1 /* 2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * * Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * * Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * * Neither the name of the Open Source and Linux Lab nor the 13 * names of its contributors may be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "qemu/main-loop.h" 30 #include "cpu.h" 31 #include "exec/helper-proto.h" 32 #include "qemu/host-utils.h" 33 #include "exec/exec-all.h" 34 #include "exec/cpu_ldst.h" 35 #include "exec/address-spaces.h" 36 #include "qemu/timer.h" 37 38 void xtensa_cpu_do_unaligned_access(CPUState *cs, 39 vaddr addr, MMUAccessType access_type, 40 int mmu_idx, uintptr_t retaddr) 41 { 42 XtensaCPU *cpu = XTENSA_CPU(cs); 43 CPUXtensaState *env = &cpu->env; 44 45 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) && 46 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) { 47 cpu_restore_state(CPU(cpu), retaddr); 48 HELPER(exception_cause_vaddr)(env, 49 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr); 50 } 51 } 52 53 void tlb_fill(CPUState *cs, target_ulong vaddr, MMUAccessType access_type, 54 int mmu_idx, uintptr_t retaddr) 55 { 56 XtensaCPU *cpu = XTENSA_CPU(cs); 57 CPUXtensaState *env = &cpu->env; 58 uint32_t paddr; 59 uint32_t page_size; 60 unsigned access; 61 int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx, 62 &paddr, &page_size, &access); 63 64 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n", 65 __func__, vaddr, access_type, mmu_idx, paddr, ret); 66 67 if (ret == 0) { 68 tlb_set_page(cs, 69 vaddr & TARGET_PAGE_MASK, 70 paddr & TARGET_PAGE_MASK, 71 access, mmu_idx, page_size); 72 } else { 73 cpu_restore_state(cs, retaddr); 74 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr); 75 } 76 } 77 78 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr, 79 bool is_write, bool is_exec, int opaque, 80 unsigned size) 81 { 82 XtensaCPU *cpu = XTENSA_CPU(cs); 83 CPUXtensaState *env = &cpu->env; 84 85 HELPER(exception_cause_vaddr)(env, env->pc, 86 is_exec ? 87 INSTR_PIF_ADDR_ERROR_CAUSE : 88 LOAD_STORE_PIF_ADDR_ERROR_CAUSE, 89 is_exec ? addr : cs->mem_io_vaddr); 90 } 91 92 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr) 93 { 94 uint32_t paddr; 95 uint32_t page_size; 96 unsigned access; 97 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0, 98 &paddr, &page_size, &access); 99 if (ret == 0) { 100 tb_invalidate_phys_addr(&address_space_memory, paddr); 101 } 102 } 103 104 void HELPER(exception)(CPUXtensaState *env, uint32_t excp) 105 { 106 CPUState *cs = CPU(xtensa_env_get_cpu(env)); 107 108 cs->exception_index = excp; 109 if (excp == EXCP_YIELD) { 110 env->yield_needed = 0; 111 } 112 if (excp == EXCP_DEBUG) { 113 env->exception_taken = 0; 114 } 115 cpu_loop_exit(cs); 116 } 117 118 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause) 119 { 120 uint32_t vector; 121 122 env->pc = pc; 123 if (env->sregs[PS] & PS_EXCM) { 124 if (env->config->ndepc) { 125 env->sregs[DEPC] = pc; 126 } else { 127 env->sregs[EPC1] = pc; 128 } 129 vector = EXC_DOUBLE; 130 } else { 131 env->sregs[EPC1] = pc; 132 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL; 133 } 134 135 env->sregs[EXCCAUSE] = cause; 136 env->sregs[PS] |= PS_EXCM; 137 138 HELPER(exception)(env, vector); 139 } 140 141 void HELPER(exception_cause_vaddr)(CPUXtensaState *env, 142 uint32_t pc, uint32_t cause, uint32_t vaddr) 143 { 144 env->sregs[EXCVADDR] = vaddr; 145 HELPER(exception_cause)(env, pc, cause); 146 } 147 148 void debug_exception_env(CPUXtensaState *env, uint32_t cause) 149 { 150 if (xtensa_get_cintlevel(env) < env->config->debug_level) { 151 HELPER(debug_exception)(env, env->pc, cause); 152 } 153 } 154 155 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause) 156 { 157 unsigned level = env->config->debug_level; 158 159 env->pc = pc; 160 env->sregs[DEBUGCAUSE] = cause; 161 env->sregs[EPC1 + level - 1] = pc; 162 env->sregs[EPS2 + level - 2] = env->sregs[PS]; 163 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM | 164 (level << PS_INTLEVEL_SHIFT); 165 HELPER(exception)(env, EXC_DEBUG); 166 } 167 168 static void copy_window_from_phys(CPUXtensaState *env, 169 uint32_t window, uint32_t phys, uint32_t n) 170 { 171 assert(phys < env->config->nareg); 172 if (phys + n <= env->config->nareg) { 173 memcpy(env->regs + window, env->phys_regs + phys, 174 n * sizeof(uint32_t)); 175 } else { 176 uint32_t n1 = env->config->nareg - phys; 177 memcpy(env->regs + window, env->phys_regs + phys, 178 n1 * sizeof(uint32_t)); 179 memcpy(env->regs + window + n1, env->phys_regs, 180 (n - n1) * sizeof(uint32_t)); 181 } 182 } 183 184 static void copy_phys_from_window(CPUXtensaState *env, 185 uint32_t phys, uint32_t window, uint32_t n) 186 { 187 assert(phys < env->config->nareg); 188 if (phys + n <= env->config->nareg) { 189 memcpy(env->phys_regs + phys, env->regs + window, 190 n * sizeof(uint32_t)); 191 } else { 192 uint32_t n1 = env->config->nareg - phys; 193 memcpy(env->phys_regs + phys, env->regs + window, 194 n1 * sizeof(uint32_t)); 195 memcpy(env->phys_regs, env->regs + window + n1, 196 (n - n1) * sizeof(uint32_t)); 197 } 198 } 199 200 201 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env) 202 { 203 return a & (env->config->nareg / 4 - 1); 204 } 205 206 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env) 207 { 208 return 1 << windowbase_bound(a, env); 209 } 210 211 void xtensa_sync_window_from_phys(CPUXtensaState *env) 212 { 213 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16); 214 } 215 216 void xtensa_sync_phys_from_window(CPUXtensaState *env) 217 { 218 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16); 219 } 220 221 static void rotate_window_abs(CPUXtensaState *env, uint32_t position) 222 { 223 xtensa_sync_phys_from_window(env); 224 env->sregs[WINDOW_BASE] = windowbase_bound(position, env); 225 xtensa_sync_window_from_phys(env); 226 } 227 228 static void rotate_window(CPUXtensaState *env, uint32_t delta) 229 { 230 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta); 231 } 232 233 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v) 234 { 235 rotate_window_abs(env, v); 236 } 237 238 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm) 239 { 240 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT; 241 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { 242 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n", 243 pc, env->sregs[PS]); 244 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE); 245 } else { 246 uint32_t windowstart = xtensa_replicate_windowstart(env) >> 247 (env->sregs[WINDOW_BASE] + 1); 248 249 if (windowstart & ((1 << callinc) - 1)) { 250 HELPER(window_check)(env, pc, callinc); 251 } 252 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3); 253 rotate_window(env, callinc); 254 env->sregs[WINDOW_START] |= 255 windowstart_bit(env->sregs[WINDOW_BASE], env); 256 } 257 } 258 259 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w) 260 { 261 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); 262 uint32_t windowstart = xtensa_replicate_windowstart(env) >> 263 (env->sregs[WINDOW_BASE] + 1); 264 uint32_t n = ctz32(windowstart) + 1; 265 266 assert(n <= w); 267 268 rotate_window(env, n); 269 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | 270 (windowbase << PS_OWB_SHIFT) | PS_EXCM; 271 env->sregs[EPC1] = env->pc = pc; 272 273 switch (ctz32(windowstart >> n)) { 274 case 0: 275 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4); 276 break; 277 case 1: 278 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8); 279 break; 280 default: 281 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12); 282 break; 283 } 284 } 285 286 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc) 287 { 288 int n = (env->regs[0] >> 30) & 0x3; 289 int m = 0; 290 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); 291 uint32_t windowstart = env->sregs[WINDOW_START]; 292 uint32_t ret_pc = 0; 293 294 if (windowstart & windowstart_bit(windowbase - 1, env)) { 295 m = 1; 296 } else if (windowstart & windowstart_bit(windowbase - 2, env)) { 297 m = 2; 298 } else if (windowstart & windowstart_bit(windowbase - 3, env)) { 299 m = 3; 300 } 301 302 if (n == 0 || (m != 0 && m != n) || 303 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { 304 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), " 305 "PS = %08x, m = %d, n = %d\n", 306 pc, env->sregs[PS], m, n); 307 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE); 308 } else { 309 int owb = windowbase; 310 311 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff); 312 313 rotate_window(env, -n); 314 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) { 315 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env); 316 } else { 317 /* window underflow */ 318 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | 319 (windowbase << PS_OWB_SHIFT) | PS_EXCM; 320 env->sregs[EPC1] = env->pc = pc; 321 322 if (n == 1) { 323 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4); 324 } else if (n == 2) { 325 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8); 326 } else if (n == 3) { 327 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12); 328 } 329 } 330 } 331 return ret_pc; 332 } 333 334 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4) 335 { 336 rotate_window(env, imm4); 337 } 338 339 void HELPER(restore_owb)(CPUXtensaState *env) 340 { 341 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT); 342 } 343 344 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc) 345 { 346 if ((env->sregs[WINDOW_START] & 347 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) | 348 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) | 349 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) { 350 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE); 351 } 352 } 353 354 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v) 355 { 356 if (env->sregs[LBEG] != v) { 357 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); 358 env->sregs[LBEG] = v; 359 } 360 } 361 362 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v) 363 { 364 if (env->sregs[LEND] != v) { 365 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); 366 env->sregs[LEND] = v; 367 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); 368 } 369 } 370 371 void HELPER(dump_state)(CPUXtensaState *env) 372 { 373 XtensaCPU *cpu = xtensa_env_get_cpu(env); 374 375 cpu_dump_state(CPU(cpu), stderr, fprintf, 0); 376 } 377 378 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel) 379 { 380 CPUState *cpu; 381 382 env->pc = pc; 383 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | 384 (intlevel << PS_INTLEVEL_SHIFT); 385 386 qemu_mutex_lock_iothread(); 387 check_interrupts(env); 388 qemu_mutex_unlock_iothread(); 389 390 if (env->pending_irq_level) { 391 cpu_loop_exit(CPU(xtensa_env_get_cpu(env))); 392 return; 393 } 394 395 cpu = CPU(xtensa_env_get_cpu(env)); 396 cpu->halted = 1; 397 HELPER(exception)(env, EXCP_HLT); 398 } 399 400 void HELPER(update_ccount)(CPUXtensaState *env) 401 { 402 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 403 404 env->ccount_time = now; 405 env->sregs[CCOUNT] = env->ccount_base + 406 (uint32_t)((now - env->time_base) * 407 env->config->clock_freq_khz / 1000000); 408 } 409 410 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v) 411 { 412 int i; 413 414 HELPER(update_ccount)(env); 415 env->ccount_base += v - env->sregs[CCOUNT]; 416 for (i = 0; i < env->config->nccompare; ++i) { 417 HELPER(update_ccompare)(env, i); 418 } 419 } 420 421 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i) 422 { 423 uint64_t dcc; 424 425 HELPER(update_ccount)(env); 426 dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1; 427 timer_mod(env->ccompare[i].timer, 428 env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz); 429 env->yield_needed = 1; 430 } 431 432 void HELPER(check_interrupts)(CPUXtensaState *env) 433 { 434 qemu_mutex_lock_iothread(); 435 check_interrupts(env); 436 qemu_mutex_unlock_iothread(); 437 } 438 439 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr) 440 { 441 get_page_addr_code(env, vaddr); 442 } 443 444 /*! 