xref: /openbmc/qemu/target/xtensa/op_helper.c (revision afd76ffb)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "cpu.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "exec/cpu_ldst.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/timer.h"
37 #include "fpu/softfloat.h"
38 
39 #ifdef CONFIG_USER_ONLY
40 /* tb_invalidate_phys_range */
41 #include "accel/tcg/translate-all.h"
42 #endif
43 
44 #ifndef CONFIG_USER_ONLY
45 
46 void xtensa_cpu_do_unaligned_access(CPUState *cs,
47         vaddr addr, MMUAccessType access_type,
48         int mmu_idx, uintptr_t retaddr)
49 {
50     XtensaCPU *cpu = XTENSA_CPU(cs);
51     CPUXtensaState *env = &cpu->env;
52 
53     if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
54             !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
55         cpu_restore_state(CPU(cpu), retaddr, true);
56         HELPER(exception_cause_vaddr)(env,
57                 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
58     }
59 }
60 
61 void tlb_fill(CPUState *cs, target_ulong vaddr, int size,
62               MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
63 {
64     XtensaCPU *cpu = XTENSA_CPU(cs);
65     CPUXtensaState *env = &cpu->env;
66     uint32_t paddr;
67     uint32_t page_size;
68     unsigned access;
69     int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
70             &paddr, &page_size, &access);
71 
72     qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
73                   __func__, vaddr, access_type, mmu_idx, paddr, ret);
74 
75     if (ret == 0) {
76         tlb_set_page(cs,
77                      vaddr & TARGET_PAGE_MASK,
78                      paddr & TARGET_PAGE_MASK,
79                      access, mmu_idx, page_size);
80     } else {
81         cpu_restore_state(cs, retaddr, true);
82         HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
83     }
84 }
85 
86 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
87                                      bool is_write, bool is_exec, int opaque,
88                                      unsigned size)
89 {
90     XtensaCPU *cpu = XTENSA_CPU(cs);
91     CPUXtensaState *env = &cpu->env;
92 
93     HELPER(exception_cause_vaddr)(env, env->pc,
94                                   is_exec ?
95                                   INSTR_PIF_ADDR_ERROR_CAUSE :
96                                   LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
97                                   is_exec ? addr : cs->mem_io_vaddr);
98 }
99 
100 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
101 {
102     uint32_t paddr;
103     uint32_t page_size;
104     unsigned access;
105     int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
106             &paddr, &page_size, &access);
107     if (ret == 0) {
108         tb_invalidate_phys_addr(&address_space_memory, paddr,
109                                 MEMTXATTRS_UNSPECIFIED);
110     }
111 }
112 
113 #else
114 
115 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
116 {
117     mmap_lock();
118     tb_invalidate_phys_range(vaddr, vaddr + 1);
119     mmap_unlock();
120 }
121 
122 #endif
123 
124 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
125 {
126     CPUState *cs = CPU(xtensa_env_get_cpu(env));
127 
128     cs->exception_index = excp;
129     if (excp == EXCP_YIELD) {
130         env->yield_needed = 0;
131     }
132     if (excp == EXCP_DEBUG) {
133         env->exception_taken = 0;
134     }
135     cpu_loop_exit(cs);
136 }
137 
138 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
139 {
140     uint32_t vector;
141 
142     env->pc = pc;
143     if (env->sregs[PS] & PS_EXCM) {
144         if (env->config->ndepc) {
145             env->sregs[DEPC] = pc;
146         } else {
147             env->sregs[EPC1] = pc;
148         }
149         vector = EXC_DOUBLE;
150     } else {
151         env->sregs[EPC1] = pc;
152         vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
153     }
154 
155     env->sregs[EXCCAUSE] = cause;
156     env->sregs[PS] |= PS_EXCM;
157 
158     HELPER(exception)(env, vector);
159 }
160 
161 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
162         uint32_t pc, uint32_t cause, uint32_t vaddr)
163 {
164     env->sregs[EXCVADDR] = vaddr;
165     HELPER(exception_cause)(env, pc, cause);
166 }
167 
168 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
169 {
170     if (xtensa_get_cintlevel(env) < env->config->debug_level) {
171         HELPER(debug_exception)(env, env->pc, cause);
172     }
173 }
174 
175 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
176 {
177     unsigned level = env->config->debug_level;
178 
179     env->pc = pc;
180     env->sregs[DEBUGCAUSE] = cause;
181     env->sregs[EPC1 + level - 1] = pc;
182     env->sregs[EPS2 + level - 2] = env->sregs[PS];
183     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
184         (level << PS_INTLEVEL_SHIFT);
185     HELPER(exception)(env, EXC_DEBUG);
186 }
187 
188 static void copy_window_from_phys(CPUXtensaState *env,
189         uint32_t window, uint32_t phys, uint32_t n)
190 {
