xref: /openbmc/qemu/target/xtensa/op_helper.c (revision b7d89466)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "cpu.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "exec/cpu_ldst.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/timer.h"
37 #include "fpu/softfloat.h"
38 
39 #ifndef CONFIG_USER_ONLY
40 
41 void xtensa_cpu_do_unaligned_access(CPUState *cs,
42         vaddr addr, MMUAccessType access_type,
43         int mmu_idx, uintptr_t retaddr)
44 {
45     XtensaCPU *cpu = XTENSA_CPU(cs);
46     CPUXtensaState *env = &cpu->env;
47 
48     if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
49             !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
50         cpu_restore_state(CPU(cpu), retaddr, true);
51         HELPER(exception_cause_vaddr)(env,
52                 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
53     }
54 }
55 
56 void tlb_fill(CPUState *cs, target_ulong vaddr, int size,
57               MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
58 {
59     XtensaCPU *cpu = XTENSA_CPU(cs);
60     CPUXtensaState *env = &cpu->env;
61     uint32_t paddr;
62     uint32_t page_size;
63     unsigned access;
64     int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
65             &paddr, &page_size, &access);
66 
67     qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
68                   __func__, vaddr, access_type, mmu_idx, paddr, ret);
69 
70     if (ret == 0) {
71         tlb_set_page(cs,
72                      vaddr & TARGET_PAGE_MASK,
73                      paddr & TARGET_PAGE_MASK,
74                      access, mmu_idx, page_size);
75     } else {
76         cpu_restore_state(cs, retaddr, true);
77         HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
78     }
79 }
80 
81 void xtensa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
82                                       unsigned size, MMUAccessType access_type,
83                                       int mmu_idx, MemTxAttrs attrs,
84                                       MemTxResult response, uintptr_t retaddr)
85 {
86     XtensaCPU *cpu = XTENSA_CPU(cs);
87     CPUXtensaState *env = &cpu->env;
88 
89     cpu_restore_state(cs, retaddr, true);
90     HELPER(exception_cause_vaddr)(env, env->pc,
91                                   access_type == MMU_INST_FETCH ?
92                                   INSTR_PIF_ADDR_ERROR_CAUSE :
93                                   LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
94                                   addr);
95 }
96 
97 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
98 {
99     uint32_t paddr;
100     uint32_t page_size;
101     unsigned access;
102     int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
103             &paddr, &page_size, &access);
104     if (ret == 0) {
105         tb_invalidate_phys_addr(&address_space_memory, paddr,
106                                 MEMTXATTRS_UNSPECIFIED);
107     }
108 }
109 
110 #else
111 
112 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
113 {
114     tb_invalidate_phys_addr(vaddr);
115 }
116 
117 #endif
118 
119 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
120 {
121     CPUState *cs = CPU(xtensa_env_get_cpu(env));
122 
123     cs->exception_index = excp;
124     if (excp == EXCP_YIELD) {
125         env->yield_needed = 0;
126     }
127     if (excp == EXCP_DEBUG) {
128         env->exception_taken = 0;
129     }
130     cpu_loop_exit(cs);
131 }
132 
133 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
134 {
135     uint32_t vector;
136 
137     env->pc = pc;
138     if (env->sregs[PS] & PS_EXCM) {
139         if (env->config->ndepc) {
140             env->sregs[DEPC] = pc;
141         } else {
142             env->sregs[EPC1] = pc;
143         }
144         vector = EXC_DOUBLE;
145     } else {
146         env->sregs[EPC1] = pc;
147         vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
148     }
149 
150     env->sregs[EXCCAUSE] = cause;
151     env->sregs[PS] |= PS_EXCM;
152 
153     HELPER(exception)(env, vector);
154 }
155 
156 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
157         uint32_t pc, uint32_t cause, uint32_t vaddr)
158 {
159     env->sregs[EXCVADDR] = vaddr;
160     HELPER(exception_cause)(env, pc, cause);
161 }
162 
163 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
164 {
165     if (xtensa_get_cintlevel(env) < env->config->debug_level) {
166         HELPER(debug_exception)(env, env->pc, cause);
167     }
168 }
169 
170 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
171 {
172     unsigned level = env->config->debug_level;
173 
174     env->pc = pc;
175     env->sregs[DEBUGCAUSE] = cause;
176     env->sregs[EPC1 + level - 1] = pc;
177     env->sregs[EPS2 + level - 2] = env->sregs[PS];
178     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
179         (level << PS_INTLEVEL_SHIFT);
180     HELPER(exception)(env, EXC_DEBUG);
181 }
182 
183 static void copy_window_from_phys(CPUXtensaState *env,
184         uint32_t window, uint32_t phys, uint32_t n)