445 * Check vaddr accessibility/cache attributes and raise an exception if 446 * specified by the ATOMCTL SR. 447 * 448 * Note: local memory exclusion is not implemented 449 */ 450 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr) 451 { 452 uint32_t paddr, page_size, access; 453 uint32_t atomctl = env->sregs[ATOMCTL]; 454 int rc = xtensa_get_physical_addr(env, true, vaddr, 1, 455 xtensa_get_cring(env), &paddr, &page_size, &access); 456 457 /* 458 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions, 459 * see opcode description in the ISA 460 */ 461 if (rc == 0 && 462 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) { 463 rc = STORE_PROHIBITED_CAUSE; 464 } 465 466 if (rc) { 467 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr); 468 } 469 470 /* 471 * When data cache is not configured use ATOMCTL bypass field. 472 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL) 473 * under the Conditional Store Option. 474 */ 475 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) { 476 access = PAGE_CACHE_BYPASS; 477 } 478 479 switch (access & PAGE_CACHE_MASK) { 480 case PAGE_CACHE_WB: 481 atomctl >>= 2; 482 /* fall through */ 483 case PAGE_CACHE_WT: 484 atomctl >>= 2; 485 /* fall through */ 486 case PAGE_CACHE_BYPASS: 487 if ((atomctl & 0x3) == 0) { 488 HELPER(exception_cause_vaddr)(env, pc, 489 LOAD_STORE_ERROR_CAUSE, vaddr); 490 } 491 break; 492 493 case PAGE_CACHE_ISOLATE: 494 HELPER(exception_cause_vaddr)(env, pc, 495 LOAD_STORE_ERROR_CAUSE, vaddr); 496 break; 497 498 default: 499 break; 500 } 501 } 502 503 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v) 504 { 505 if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) { 506 if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) > 507 env->config->icache_ways) { 508 deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN, 509 env->config->icache_ways); 510 } 511 } 512 if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) { 513 if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) > 514 env->config->dcache_ways) { 515 deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN, 516 env->config->dcache_ways); 517 } 518 if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) > 519 env->config->dcache_ways) { 520 deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN, 521 env->config->dcache_ways); 522 } 523 } 524 env->sregs[MEMCTL] = v & env->config->memctl_mask; 525 } 526 527 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v) 528 { 529 XtensaCPU *cpu = xtensa_env_get_cpu(env); 530 531 v = (v & 0xffffff00) | 0x1; 532 if (v != env->sregs[RASID]) { 533 env->sregs[RASID] = v; 534 tlb_flush(CPU(cpu)); 535 } 536 } 537 538 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way) 539 { 540 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG]; 541 542 switch (way) { 543 case 4: 544 return (tlbcfg >> 16) & 0x3; 545 546 case 5: 547 return (tlbcfg >> 20) & 0x1; 548 549 case 6: 550 return (tlbcfg >> 24) & 0x1; 551 552 default: 553 return 0; 554 } 555 } 556 557 /*! 558 * Get bit mask for the virtual address bits translated by the TLB way 559 */ 560 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) 561 { 562 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 563 bool varway56 = dtlb ? 564 env->config->dtlb.varway56 : 565 env->config->itlb.varway56; 566 567 switch (way) { 568 case 4: 569 return 0xfff00000 << get_page_size(env, dtlb, way) * 2; 570 571 case 5: 572 if (varway56) { 573 return 0xf8000000 << get_page_size(env, dtlb, way); 574 } else { 575 return 0xf8000000; 576 } 577 578 case 6: 579 if (varway56) { 580 return 0xf0000000 << (1 - get_page_size(env, dtlb, way)); 581 } else { 582 return 0xf0000000; 583 } 584 585 default: 586 return 0xfffff000; 587 } 588 } else { 589 return REGION_PAGE_MASK; 590 } 591 } 592 593 /*! 594 * Get bit mask for the 'VPN without index' field. 