191     assert(phys < env->config->nareg);
192     if (phys + n <= env->config->nareg) {
193         memcpy(env->regs + window, env->phys_regs + phys,
194                 n * sizeof(uint32_t));
195     } else {
196         uint32_t n1 = env->config->nareg - phys;
197         memcpy(env->regs + window, env->phys_regs + phys,
198                 n1 * sizeof(uint32_t));
199         memcpy(env->regs + window + n1, env->phys_regs,
200                 (n - n1) * sizeof(uint32_t));
201     }
202 }
203 
204 static void copy_phys_from_window(CPUXtensaState *env,
205         uint32_t phys, uint32_t window, uint32_t n)
206 {
207     assert(phys < env->config->nareg);
208     if (phys + n <= env->config->nareg) {
209         memcpy(env->phys_regs + phys, env->regs + window,
210                 n * sizeof(uint32_t));
211     } else {
212         uint32_t n1 = env->config->nareg - phys;
213         memcpy(env->phys_regs + phys, env->regs + window,
214                 n1 * sizeof(uint32_t));
215         memcpy(env->phys_regs, env->regs + window + n1,
216                 (n - n1) * sizeof(uint32_t));
217     }
218 }
219 
220 
221 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
222 {
223     return a & (env->config->nareg / 4 - 1);
224 }
225 
226 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
227 {
228     return 1 << windowbase_bound(a, env);
229 }
230 
231 void xtensa_sync_window_from_phys(CPUXtensaState *env)
232 {
233     copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
234 }
235 
236 void xtensa_sync_phys_from_window(CPUXtensaState *env)
237 {
238     copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
239 }
240 
241 static void xtensa_rotate_window_abs(CPUXtensaState *env, uint32_t position)
242 {
243     xtensa_sync_phys_from_window(env);
244     env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
245     xtensa_sync_window_from_phys(env);
246 }
247 
248 void xtensa_rotate_window(CPUXtensaState *env, uint32_t delta)
249 {
250     xtensa_rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
251 }
252 
253 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
254 {
255     xtensa_rotate_window_abs(env, v);
256 }
257 
258 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
259 {
260     int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
261     if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
262         qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
263                       pc, env->sregs[PS]);
264         HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
265     } else {
266         uint32_t windowstart = xtensa_replicate_windowstart(env) >>
267             (env->sregs[WINDOW_BASE] + 1);
268 
269         if (windowstart & ((1 << callinc) - 1)) {
270             HELPER(window_check)(env, pc, callinc);
271         }
272         env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - imm;
273         xtensa_rotate_window(env, callinc);
274         env->sregs[WINDOW_START] |=
275             windowstart_bit(env->sregs[WINDOW_BASE], env);
276     }
277 }
278 
279 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
280 {
281     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
282     uint32_t windowstart = xtensa_replicate_windowstart(env) >>
283         (env->sregs[WINDOW_BASE] + 1);
284     uint32_t n = ctz32(windowstart) + 1;
285 
286     assert(n <= w);
287 
288     xtensa_rotate_window(env, n);
289     env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
290         (windowbase << PS_OWB_SHIFT) | PS_EXCM;
291     env->sregs[EPC1] = env->pc = pc;
292 
293     switch (ctz32(windowstart >> n)) {
294     case 0:
295         HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
296         break;
297     case 1:
298         HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
299         break;
300     default:
301         HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
302         break;
303     }
304 }
305 
306 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
307 {
308     int n = (env->regs[0] >> 30) & 0x3;
309     int m = 0;
310     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
311     uint32_t windowstart = env->sregs[WINDOW_START];
312     uint32_t ret_pc = 0;
313 
314     if (windowstart & windowstart_bit(windowbase - 1, env)) {
315         m = 1;
316     } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
317         m = 2;
318     } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
319         m = 3;
320     }
321 
322     if (n == 0 || (m != 0 && m != n) ||
323             ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
324         qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
325                       "PS = %08x, m = %d, n = %d\n",
326                       pc, env->sregs[PS], m, n);
327         HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
328     } else {
329         int owb = windowbase;
330 
331         ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
332 
333         xtensa_rotate_window(env, -n);
334         if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
335             env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
