(env); 367 } 368 369 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc) 370 { 371 if ((env->sregs[WINDOW_START] & 372 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) | 373 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) | 374 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) { 375 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE); 376 } 377 } 378 379 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v) 380 { 381 if (env->sregs[LBEG] != v) { 382 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); 383 env->sregs[LBEG] = v; 384 } 385 } 386 387 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v) 388 { 389 if (env->sregs[LEND] != v) { 390 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); 391 env->sregs[LEND] = v; 392 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); 393 } 394 } 395 396 void HELPER(dump_state)(CPUXtensaState *env) 397 { 398 XtensaCPU *cpu = xtensa_env_get_cpu(env); 399 400 cpu_dump_state(CPU(cpu), stderr, fprintf, 0); 401 } 402 403 #ifndef CONFIG_USER_ONLY 404 405 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel) 406 { 407 CPUState *cpu; 408 409 env->pc = pc; 410 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | 411 (intlevel << PS_INTLEVEL_SHIFT); 412 413 qemu_mutex_lock_iothread(); 414 check_interrupts(env); 415 qemu_mutex_unlock_iothread(); 416 417 if (env->pending_irq_level) { 418 cpu_loop_exit(CPU(xtensa_env_get_cpu(env))); 419 return; 420 } 421 422 cpu = CPU(xtensa_env_get_cpu(env)); 423 cpu->halted = 1; 424 HELPER(exception)(env, EXCP_HLT); 425 } 426 427 void HELPER(update_ccount)(CPUXtensaState *env) 428 { 429 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 430 431 env->ccount_time = now; 432 env->sregs[CCOUNT] = env->ccount_base + 433 (uint32_t)((now - env->time_base) * 434 env->config->clock_freq_khz / 1000000); 435 } 436 437 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v) 438 { 439 int i; 440 441 HELPER(update_ccount)(env); 442 env->ccount_base += v - env->sregs[CCOUNT]; 443 for (i = 0; i < env->config->nccompare; ++i) { 444 HELPER(update_ccompare)(env, i); 445 } 446 } 447 448 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i) 449 { 450 uint64_t dcc; 451 452 HELPER(update_ccount)(env); 453 dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1; 454 timer_mod(env->ccompare[i].timer, 455 env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz); 456 env->yield_needed = 1; 457 } 458 459 void HELPER(check_interrupts)(CPUXtensaState *env) 460 { 461 qemu_mutex_lock_iothread(); 462 check_interrupts(env); 463 qemu_mutex_unlock_iothread(); 464 } 465 466 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr) 467 { 468 get_page_addr_code(env, vaddr); 469 } 470 471 /*! 472 * Check vaddr accessibility/cache attributes and raise an exception if 473 * specified by the ATOMCTL SR. 474 * 475 * Note: local memory exclusion is not implemented 476 */ 477 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr) 478 { 479 uint32_t paddr, page_size, access; 480 uint32_t atomctl = env->sregs[ATOMCTL]; 481 int rc = xtensa_get_physical_addr(env, true, vaddr, 1, 482 xtensa_get_cring(env), &paddr, &page_size, &access); 483 484 /* 485 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions, 486 * see opcode description in the ISA 487 */ 488 if (rc == 0 && 489 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) { 490 rc = STORE_PROHIBITED_CAUSE; 491 } 492 493 if (rc) { 494 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr); 495 } 496 497 /* 498 * When data cache is not configured use ATOMCTL bypass field. 499 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL) 500 * under the Conditional Store Option. 501 */ 502 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) { 503 access = PAGE_CACHE_BYPASS; 504 } 505 506 switch (access & PAGE_CACHE_MASK) { 507 case PAGE_CACHE_WB: 508 atomctl >>= 2; 509 /* fall through */ 510 case PAGE_CACHE_WT: 511 atomctl >>= 2; 512 /* fall through */ 513 case PAGE_CACHE_BYPASS: 514 if ((atomctl & 0x3) == 0) { 515 HELPER(exception_cause_vaddr)(env, pc, 516 LOAD_STORE_ERROR_CAUSE, vaddr); 517 } 518 break; 519 520 case PAGE_CACHE_ISOLATE: 521 HELPER(exception_cause_vaddr)(env, pc, 522 LOAD_STORE_ERROR_CAUSE, vaddr); 523 break; 524 525 default: 526 break; 527 } 528 } 529 530 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v) 531 { 532 if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) { 533 if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) > 534 env->config->icache_ways) { 535 deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN, 536 env->config->icache_ways); 537 } 538 } 539 if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) { 