595 * See ISA, 4.6.5.6, data format for RxTLB0 596 */ 597 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) 598 { 599 if (way < 4) { 600 bool is32 = (dtlb ? 601 env->config->dtlb.nrefillentries : 602 env->config->itlb.nrefillentries) == 32; 603 return is32 ? 0xffff8000 : 0xffffc000; 604 } else if (way == 4) { 605 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2; 606 } else if (way <= 6) { 607 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way); 608 bool varway56 = dtlb ? 609 env->config->dtlb.varway56 : 610 env->config->itlb.varway56; 611 612 if (varway56) { 613 return mask << (way == 5 ? 2 : 3); 614 } else { 615 return mask << 1; 616 } 617 } else { 618 return 0xfffff000; 619 } 620 } 621 622 /*! 623 * Split virtual address into VPN (with index) and entry index 624 * for the given TLB way 625 */ 626 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb, 627 uint32_t *vpn, uint32_t wi, uint32_t *ei) 628 { 629 bool varway56 = dtlb ? 630 env->config->dtlb.varway56 : 631 env->config->itlb.varway56; 632 633 if (!dtlb) { 634 wi &= 7; 635 } 636 637 if (wi < 4) { 638 bool is32 = (dtlb ? 639 env->config->dtlb.nrefillentries : 640 env->config->itlb.nrefillentries) == 32; 641 *ei = (v >> 12) & (is32 ? 0x7 : 0x3); 642 } else { 643 switch (wi) { 644 case 4: 645 { 646 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2; 647 *ei = (v >> eibase) & 0x3; 648 } 649 break; 650 651 case 5: 652 if (varway56) { 653 uint32_t eibase = 27 + get_page_size(env, dtlb, wi); 654 *ei = (v >> eibase) & 0x3; 655 } else { 656 *ei = (v >> 27) & 0x1; 657 } 658 break; 659 660 case 6: 661 if (varway56) { 662 uint32_t eibase = 29 - get_page_size(env, dtlb, wi); 663 *ei = (v >> eibase) & 0x7; 664 } else { 665 *ei = (v >> 28) & 0x1; 666 } 667 break; 668 669 default: 670 *ei = 0; 671 break; 672 } 673 } 674 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi); 675 } 676 677 /*! 678 * Split TLB address into TLB way, entry index and VPN (with index). 679 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format 680 */ 681 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb, 682 uint32_t *vpn, uint32_t *wi, uint32_t *ei) 683 { 684 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 685 *wi = v & (dtlb ? 0xf : 0x7); 686 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei); 687 } else { 688 *vpn = v & REGION_PAGE_MASK; 689 *wi = 0; 690 *ei = (v >> 29) & 0x7; 691 } 692 } 693 694 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env, 695 uint32_t v, bool dtlb, uint32_t *pwi) 696 { 697 uint32_t vpn; 698 uint32_t wi; 699 uint32_t ei; 700 701 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei); 702 if (pwi) { 703 *pwi = wi; 704 } 705 return xtensa_tlb_get_entry(env, dtlb, wi, ei); 706 } 707 708 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 709 { 710 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 711 uint32_t wi; 712 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); 713 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid; 714 } else { 715 return v & REGION_PAGE_MASK; 716 } 717 } 718 719 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 720 { 721 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL); 722 return entry->paddr | entry->attr; 723 } 724 725 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 726 { 727 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 728 uint32_t wi; 729 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); 730 if (entry->variable && entry->asid) { 731 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr); 732 entry->asid = 0; 733 } 734 } 735 } 736 737 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) 738 { 739 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 740 uint32_t wi; 741 uint32_t ei; 742 uint8_t ring; 743 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring); 744 745 switch (res) { 746 case 0: 747 if (ring >= xtensa_get_ring(env)) { 748 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8); 