336         } else {
337             /* window underflow */
338             env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
339                 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
340             env->sregs[EPC1] = env->pc = pc;
341 
342             if (n == 1) {
343                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
344             } else if (n == 2) {
345                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
346             } else if (n == 3) {
347                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
348             }
349         }
350     }
351     return ret_pc;
352 }
353 
354 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
355 {
356     xtensa_rotate_window(env, imm4);
357 }
358 
359 void xtensa_restore_owb(CPUXtensaState *env)
360 {
361     xtensa_rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
362 }
363 
364 void HELPER(restore_owb)(CPUXtensaState *env)
365 {
366     xtensa_restore_owb(env);
367 }
368 
369 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
370 {
371     if ((env->sregs[WINDOW_START] &
372             (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
373              windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
374              windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
375         HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
376     }
377 }
378 
379 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
380 {
381     if (env->sregs[LBEG] != v) {
382         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
383         env->sregs[LBEG] = v;
384     }
385 }
386 
387 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
388 {
389     if (env->sregs[LEND] != v) {
390         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
391         env->sregs[LEND] = v;
392         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
393     }
394 }
395 
396 void HELPER(dump_state)(CPUXtensaState *env)
397 {
398     XtensaCPU *cpu = xtensa_env_get_cpu(env);
399 
400     cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
401 }
402 
403 #ifndef CONFIG_USER_ONLY
404 
405 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
406 {
407     CPUState *cpu;
408 
409     env->pc = pc;
410     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
411         (intlevel << PS_INTLEVEL_SHIFT);
412 
413     qemu_mutex_lock_iothread();
414     check_interrupts(env);
415     qemu_mutex_unlock_iothread();
416 
417     if (env->pending_irq_level) {
418         cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
419         return;
420     }
421 
422     cpu = CPU(xtensa_env_get_cpu(env));
423     cpu->halted = 1;
424     HELPER(exception)(env, EXCP_HLT);
425 }
426 
427 void HELPER(update_ccount)(CPUXtensaState *env)
428 {
429     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
430 
431     env->ccount_time = now;
432     env->sregs[CCOUNT] = env->ccount_base +
433         (uint32_t)((now - env->time_base) *
434                    env->config->clock_freq_khz / 1000000);
435 }
436 
437 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
438 {
439     int i;
440 
441     HELPER(update_ccount)(env);
442     env->ccount_base += v - env->sregs[CCOUNT];
443     for (i = 0; i < env->config->nccompare; ++i) {
444         HELPER(update_ccompare)(env, i);
445     }
446 }
447 
448 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
449 {
450     uint64_t dcc;
451 
452     HELPER(update_ccount)(env);
453     dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
454     timer_mod(env->ccompare[i].timer,
455               env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
456     env->yield_needed = 1;
457 }
458 
459 void HELPER(check_interrupts)(CPUXtensaState *env)
460 {
461     qemu_mutex_lock_iothread();
462     check_interrupts(env);
463     qemu_mutex_unlock_iothread();
464 }
465 
466 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
467 {
468     get_page_addr_code(env, vaddr);
469 }
470 
471 /*!
472  * Check vaddr accessibility/cache attributes and raise an exception if
473  * specified by the ATOMCTL SR.
474  *
475  * Note: local memory exclusion is not implemented
476  */
477 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
478 {
479     uint32_t paddr, page_size, access;
480     uint32_t atomctl = env->sregs[ATOMCTL];
481     int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
482             xtensa_get_cring(env), &paddr, &page_size, &access);
483 
484     /*
485      * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
486      * see opcode description in the ISA
487      */
488     if (rc == 0 &&
489             (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
490         rc = STORE_PROHIBITED_CAUSE;
491     }
492 
493     if (rc) {
494         HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
495     }
496 
497     /*
498      * When data cache is not configured use ATOMCTL bypass field.
499      * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
500      * under the Conditional Store Option.