185 {
186     assert(phys < env->config->nareg);
187     if (phys + n <= env->config->nareg) {
188         memcpy(env->regs + window, env->phys_regs + phys,
189                 n * sizeof(uint32_t));
190     } else {
191         uint32_t n1 = env->config->nareg - phys;
192         memcpy(env->regs + window, env->phys_regs + phys,
193                 n1 * sizeof(uint32_t));
194         memcpy(env->regs + window + n1, env->phys_regs,
195                 (n - n1) * sizeof(uint32_t));
196     }
197 }
198 
199 static void copy_phys_from_window(CPUXtensaState *env,
200         uint32_t phys, uint32_t window, uint32_t n)
201 {
202     assert(phys < env->config->nareg);
203     if (phys + n <= env->config->nareg) {
204         memcpy(env->phys_regs + phys, env->regs + window,
205                 n * sizeof(uint32_t));
206     } else {
207         uint32_t n1 = env->config->nareg - phys;
208         memcpy(env->phys_regs + phys, env->regs + window,
209                 n1 * sizeof(uint32_t));
210         memcpy(env->phys_regs, env->regs + window + n1,
211                 (n - n1) * sizeof(uint32_t));
212     }
213 }
214 
215 
216 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
217 {
218     return a & (env->config->nareg / 4 - 1);
219 }
220 
221 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
222 {
223     return 1 << windowbase_bound(a, env);
224 }
225 
226 void xtensa_sync_window_from_phys(CPUXtensaState *env)
227 {
228     copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
229 }
230 
231 void xtensa_sync_phys_from_window(CPUXtensaState *env)
232 {
233     copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
234 }
235 
236 static void xtensa_rotate_window_abs(CPUXtensaState *env, uint32_t position)
237 {
238     xtensa_sync_phys_from_window(env);
239     env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
240     xtensa_sync_window_from_phys(env);
241 }
242 
243 void xtensa_rotate_window(CPUXtensaState *env, uint32_t delta)
244 {
245     xtensa_rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
246 }
247 
248 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
249 {
250     xtensa_rotate_window_abs(env, v);
251 }
252 
253 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
254 {
255     int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
256 
257     env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - imm;
258     xtensa_rotate_window(env, callinc);
259     env->sregs[WINDOW_START] |=
260         windowstart_bit(env->sregs[WINDOW_BASE], env);
261 }
262 
263 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
264 {
265     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
266     uint32_t windowstart = xtensa_replicate_windowstart(env) >>
267         (env->sregs[WINDOW_BASE] + 1);
268     uint32_t n = ctz32(windowstart) + 1;
269 
270     assert(n <= w);
271 
272     xtensa_rotate_window(env, n);
273     env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
274         (windowbase << PS_OWB_SHIFT) | PS_EXCM;
275     env->sregs[EPC1] = env->pc = pc;
276 
277     switch (ctz32(windowstart >> n)) {
278     case 0:
279         HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
280         break;
281     case 1:
282         HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
283         break;
284     default:
285         HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
286         break;
287     }
288 }
289 
290 void HELPER(test_ill_retw)(CPUXtensaState *env, uint32_t pc)
291 {
292     int n = (env->regs[0] >> 30) & 0x3;
293     int m = 0;
294     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
295     uint32_t windowstart = env->sregs[WINDOW_START];
296 
297     if (windowstart & windowstart_bit(windowbase - 1, env)) {
298         m = 1;
299     } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
300         m = 2;
301     } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
302         m = 3;
303     }
304 
305     if (n == 0 || (m != 0 && m != n)) {
306         qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
307                       "PS = %08x, m = %d, n = %d\n",
308                       pc, env->sregs[PS], m, n);
309         HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
310     }
311 }
312 
313 void HELPER(test_underflow_retw)(CPUXtensaState *env, uint32_t pc)
314 {
315     int n = (env->regs[0] >> 30) & 0x3;
316 
317     if (!(env->sregs[WINDOW_START] &
318           windowstart_bit(env->sregs[WINDOW_BASE] - n, env))) {
319         uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
320 
321         xtensa_rotate_window(env, -n);
322         /* window underflow */
323         env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
324             (windowbase << PS_OWB_SHIFT) | PS_EXCM;
325         env->sregs[EPC1] = env->pc = pc;
326 
327         if (n == 1) {
328             HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
329         } else if (n == 2) {
330             HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
331         } else if (n == 3) {