540 if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) > 541 env->config->dcache_ways) { 542 deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN, 543 env->config->dcache_ways); 544 } 545 if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) > 546 env->config->dcache_ways) { 547 deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN, 548 env->config->dcache_ways); 549 } 550 } 551 env->sregs[MEMCTL] = v & env->config->memctl_mask; 552 } 553 554 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v) 555 { 556 XtensaCPU *cpu = xtensa_env_get_cpu(env); 557 558 v = (v & 0xffffff00) | 0x1; 559 if (v != env->sregs[RASID]) { 560 env->sregs[RASID] = v; 561 tlb_flush(CPU(cpu)); 562 } 563 } 564 565 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way) 566 { 567 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG]; 568 569 switch (way) { 570 case 4: 571 return (tlbcfg >> 16) & 0x3; 572 573 case 5: 574 return (tlbcfg >> 20) & 0x1; 575 576 case 6: 577 return (tlbcfg >> 24) & 0x1; 578 579 default: 580 return 0; 581 } 582 } 583 584 /*! 585 * Get bit mask for the virtual address bits translated by the TLB way 586 */ 587 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) 588 { 589 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 590 bool varway56 = dtlb ? 591 env->config->dtlb.varway56 : 592 env->config->itlb.varway56; 593 594 switch (way) { 595 case 4: 596 return 0xfff00000 << get_page_size(env, dtlb, way) * 2; 597 598 case 5: 599 if (varway56) { 600 return 0xf8000000 << get_page_size(env, dtlb, way); 601 } else { 602 return 0xf8000000; 603 } 604 605 case 6: 606 if (varway56) { 607 return 0xf0000000 << (1 - get_page_size(env, dtlb, way)); 608 } else { 609 return 0xf0000000; 610 } 611 612 default: 613 return 0xfffff000; 614 } 615 } else { 616 return REGION_PAGE_MASK; 617 } 618 } 619 620 /*! 621 * Get bit mask for the 'VPN without index' field. 622 * See ISA, 4.6.5.6, data format for RxTLB0 623 */ 624 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) 625 { 626 if (way < 4) { 627 bool is32 = (dtlb ? 628 env->config->dtlb.nrefillentries : 629 env->config->itlb.nrefillentries) == 32; 630 return is32 ? 0xffff8000 : 0xffffc000; 631 } else if (way == 4) { 632 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2; 633 } else if (way <= 6) { 634 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way); 635 bool varway56 = dtlb ? 636 env->config->dtlb.varway56 : 637 env->config->itlb.varway56; 638 639 if (varway56) { 640 return mask << (way == 5 ? 2 : 3); 641 } else { 642 return mask << 1; 643 } 644 } else { 645 return 0xfffff000; 646 } 647 } 648 649 /*! 650 * Split virtual address into VPN (with index) and entry index 651 * for the given TLB way 652 */ 653 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb, 654 uint32_t *vpn, uint32_t wi, uint32_t *ei) 655 { 656 bool varway56 = dtlb ? 657 env->config->dtlb.varway56 : 658 env->config->itlb.varway56; 659 660 if (!dtlb) { 661 wi &= 7; 662 } 663 664 if (wi < 4) { 665 bool is32 = (dtlb ? 666 env->config->dtlb.nrefillentries : 667 env->config->itlb.nrefillentries) == 32; 668 *ei = (v >> 12) & (is32 ? 0x7 : 0x3); 669 } else { 670 switch (wi) { 671 case 4: 672 { 673 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2; 674 *ei = (v >> eibase) & 0x3; 675 } 676 break; 677 678 case 5: 679 if (varway56) { 680 uint32_t eibase = 27 + get_page_size(env, dtlb, wi); 681 *ei = (v >> eibase) & 0x3; 682 } else { 683 *ei = (v >> 27) & 0x1; 684 } 685 break; 686 687 case 6: 688 if (varway56) { 689 uint32_t eibase = 29 - get_page_size(env, dtlb, wi); 690 *ei = (v >> eibase) & 0x7; 691 } else { 692 *ei = (v >> 28) & 0x1; 693 } 694 break; 695 696 default: 697 *ei = 0; 698 break; 699 } 700 } 701 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi); 702 } 703 704 /*! 705 * Split TLB address into TLB way, entry index and VPN (with index). 706 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format 707 */ 708 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb, 709 uint32_t *vpn, uint32_t *wi, uint32_t *ei) 710 { 711 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 712 *wi = v & (dtlb ? 