501      */
502     if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
503         access = PAGE_CACHE_BYPASS;
504     }
505 
506     switch (access & PAGE_CACHE_MASK) {
507     case PAGE_CACHE_WB:
508         atomctl >>= 2;
509         /* fall through */
510     case PAGE_CACHE_WT:
511         atomctl >>= 2;
512         /* fall through */
513     case PAGE_CACHE_BYPASS:
514         if ((atomctl & 0x3) == 0) {
515             HELPER(exception_cause_vaddr)(env, pc,
516                     LOAD_STORE_ERROR_CAUSE, vaddr);
517         }
518         break;
519 
520     case PAGE_CACHE_ISOLATE:
521         HELPER(exception_cause_vaddr)(env, pc,
522                 LOAD_STORE_ERROR_CAUSE, vaddr);
523         break;
524 
525     default:
526         break;
527     }
528 }
529 
530 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
531 {
532     if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
533         if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
534             env->config->icache_ways) {
535             deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
536                       env->config->icache_ways);
537         }
538     }
539     if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
540         if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
541             env->config->dcache_ways) {
542             deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
543                       env->config->dcache_ways);
544         }
545         if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
546             env->config->dcache_ways) {
547             deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
548                       env->config->dcache_ways);
549         }
550     }
551     env->sregs[MEMCTL] = v & env->config->memctl_mask;
552 }
553 
554 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
555 {
556     XtensaCPU *cpu = xtensa_env_get_cpu(env);
557 
558     v = (v & 0xffffff00) | 0x1;
559     if (v != env->sregs[RASID]) {
560         env->sregs[RASID] = v;
561         tlb_flush(CPU(cpu));
562     }
563 }
564 
565 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
566 {
567     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
568 
569     switch (way) {
570     case 4:
571         return (tlbcfg >> 16) & 0x3;
572 
573     case 5:
574         return (tlbcfg >> 20) & 0x1;
575 
576     case 6:
577         return (tlbcfg >> 24) & 0x1;
578 
579     default:
580         return 0;
581     }
582 }
583 
584 /*!
585  * Get bit mask for the virtual address bits translated by the TLB way
586  */
587 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
588 {
589     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
590         bool varway56 = dtlb ?
591             env->config->dtlb.varway56 :
592             env->config->itlb.varway56;
593 
594         switch (way) {
595         case 4:
596             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
597 
598         case 5:
599             if (varway56) {
600                 return 0xf8000000 << get_page_size(env, dtlb, way);
601             } else {
602                 return 0xf8000000;
603             }
604 
605         case 6:
606             if (varway56) {
607                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
608             } else {
609                 return 0xf0000000;
610             }
611 
612         default:
613             return 0xfffff000;
614         }
615     } else {
616         return REGION_PAGE_MASK;
617     }
618 }
619 
620 /*!
621  * Get bit mask for the 'VPN without index' field.
622  * See ISA, 4.6.5.6, data format for RxTLB0
623  */
624 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
625 {
626     if (way < 4) {
627         bool is32 = (dtlb ?
628                 env->config->dtlb.nrefillentries :
629                 env->config->itlb.nrefillentries) == 32;
630         return is32 ? 0xffff8000 : 0xffffc000;
631     } else if (way == 4) {
632         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
633     } else if (way <= 6) {
634         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
635         bool varway56 = dtlb ?
636             env->config->dtlb.varway56 :
637             env->config->itlb.varway56;
638 
639         if (varway56) {
640             return mask << (way == 5 ? 2 : 3);
641         } else {
642             return mask << 1;
643         }
644     } else {
645         return 0xfffff000;
646     }
647 }
648 
649 /*!
650  * Split virtual address into VPN (with index) and entry index
651  * for the given TLB way
652  */
653 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
654         uint32_t *vpn, uint32_t wi, uint32_t *ei)
655 {
656     bool varway56 = dtlb ?
657         env->config->dtlb.varway56 :
658         env->config->itlb.varway56;
659 
660     if (!dtlb) {
661         wi &= 7;
662     }
663 
664     if (wi < 4) {
665         bool is32 = (dtlb ?
666                 env->config->dtlb.nrefillentries :
667                 env->config->itlb.nrefillentries) == 32;
668         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
669     } else {
670         switch (wi) {
671         case 4:
672             {
673                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
674                 *ei = (v >> eibase) & 0x3;
675             }
676             break;
677 
678         case 5:
679             if (varway56) {
680                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
681                 *ei = (v >> eibase) & 0x3;
682             } else {
683                 *ei = (v >> 27) & 0x1;
684             }
685             break;
686 
687         case 6:
688             if (varway56) {
689                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
690                 *ei = (v >> eibase) & 0x7;
691             } else {
692                 *ei = (v >> 28) & 0x1;
693             }
694             break;
695 
696         default:
697             *ei = 0;
698             break;
699         }
700     }
701     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
702 }
703 
704 /*!