332             HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
333         }
334     }
335 }
336 
337 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
338 {
339     int n = (env->regs[0] >> 30) & 0x3;
340     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
341     uint32_t ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
342 
343     xtensa_rotate_window(env, -n);
344     env->sregs[WINDOW_START] &= ~windowstart_bit(windowbase, env);
345     return ret_pc;
346 }
347 
348 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
349 {
350     xtensa_rotate_window(env, imm4);
351 }
352 
353 void xtensa_restore_owb(CPUXtensaState *env)
354 {
355     xtensa_rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
356 }
357 
358 void HELPER(restore_owb)(CPUXtensaState *env)
359 {
360     xtensa_restore_owb(env);
361 }
362 
363 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
364 {
365     if ((env->sregs[WINDOW_START] &
366             (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
367              windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
368              windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
369         HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
370     }
371 }
372 
373 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
374 {
375     if (env->sregs[LBEG] != v) {
376         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
377         env->sregs[LBEG] = v;
378     }
379 }
380 
381 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
382 {
383     if (env->sregs[LEND] != v) {
384         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
385         env->sregs[LEND] = v;
386         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
387     }
388 }
389 
390 void HELPER(dump_state)(CPUXtensaState *env)
391 {
392     XtensaCPU *cpu = xtensa_env_get_cpu(env);
393 
394     cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
395 }
396 
397 #ifndef CONFIG_USER_ONLY
398 
399 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
400 {
401     CPUState *cpu;
402 
403     env->pc = pc;
404     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
405         (intlevel << PS_INTLEVEL_SHIFT);
406 
407     qemu_mutex_lock_iothread();
408     check_interrupts(env);
409     qemu_mutex_unlock_iothread();
410 
411     if (env->pending_irq_level) {
412         cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
413         return;
414     }
415 
416     cpu = CPU(xtensa_env_get_cpu(env));
417     cpu->halted = 1;
418     HELPER(exception)(env, EXCP_HLT);
419 }
420 
421 void HELPER(update_ccount)(CPUXtensaState *env)
422 {
423     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
424 
425     env->ccount_time = now;
426     env->sregs[CCOUNT] = env->ccount_base +
427         (uint32_t)((now - env->time_base) *
428                    env->config->clock_freq_khz / 1000000);
429 }
430 
431 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
432 {
433     int i;
434 
435     HELPER(update_ccount)(env);
436     env->ccount_base += v - env->sregs[CCOUNT];
437     for (i = 0; i < env->config->nccompare; ++i) {
438         HELPER(update_ccompare)(env, i);
439     }
440 }
441 
442 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
443 {
444     uint64_t dcc;
445 
446     HELPER(update_ccount)(env);
447     dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
448     timer_mod(env->ccompare[i].timer,
449               env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
450     env->yield_needed = 1;
451 }
452 
453 void HELPER(check_interrupts)(CPUXtensaState *env)
454 {
455     qemu_mutex_lock_iothread();
456     check_interrupts(env);
457     qemu_mutex_unlock_iothread();
458 }
459 
460 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
461 {
462     /*
463      * Attempt the memory load; we don't care about the result but
464      * only the side-effects (ie any MMU or other exception)
465      */
466     cpu_ldub_code_ra(env, vaddr, GETPC());
467 }
468 
469 /*!
470  * Check vaddr accessibility/cache attributes and raise an exception if
471  * specified by the ATOMCTL SR.
472  *
473  * Note: local memory exclusion is not implemented
474  */
475 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
476 {
477     uint32_t paddr, page_size, access;
478     uint32_t atomctl = env->sregs[ATOMCTL];
479     int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
480             xtensa_get_cring(env), &paddr, &page_size, &access);
481 
482     /*
483      * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
484      * see opcode description in the ISA
485      */
486     if (rc == 0 &&
487             (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
488         rc = STORE_PROHIBITED_CAUSE;
489     }
490 
491     if (rc) {
492         HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
493     }
494 
495     /*
496      * When data cache is not configured use ATOMCTL bypass field.
497      * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
498      * under the Conditional Store Option.