749 } 750 break; 751 752 case INST_TLB_MULTI_HIT_CAUSE: 753 case LOAD_STORE_TLB_MULTI_HIT_CAUSE: 754 HELPER(exception_cause_vaddr)(env, env->pc, res, v); 755 break; 756 } 757 return 0; 758 } else { 759 return (v & REGION_PAGE_MASK) | 0x1; 760 } 761 } 762 763 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env, 764 xtensa_tlb_entry *entry, bool dtlb, 765 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) 766 { 767 entry->vaddr = vpn; 768 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi); 769 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff; 770 entry->attr = pte & 0xf; 771 } 772 773 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb, 774 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) 775 { 776 XtensaCPU *cpu = xtensa_env_get_cpu(env); 777 CPUState *cs = CPU(cpu); 778 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); 779 780 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { 781 if (entry->variable) { 782 if (entry->asid) { 783 tlb_flush_page(cs, entry->vaddr); 784 } 785 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte); 786 tlb_flush_page(cs, entry->vaddr); 787 } else { 788 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n", 789 __func__, dtlb, wi, ei); 790 } 791 } else { 792 tlb_flush_page(cs, entry->vaddr); 793 if (xtensa_option_enabled(env->config, 794 XTENSA_OPTION_REGION_TRANSLATION)) { 795 entry->paddr = pte & REGION_PAGE_MASK; 796 } 797 entry->attr = pte & 0xf; 798 } 799 } 800 801 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb) 802 { 803 uint32_t vpn; 804 uint32_t wi; 805 uint32_t ei; 806 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei); 807 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p); 808 } 809 810 811 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v) 812 { 813 uint32_t change = v ^ env->sregs[IBREAKENABLE]; 814 unsigned i; 815 816 for (i = 0; i < env->config->nibreak; ++i) { 817 if (change & (1 << i)) { 818 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]); 819 } 820 } 821 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1); 822 } 823 824 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v) 825 { 826 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) { 827 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]); 828 tb_invalidate_virtual_addr(env, v); 829 } 830 env->sregs[IBREAKA + i] = v; 831 } 832 833 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka, 834 uint32_t dbreakc) 835 { 836 CPUState *cs = CPU(xtensa_env_get_cpu(env)); 837 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 838 uint32_t mask = dbreakc | ~DBREAKC_MASK; 839 840 if (env->cpu_watchpoint[i]) { 841 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]); 842 } 843 if (dbreakc & DBREAKC_SB) { 844 flags |= BP_MEM_WRITE; 845 } 846 if (dbreakc & DBREAKC_LB) { 847 flags |= BP_MEM_READ; 848 } 849 /* contiguous mask after inversion is one less than some power of 2 */ 850 if ((~mask + 1) & ~mask) { 851 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc); 852 /* cut mask after the first zero bit */ 853 mask = 0xffffffff << (32 - clo32(mask)); 854 } 855 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1, 856 flags, &env->cpu_watchpoint[i])) { 857 env->cpu_watchpoint[i] = NULL; 858 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n", 859 dbreaka & mask, ~mask + 1); 860 } 861 } 862 863 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v) 864 { 865 uint32_t dbreakc = env->sregs[DBREAKC + i]; 866 867 if ((dbreakc & DBREAKC_SB_LB) && 868 env->sregs[DBREAKA + i] != v) { 869 set_dbreak(env, i, v, dbreakc); 870 } 871 env->sregs[DBREAKA + i] = v; 872 } 873 874 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v) 875 { 876 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) { 877 if (v & DBREAKC_SB_LB) { 878 set_dbreak(env, i, env->sregs[DBREAKA + i], v); 879 } else { 880 if (env->cpu_watchpoint[i]) { 881 CPUState *cs = CPU(xtensa_env_get_cpu(env)); 882 883 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]); 