705  * Split TLB address into TLB way, entry index and VPN (with index).
706  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
707  */
708 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
709         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
710 {
711     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
712         *wi = v & (dtlb ? 0xf : 0x7);
713         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
714     } else {
715         *vpn = v & REGION_PAGE_MASK;
716         *wi = 0;
717         *ei = (v >> 29) & 0x7;
718     }
719 }
720 
721 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
722         uint32_t v, bool dtlb, uint32_t *pwi)
723 {
724     uint32_t vpn;
725     uint32_t wi;
726     uint32_t ei;
727 
728     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
729     if (pwi) {
730         *pwi = wi;
731     }
732     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
733 }
734 
735 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
736 {
737     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
738         uint32_t wi;
739         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
740         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
741     } else {
742         return v & REGION_PAGE_MASK;
743     }
744 }
745 
746 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
747 {
748     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
749     return entry->paddr | entry->attr;
750 }
751 
752 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
753 {
754     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
755         uint32_t wi;
756         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
757         if (entry->variable && entry->asid) {
758             tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
759             entry->asid = 0;
760         }
761     }
762 }
763 
764 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
765 {
766     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
767         uint32_t wi;
768         uint32_t ei;
769         uint8_t ring;
770         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
771 
772         switch (res) {
773         case 0:
774             if (ring >= xtensa_get_ring(env)) {
775                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
776             }
777             break;
778 
779         case INST_TLB_MULTI_HIT_CAUSE:
780         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
781             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
782             break;
783         }
784         return 0;
785     } else {
786         return (v & REGION_PAGE_MASK) | 0x1;
787     }
788 }
789 
790 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
791         xtensa_tlb_entry *entry, bool dtlb,
792         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
793 {
794     entry->vaddr = vpn;
795     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
796     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
797     entry->attr = pte & 0xf;
798 }
799 
800 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
801         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
802 {
803     XtensaCPU *cpu = xtensa_env_get_cpu(env);
804     CPUState *cs = CPU(cpu);
805     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
806 
807     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
808         if (entry->variable) {
809             if (entry->asid) {
810                 tlb_flush_page(cs, entry->vaddr);
811             }
812             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
813             tlb_flush_page(cs, entry->vaddr);
814         } else {
815             qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
816                           __func__, dtlb, wi, ei);
817         }
818     } else {
819         tlb_flush_page(cs, entry->vaddr);
820         if (xtensa_option_enabled(env->config,
821                     XTENSA_OPTION_REGION_TRANSLATION)) {
822             entry->paddr = pte & REGION_PAGE_MASK;
823         }
824         entry->attr = pte & 0xf;
825     }
826 }
827 
828 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
829 {
830     uint32_t vpn;
831     uint32_t wi;
832     uint32_t ei;
833     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
834     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
835 }
836 
837 
838 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
839 {
840     uint32_t change = v ^ env->sregs[IBREAKENABLE];
841     unsigned i;
842 
843     for (i = 0; i < env->config->nibreak; ++i) {
844         if (change & (1 << i)) {
845             tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
846         }
847     }
848     env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
849 }
850 
851 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
852 {
853     if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
854         tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
855         tb_invalidate_virtual_addr(env, v);
856     }
857     env->sregs[IBREAKA + i] = v;
858 }
859 
860 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
861         uint32_t dbreakc)
862 {
863     CPUState *cs = CPU(xtensa_env_get_cpu(env));
864     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
865     uint32_t mask = dbreakc | ~DBREAKC_MASK;
866 
867     if (env->cpu_watchpoint[i]) {
868         cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
869     }
870     if (dbreakc & DBREAKC_SB) {
871         flags |= BP_MEM_WRITE;
872     }
873     if (dbreakc & DBREAKC_LB) {
874         flags |= BP_MEM_READ;
875     }
876     /* contiguous mask after inversion is one less than some power of 2 */