499      */
500     if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
501         access = PAGE_CACHE_BYPASS;
502     }
503 
504     switch (access & PAGE_CACHE_MASK) {
505     case PAGE_CACHE_WB:
506         atomctl >>= 2;
507         /* fall through */
508     case PAGE_CACHE_WT:
509         atomctl >>= 2;
510         /* fall through */
511     case PAGE_CACHE_BYPASS:
512         if ((atomctl & 0x3) == 0) {
513             HELPER(exception_cause_vaddr)(env, pc,
514                     LOAD_STORE_ERROR_CAUSE, vaddr);
515         }
516         break;
517 
518     case PAGE_CACHE_ISOLATE:
519         HELPER(exception_cause_vaddr)(env, pc,
520                 LOAD_STORE_ERROR_CAUSE, vaddr);
521         break;
522 
523     default:
524         break;
525     }
526 }
527 
528 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
529 {
530     if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
531         if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
532             env->config->icache_ways) {
533             deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
534                       env->config->icache_ways);
535         }
536     }
537     if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
538         if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
539             env->config->dcache_ways) {
540             deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
541                       env->config->dcache_ways);
542         }
543         if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
544             env->config->dcache_ways) {
545             deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
546                       env->config->dcache_ways);
547         }
548     }
549     env->sregs[MEMCTL] = v & env->config->memctl_mask;
550 }
551 
552 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
553 {
554     XtensaCPU *cpu = xtensa_env_get_cpu(env);
555 
556     v = (v & 0xffffff00) | 0x1;
557     if (v != env->sregs[RASID]) {
558         env->sregs[RASID] = v;
559         tlb_flush(CPU(cpu));
560     }
561 }
562 
563 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
564 {
565     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
566 
567     switch (way) {
568     case 4:
569         return (tlbcfg >> 16) & 0x3;
570 
571     case 5:
572         return (tlbcfg >> 20) & 0x1;
573 
574     case 6:
575         return (tlbcfg >> 24) & 0x1;
576 
577     default:
578         return 0;
579     }
580 }
581 
582 /*!
583  * Get bit mask for the virtual address bits translated by the TLB way
584  */
585 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
586 {
587     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
588         bool varway56 = dtlb ?
589             env->config->dtlb.varway56 :
590             env->config->itlb.varway56;
591 
592         switch (way) {
593         case 4:
594             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
595 
596         case 5:
597             if (varway56) {
598                 return 0xf8000000 << get_page_size(env, dtlb, way);
599             } else {
600                 return 0xf8000000;
601             }
602 
603         case 6:
604             if (varway56) {
605                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
606             } else {
607                 return 0xf0000000;
608             }
609 
610         default:
611             return 0xfffff000;
612         }
613     } else {
614         return REGION_PAGE_MASK;
615     }
616 }
617 
618 /*!
619  * Get bit mask for the 'VPN without index' field.
620  * See ISA, 4.6.5.6, data format for RxTLB0
621  */
622 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
623 {
624     if (way < 4) {
625         bool is32 = (dtlb ?
626                 env->config->dtlb.nrefillentries :
627                 env->config->itlb.nrefillentries) == 32;
628         return is32 ? 0xffff8000 : 0xffffc000;
629     } else if (way == 4) {
630         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
631     } else if (way <= 6) {
632         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
633         bool varway56 = dtlb ?
634             env->config->dtlb.varway56 :
635             env->config->itlb.varway56;
636 
637         if (varway56) {
638             return mask << (way == 5 ? 2 : 3);
639         } else {
640             return mask << 1;
641         }
642     } else {
643         return 0xfffff000;
644     }
645 }
646 
647 /*!
648  * Split virtual address into VPN (with index) and entry index
649  * for the given TLB way
650  */
651 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
652         uint32_t *vpn, uint32_t wi, uint32_t *ei)
653 {
654     bool varway56 = dtlb ?
655         env->config->dtlb.varway56 :
656         env->config->itlb.varway56;
657 
658     if (!dtlb) {
659         wi &= 7;
660     }
661 
662     if (wi < 4) {
663         bool is32 = (dtlb ?
664                 env->config->dtlb.nrefillentries :
665                 env->config->itlb.nrefillentries) == 32;
666         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
667     } else {
668         switch (wi) {
669         case 4:
670             {
671                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
672                 *ei = (v >> eibase) & 0x3;
673             }
674             break;
675 
676         case 5:
677             if (varway56) {
678                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
679                 *ei = (v >> eibase) & 0x3;
680             } else {
681                 *ei = (v >> 27) & 0x1;
682             }
683             break;
684 
685         case 6:
686             if (varway56) {
687                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
688                 *ei = (v >> eibase) & 0x7;
689             } else {
690                 *ei = (v >> 28) & 0x1;
691             }
692             break;
693 
694         default:
695             *ei = 0;
696             break;
697         }
698     }
699     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
700 }
701 
702 /*!