0xf : 0x7); 713 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei); 714 } else { 715 *vpn = v & REGION_PAGE_MASK; 716 *wi = 0; 717 *ei = (v >> 29) & 0x7; 718 } 719 } 720 721 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env, 722 uint32_t v, bool dtlb, uint32_t *pwi) 723 { 724 uint32_t vpn; 725 uint32_t wi; 726 uint32_t ei; 727 728 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei); 729 if (pwi) { 730 *pwi = wi; 731 } 732 return xtensa_tlb_get_entry(env, dtlb, wi, ei); 733 } 734 735 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 736 { 737 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 738 uint32_t wi; 739 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); 740 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid; 741 } else { 742 return v & REGION_PAGE_MASK; 743 } 744 } 745 746 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 747 { 748 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL); 749 return entry->paddr | entry->attr; 750 } 751 752 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 753 { 754 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 755 uint32_t wi; 756 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); 757 if (entry->variable && entry->asid) { 758 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr); 759 entry->asid = 0; 760 } 761 } 762 } 763 764 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 765 { 766 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 767 uint32_t wi; 768 uint32_t ei; 769 uint8_t ring; 770 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring); 771 772 switch (res) { 773 case 0: 774 if (ring >= xtensa_get_ring(env)) { 775 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8); 776 } 777 break; 778 779 case INST_TLB_MULTI_HIT_CAUSE: 780 case LOAD_STORE_TLB_MULTI_HIT_CAUSE: 781 HELPER(exception_cause_vaddr)(env, env->pc, res, v); 782 break; 783 } 784 return 0; 785 } else { 786 return (v & REGION_PAGE_MASK) | 0x1; 787 } 788 } 789 790 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env, 791 xtensa_tlb_entry *entry, bool dtlb, 792 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) 793 { 794 entry->vaddr = vpn; 795 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi); 796 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff; 797 entry->attr = pte & 0xf; 798 } 799 800 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb, 801 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) 802 { 803 XtensaCPU *cpu = xtensa_env_get_cpu(env); 804 CPUState *cs = CPU(cpu); 805 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); 806 807 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 808 if (entry->variable) { 809 if (entry->asid) { 810 tlb_flush_page(cs, entry->vaddr); 811 } 812 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte); 813 tlb_flush_page(cs, entry->vaddr); 814 } else { 815 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n", 816 __func__, dtlb, wi, ei); 817 } 818 } else { 819 tlb_flush_page(cs, entry->vaddr); 820 if (xtensa_option_enabled(env->config, 821 XTENSA_OPTION_REGION_TRANSLATION)) { 822 entry->paddr = pte & REGION_PAGE_MASK; 823 } 824 entry->attr = pte & 0xf; 825 } 826 } 827 828 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb) 829 { 830 uint32_t vpn; 831 uint32_t wi; 832 uint32_t ei; 833 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei); 834 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p); 835 } 836 837 838 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v) 839 { 840 uint32_t change = v ^ env->sregs[IBREAKENABLE]; 841 unsigned i; 842 843 for (i = 0; i < env->config->nibreak; ++i) { 844 if (change & (1 << i)) { 845 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]); 846 } 847 } 848 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1); 849 } 850 851 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v) 852 { 853 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) { 854 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]); 855 tb_invalidate_virtual_addr(env, v); 856 } 857 env->sregs[IBREAKA + i] = v; 858 } 859 860 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka, 861 uint32_t dbreakc) 862 { 863 CPUState *cs = CPU(xtensa_env_get_cpu(env)); 864 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 865 uint32_t mask = dbreakc | ~DBREAKC_MASK; 866 867 if (env->cpu_watchpoint[i]) { 868 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]); 869 } 870 if (dbreakc & DBREAKC_SB) { 871 flags |= BP_MEM_WRITE; 872 } 873 if (dbreakc & DBREAKC_LB) { 874 flags |= BP_MEM_READ; 875 } 876 /* contiguous mask after inversion is one less than some power of 2 */ 877 if ((~mask + 1) & ~mask) { 878 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc); 879 /* cut mask after the first zero bit */ 880 mask = 0xffffffff << (32 - clo32(mask)); 881 } 882 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1, 883 flags, &env->cpu_watchpoint[i])) { 884 env->cpu_watchpoint[i] = NULL; 885 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n", 886 dbreaka & mask, ~mask + 1); 887 } 888 } 889 890 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v) 891 { 892 uint32_t dbreakc = env->sregs[DBREAKC + i]; 893 894 if ((dbreakc & DBREAKC_SB_LB) && 895 env->sregs[DBREAKA + i] != v) { 896 set_dbreak(env, i, v, dbreakc); 897 } 898 env->sregs[DBREAKA + i] = v; 899 } 900 901 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v) 902 { 903 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) { 904 if (v & DBREAKC_SB_LB) { 905 set_dbreak(env, i, env->sregs[DBREAKA + i], v); 906 } else { 907 if (env->cpu_watchpoint[i]) { 908 CPUState *cs = CPU(xtensa_env_get_cpu(env)); 909 910 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]); 911 env->cpu_watchpoint[i] = NULL; 912 } 913 } 914 } 915 env->sregs[DBREAKC + i] = v; 916 } 917 #endif 918 919 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v) 920 { 921 static const int rounding_mode[] = { 922 float_round_nearest_even, 923 float_round_to_zero, 924 float_round_up, 925 float_round_down, 926 }; 927 928 env->uregs[FCR] = v & 0xfffff07f; 929 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status); 930 } 931 932 float32 HELPER(abs_s)(float32 v) 933 { 934 return float32_abs(v); 935 } 936 937 float32 HELPER(neg_s)(float32 v) 938 { 939 return float32_chs(v); 940 } 941 942 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b) 943 { 944 return float32_add(a, b, &env->fp_status); 945 } 946 947 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b) 948 { 949 return float32_sub(a, b, &env->fp_status); 950 } 951 952 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b) 953 { 954 return float32_mul(a, b, &env->fp_status); 955 } 956 957 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c) 958 { 959 return float32_muladd(b, c, a, 0, 960 &env->fp_status); 961 } 962 963 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c) 964 { 965 return float32_muladd(b, c, a, float_muladd_negate_product, 966 &env->fp_status); 967 } 968 969 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale) 970 { 971 float_status fp_status = {0}; 972 973 set_float_rounding_mode(rounding_mode, &fp_status); 974 return float32_to_int32( 975 float32_scalbn(v, scale, &fp_status), &fp_status); 976 } 977 978 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale) 979 { 980 float_status fp_status = {0}; 981 float32 res; 982 983 set_float_rounding_mode(rounding_mode, &fp_status); 984 985 res = float32_scalbn(v, scale, &fp_status); 986 987 if (float32_is_neg(v) && !float32_is_any_nan(v)) { 988 return float32_to_int32(res, &fp_status); 989 } else { 990 return float32_to_uint32(res, &fp_status); 991 } 992 } 993 994 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale) 995 { 996 return float32_scalbn(int32_to_float32(v, &env->fp_status), 997 (int32_t)scale, &env->fp_status); 998 } 999 1000 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale) 1001 { 1002 return float32_scalbn(uint32_to_float32(v, &env->fp_status), 1003 (int32_t)scale, &env->fp_status); 1004 } 1005 1006 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br) 1007 { 1008 if (v) { 1009 env->sregs[BR] |= br; 1010 } else { 1011 env->sregs[BR] &= ~br; 1012 } 1013 } 1014 1015 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1016 { 1017 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br); 1018 } 1019 1020 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1021 { 1022 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br); 1023 } 1024 1025 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1026 { 1027 int v = float32_compare_quiet(a, b, &env->fp_status); 1028 set_br(env, v == float_relation_equal || v == float_relation_unordered, br); 1029 } 1030 1031 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1032 { 1033 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br); 1034 } 1035 1036 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1037 { 1038 int v = float32_compare_quiet(a, b, &env->fp_status); 1039 set_br(env, v == float_relation_less || v == float_relation_unordered, br); 1040 } 1041 1042 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1043 { 1044 set_br(env, float32_le_quiet(a, b, &env->fp_status), br); 1045 } 1046 1047 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1048 { 1049 int v = float32_compare_quiet(a, b, &env->fp_status); 1050 set_br(env, v != float_relation_greater, br); 1051 } 1052 1053 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr) 1054 { 1055 #ifndef CONFIG_USER_ONLY 1056 return address_space_ldl(env->address_space_er, addr, 1057 MEMTXATTRS_UNSPECIFIED, NULL); 1058 #else 1059 return 0; 1060 #endif 1061 } 1062 1063 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr) 1064 { 1065 #ifndef CONFIG_USER_ONLY 1066 address_space_stl(env->address_space_er, addr, data, 1067 MEMTXATTRS_UNSPECIFIED, NULL); 1068 #endif 1069 } 1070