877     if ((~mask + 1) & ~mask) {
878         qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
879         /* cut mask after the first zero bit */
880         mask = 0xffffffff << (32 - clo32(mask));
881     }
882     if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
883             flags, &env->cpu_watchpoint[i])) {
884         env->cpu_watchpoint[i] = NULL;
885         qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
886                       dbreaka & mask, ~mask + 1);
887     }
888 }
889 
890 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
891 {
892     uint32_t dbreakc = env->sregs[DBREAKC + i];
893 
894     if ((dbreakc & DBREAKC_SB_LB) &&
895             env->sregs[DBREAKA + i] != v) {
896         set_dbreak(env, i, v, dbreakc);
897     }
898     env->sregs[DBREAKA + i] = v;
899 }
900 
901 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
902 {
903     if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
904         if (v & DBREAKC_SB_LB) {
905             set_dbreak(env, i, env->sregs[DBREAKA + i], v);
906         } else {
907             if (env->cpu_watchpoint[i]) {
908                 CPUState *cs = CPU(xtensa_env_get_cpu(env));
909 
910                 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
911                 env->cpu_watchpoint[i] = NULL;
912             }
913         }
914     }
915     env->sregs[DBREAKC + i] = v;
916 }
917 #endif
918 
919 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
920 {
921     static const int rounding_mode[] = {
922         float_round_nearest_even,
923         float_round_to_zero,
924         float_round_up,
925         float_round_down,
926     };
927 
928     env->uregs[FCR] = v & 0xfffff07f;
929     set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
930 }
931 
932 float32 HELPER(abs_s)(float32 v)
933 {
934     return float32_abs(v);
935 }
936 
937 float32 HELPER(neg_s)(float32 v)
938 {
939     return float32_chs(v);
940 }
941 
942 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
943 {
944     return float32_add(a, b, &env->fp_status);
945 }
946 
947 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
948 {
949     return float32_sub(a, b, &env->fp_status);
950 }
951 
952 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
953 {
954     return float32_mul(a, b, &env->fp_status);
955 }
956 
957 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
958 {
959     return float32_muladd(b, c, a, 0,
960             &env->fp_status);
961 }
962 
963 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
964 {
965     return float32_muladd(b, c, a, float_muladd_negate_product,
966             &env->fp_status);
967 }
968 
969 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
970 {
971     float_status fp_status = {0};
972 
973     set_float_rounding_mode(rounding_mode, &fp_status);
974     return float32_to_int32(
975             float32_scalbn(v, scale, &fp_status), &fp_status);
976 }
977 
978 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
979 {
980     float_status fp_status = {0};
981     float32 res;
982 
983     set_float_rounding_mode(rounding_mode, &fp_status);
984 
985     res = float32_scalbn(v, scale, &fp_status);
986 
987     if (float32_is_neg(v) && !float32_is_any_nan(v)) {
988         return float32_to_int32(res, &fp_status);
989     } else {
990         return float32_to_uint32(res, &fp_status);
991     }
992 }
993 
994 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
995 {
996     return float32_scalbn(int32_to_float32(v, &env->fp_status),
997             (int32_t)scale, &env->fp_status);
998 }
999 
1000 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
1001 {
1002     return float32_scalbn(uint32_to_float32(v, &env->fp_status),
1003             (int32_t)scale, &env->fp_status);
1004 }
1005 
1006 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
1007 {
1008     if (v) {
1009         env->sregs[BR] |= br;
1010     } else {
1011         env->sregs[BR] &= ~br;
1012     }
1013 }
1014 
1015 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1016 {
1017     set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
1018 }
1019 
1020 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1021 {
1022     set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
1023 }
1024 
1025 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1026 {
1027     int v = float32_compare_quiet(a, b, &env->fp_status);
1028     set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
1029 }
1030 
1031 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1032 {
1033     set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
1034 }
1035 
1036 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1037 {
1038     int v = float32_compare_quiet(a, b, &env->fp_status);
1039     set_br(env, v == float_relation_less || v == float_relation_unordered, br);
1040 }
1041 
1042 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1043 {
1044     set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
1045 }
1046 
1047 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1048 {
1049     int v = float32_compare_quiet(a, b, &env->fp_status);
1050     set_br(env, v != float_relation_greater, br);
1051 }
1052 
1053 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
1054 {
1055 #ifndef CONFIG_USER_ONLY
1056     return address_space_ldl(env->address_space_er, addr,
1057                              MEMTXATTRS_UNSPECIFIED, NULL);
1058 #else
1059     return 0;
1060 #endif
1061 }
1062 
1063 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
1064 {
1065 #ifndef CONFIG_USER_ONLY
1066     address_space_stl(env->address_space_er, addr, data,
1067                       MEMTXATTRS_UNSPECIFIED, NULL);
1068 #endif
1069 }
1070