703  * Split TLB address into TLB way, entry index and VPN (with index).
704  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
705  */
706 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
707         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
708 {
709     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
710         *wi = v & (dtlb ? 0xf : 0x7);
711         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
712     } else {
713         *vpn = v & REGION_PAGE_MASK;
714         *wi = 0;
715         *ei = (v >> 29) & 0x7;
716     }
717 }
718 
719 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
720         uint32_t v, bool dtlb, uint32_t *pwi)
721 {
722     uint32_t vpn;
723     uint32_t wi;
724     uint32_t ei;
725 
726     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
727     if (pwi) {
728         *pwi = wi;
729     }
730     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
731 }
732 
733 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
734 {
735     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
736         uint32_t wi;
737         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
738         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
739     } else {
740         return v & REGION_PAGE_MASK;
741     }
742 }
743 
744 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
745 {
746     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
747     return entry->paddr | entry->attr;
748 }
749 
750 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
751 {
752     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
753         uint32_t wi;
754         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
755         if (entry->variable && entry->asid) {
756             tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
757             entry->asid = 0;
758         }
759     }
760 }
761 
762 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
763 {
764     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
765         uint32_t wi;
766         uint32_t ei;
767         uint8_t ring;
768         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
769 
770         switch (res) {
771         case 0:
772             if (ring >= xtensa_get_ring(env)) {
773                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
774             }
775             break;
776 
777         case INST_TLB_MULTI_HIT_CAUSE:
778         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
779             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
780             break;
781         }
782         return 0;
783     } else {
784         return (v & REGION_PAGE_MASK) | 0x1;
785     }
786 }
787 
788 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
789         xtensa_tlb_entry *entry, bool dtlb,
790         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
791 {
792     entry->vaddr = vpn;
793     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
794     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
795     entry->attr = pte & 0xf;
796 }
797 
798 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
799         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
800 {
801     XtensaCPU *cpu = xtensa_env_get_cpu(env);
802     CPUState *cs = CPU(cpu);
803     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
804 
805     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
806         if (entry->variable) {
807             if (entry->asid) {
808                 tlb_flush_page(cs, entry->vaddr);
809             }
810             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
811             tlb_flush_page(cs, entry->vaddr);
812         } else {
813             qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
814                           __func__, dtlb, wi, ei);
815         }
816     } else {
817         tlb_flush_page(cs, entry->vaddr);
818         if (xtensa_option_enabled(env->config,
819                     XTENSA_OPTION_REGION_TRANSLATION)) {
820             entry->paddr = pte & REGION_PAGE_MASK;
821         }
822         entry->attr = pte & 0xf;
823     }
824 }
825 
826 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
827 {
828     uint32_t vpn;
829     uint32_t wi;
830     uint32_t ei;
831     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
832     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
833 }
834 
835 
836 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
837 {
838     uint32_t change = v ^ env->sregs[IBREAKENABLE];
839     unsigned i;
840 
841     for (i = 0; i < env->config->nibreak; ++i) {
842         if (change & (1 << i)) {
843             tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
844         }
845     }
846     env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
847 }
848 
849 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
850 {
851     if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
852         tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
853         tb_invalidate_virtual_addr(env, v);
854     }
855     env->sregs[IBREAKA + i] = v;
856 }
857 
858 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
859         uint32_t dbreakc)
860 {
861     CPUState *cs = CPU(xtensa_env_get_cpu(env));
862     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
863     uint32_t mask = dbreakc | ~DBREAKC_MASK;
864 
865     if (env->cpu_watchpoint[i]) {
866         cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
867     }
868     if (dbreakc & DBREAKC_SB) {
869         flags |= BP_MEM_WRITE;
870     }
871     if (dbreakc & DBREAKC_LB) {
872         flags |= BP_MEM_READ;
873     }
874     /* contiguous mask after inversion is one less than some power of 2 */