884 env->cpu_watchpoint[i] = NULL; 885 } 886 } 887 } 888 env->sregs[DBREAKC + i] = v; 889 } 890 891 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v) 892 { 893 static const int rounding_mode[] = { 894 float_round_nearest_even, 895 float_round_to_zero, 896 float_round_up, 897 float_round_down, 898 }; 899 900 env->uregs[FCR] = v & 0xfffff07f; 901 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status); 902 } 903 904 float32 HELPER(abs_s)(float32 v) 905 { 906 return float32_abs(v); 907 } 908 909 float32 HELPER(neg_s)(float32 v) 910 { 911 return float32_chs(v); 912 } 913 914 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b) 915 { 916 return float32_add(a, b, &env->fp_status); 917 } 918 919 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b) 920 { 921 return float32_sub(a, b, &env->fp_status); 922 } 923 924 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b) 925 { 926 return float32_mul(a, b, &env->fp_status); 927 } 928 929 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c) 930 { 931 return float32_muladd(b, c, a, 0, 932 &env->fp_status); 933 } 934 935 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c) 936 { 937 return float32_muladd(b, c, a, float_muladd_negate_product, 938 &env->fp_status); 939 } 940 941 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale) 942 { 943 float_status fp_status = {0}; 944 945 set_float_rounding_mode(rounding_mode, &fp_status); 946 return float32_to_int32( 947 float32_scalbn(v, scale, &fp_status), &fp_status); 948 } 949 950 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale) 951 { 952 float_status fp_status = {0}; 953 float32 res; 954 955 set_float_rounding_mode(rounding_mode, &fp_status); 956 957 res = float32_scalbn(v, scale, &fp_status); 958 959 if (float32_is_neg(v) && !float32_is_any_nan(v)) { 960 return float32_to_int32(res, &fp_status); 961 } else { 962 return float32_to_uint32(res, &fp_status); 963 } 964 } 965 966 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale) 967 { 968 return float32_scalbn(int32_to_float32(v, &env->fp_status), 969 (int32_t)scale, &env->fp_status); 970 } 971 972 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale) 973 { 974 return float32_scalbn(uint32_to_float32(v, &env->fp_status), 975 (int32_t)scale, &env->fp_status); 976 } 977 978 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br) 979 { 980 if (v) { 981 env->sregs[BR] |= br; 982 } else { 983 env->sregs[BR] &= ~br; 984 } 985 } 986 987 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 988 { 989 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br); 990 } 991 992 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 993 { 994 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br); 995 } 996 997 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 998 { 999 int v = float32_compare_quiet(a, b, &env->fp_status); 1000 set_br(env, v == float_relation_equal || v == float_relation_unordered, br); 1001 } 1002 1003 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1004 { 1005 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br); 1006 } 1007 1008 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1009 { 1010 int v = float32_compare_quiet(a, b, &env->fp_status); 1011 set_br(env, v == float_relation_less || v == float_relation_unordered, br); 1012 } 1013 1014 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1015 { 1016 set_br(env, float32_le_quiet(a, b, &env->fp_status), br); 1017 } 1018 1019 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) 1020 { 1021 int v = float32_compare_quiet(a, b, &env->fp_status); 1022 set_br(env, v != float_relation_greater, br); 1023 } 1024 1025 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr) 1026 { 1027 return address_space_ldl(env->address_space_er, addr, 1028 (MemTxAttrs){0}, NULL); 1029 } 1030 1031 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr) 1032 { 1033 address_space_stl(env->address_space_er, addr, data, 1034 (MemTxAttrs){0}, NULL); 1035 } 1036