875     if ((~mask + 1) & ~mask) {
876         qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
877         /* cut mask after the first zero bit */
878         mask = 0xffffffff << (32 - clo32(mask));
879     }
880     if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
881             flags, &env->cpu_watchpoint[i])) {
882         env->cpu_watchpoint[i] = NULL;
883         qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
884                       dbreaka & mask, ~mask + 1);
885     }
886 }
887 
888 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
889 {
890     uint32_t dbreakc = env->sregs[DBREAKC + i];
891 
892     if ((dbreakc & DBREAKC_SB_LB) &&
893             env->sregs[DBREAKA + i] != v) {
894         set_dbreak(env, i, v, dbreakc);
895     }
896     env->sregs[DBREAKA + i] = v;
897 }
898 
899 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
900 {
901     if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
902         if (v & DBREAKC_SB_LB) {
903             set_dbreak(env, i, env->sregs[DBREAKA + i], v);
904         } else {
905             if (env->cpu_watchpoint[i]) {
906                 CPUState *cs = CPU(xtensa_env_get_cpu(env));
907 
908                 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
909                 env->cpu_watchpoint[i] = NULL;
910             }
911         }
912     }
913     env->sregs[DBREAKC + i] = v;
914 }
915 #endif
916 
917 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
918 {
919     static const int rounding_mode[] = {
920         float_round_nearest_even,
921         float_round_to_zero,
922         float_round_up,
923         float_round_down,
924     };
925 
926     env->uregs[FCR] = v & 0xfffff07f;
927     set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
928 }
929 
930 float32 HELPER(abs_s)(float32 v)
931 {
932     return float32_abs(v);
933 }
934 
935 float32 HELPER(neg_s)(float32 v)
936 {
937     return float32_chs(v);
938 }
939 
940 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
941 {
942     return float32_add(a, b, &env->fp_status);
943 }
944 
945 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
946 {
947     return float32_sub(a, b, &env->fp_status);
948 }
949 
950 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
951 {
952     return float32_mul(a, b, &env->fp_status);
953 }
954 
955 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
956 {
957     return float32_muladd(b, c, a, 0,
958             &env->fp_status);
959 }
960 
961 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
962 {
963     return float32_muladd(b, c, a, float_muladd_negate_product,
964             &env->fp_status);
965 }
966 
967 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
968 {
969     float_status fp_status = {0};
970 
971     set_float_rounding_mode(rounding_mode, &fp_status);
972     return float32_to_int32(
973             float32_scalbn(v, scale, &fp_status), &fp_status);
974 }
975 
976 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
977 {
978     float_status fp_status = {0};
979     float32 res;
980 
981     set_float_rounding_mode(rounding_mode, &fp_status);
982 
983     res = float32_scalbn(v, scale, &fp_status);
984 
985     if (float32_is_neg(v) && !float32_is_any_nan(v)) {
986         return float32_to_int32(res, &fp_status);
987     } else {
988         return float32_to_uint32(res, &fp_status);
989     }
990 }
991 
992 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
993 {
994     return float32_scalbn(int32_to_float32(v, &env->fp_status),
995             (int32_t)scale, &env->fp_status);
996 }
997 
998 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
999 {
1000     return float32_scalbn(uint32_to_float32(v, &env->fp_status),
1001             (int32_t)scale, &env->fp_status);
1002 }
1003 
1004 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
1005 {
1006     if (v) {
1007         env->sregs[BR] |= br;
1008     } else {
1009         env->sregs[BR] &= ~br;
1010     }
1011 }
1012 
1013 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1014 {
1015     set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
1016 }
1017 
1018 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1019 {
1020     set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
1021 }
1022 
1023 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1024 {
1025     int v = float32_compare_quiet(a, b, &env->fp_status);
1026     set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
1027 }
1028 
1029 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1030 {
1031     set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
1032 }
1033 
1034 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1035 {
1036     int v = float32_compare_quiet(a, b, &env->fp_status);
1037     set_br(env, v == float_relation_less || v == float_relation_unordered, br);
1038 }
1039 
1040 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1041 {
1042     set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
1043 }
1044 
1045 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1046 {
1047     int v = float32_compare_quiet(a, b, &env->fp_status);
1048     set_br(env, v != float_relation_greater, br);
1049 }
1050 
1051 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
1052 {
1053 #ifndef CONFIG_USER_ONLY
1054     return address_space_ldl(env->address_space_er, addr,
1055                              MEMTXATTRS_UNSPECIFIED, NULL);
1056 #else
1057     return 0;
1058 #endif
1059 }
1060 
1061 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
1062 {
1063 #ifndef CONFIG_USER_ONLY
1064     address_space_stl(env->address_space_er, addr, data,
1065                       MEMTXATTRS_UNSPECIFIED, NULL);
1066 #endif
1067 }
1068