xref: /openbmc/qemu/target/xtensa/op_helper.c (revision 3f53bc61)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "cpu.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "exec/cpu_ldst.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/timer.h"
37 
38 void xtensa_cpu_do_unaligned_access(CPUState *cs,
39         vaddr addr, MMUAccessType access_type,
40         int mmu_idx, uintptr_t retaddr)
41 {
42     XtensaCPU *cpu = XTENSA_CPU(cs);
43     CPUXtensaState *env = &cpu->env;
44 
45     if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
46             !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
47         cpu_restore_state(CPU(cpu), retaddr);
48         HELPER(exception_cause_vaddr)(env,
49                 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
50     }
51 }
52 
53 void tlb_fill(CPUState *cs, target_ulong vaddr, MMUAccessType access_type,
54               int mmu_idx, uintptr_t retaddr)
55 {
56     XtensaCPU *cpu = XTENSA_CPU(cs);
57     CPUXtensaState *env = &cpu->env;
58     uint32_t paddr;
59     uint32_t page_size;
60     unsigned access;
61     int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
62             &paddr, &page_size, &access);
63 
64     qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
65                   __func__, vaddr, access_type, mmu_idx, paddr, ret);
66 
67     if (ret == 0) {
68         tlb_set_page(cs,
69                      vaddr & TARGET_PAGE_MASK,
70                      paddr & TARGET_PAGE_MASK,
71                      access, mmu_idx, page_size);
72     } else {
73         cpu_restore_state(cs, retaddr);
74         HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
75     }
76 }
77 
78 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
79                                      bool is_write, bool is_exec, int opaque,
80                                      unsigned size)
81 {
82     XtensaCPU *cpu = XTENSA_CPU(cs);
83     CPUXtensaState *env = &cpu->env;
84 
85     HELPER(exception_cause_vaddr)(env, env->pc,
86                                   is_exec ?
87                                   INSTR_PIF_ADDR_ERROR_CAUSE :
88                                   LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
89                                   is_exec ? addr : cs->mem_io_vaddr);
90 }
91 
92 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
93 {
94     uint32_t paddr;
95     uint32_t page_size;
96     unsigned access;
97     int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
98             &paddr, &page_size, &access);
99     if (ret == 0) {
100         tb_invalidate_phys_addr(&address_space_memory, paddr);
101     }
102 }
103 
104 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
105 {
106     CPUState *cs = CPU(xtensa_env_get_cpu(env));
107 
108     cs->exception_index = excp;
109     if (excp == EXCP_YIELD) {
110         env->yield_needed = 0;
111     }
112     if (excp == EXCP_DEBUG) {
113         env->exception_taken = 0;
114     }
115     cpu_loop_exit(cs);
116 }
117 
118 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
119 {
120     uint32_t vector;
121 
122     env->pc = pc;
123     if (env->sregs[PS] & PS_EXCM) {
124         if (env->config->ndepc) {
125             env->sregs[DEPC] = pc;
126         } else {
127             env->sregs[EPC1] = pc;
128         }
129         vector = EXC_DOUBLE;
130     } else {
131         env->sregs[EPC1] = pc;
132         vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
133     }
134 
135     env->sregs[EXCCAUSE] = cause;
136     env->sregs[PS] |= PS_EXCM;
137 
138     HELPER(exception)(env, vector);
139 }
140 
141 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
142         uint32_t pc, uint32_t cause, uint32_t vaddr)
143 {
144     env->sregs[EXCVADDR] = vaddr;
145     HELPER(exception_cause)(env, pc, cause);
146 }
147 
148 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
149 {
150     if (xtensa_get_cintlevel(env) < env->config->debug_level) {
151         HELPER(debug_exception)(env, env->pc, cause);
152     }
153 }
154 
155 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
156 {
157     unsigned level = env->config->debug_level;
158 
159     env->pc = pc;
160     env->sregs[DEBUGCAUSE] = cause;
161     env->sregs[EPC1 + level - 1] = pc;
162     env->sregs[EPS2 + level - 2] = env->sregs[PS];
163     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
164         (level << PS_INTLEVEL_SHIFT);
165     HELPER(exception)(env, EXC_DEBUG);
166 }
167 
168 static void copy_window_from_phys(CPUXtensaState *env,
169         uint32_t window, uint32_t phys, uint32_t n)
170 {
171     assert(phys < env->config->nareg);
172     if (phys + n <= env->config->nareg) {
173         memcpy(env->regs + window, env->phys_regs + phys,
174                 n * sizeof(uint32_t));
175     } else {
176         uint32_t n1 = env->config->nareg - phys;
177         memcpy(env->regs + window, env->phys_regs + phys,
178                 n1 * sizeof(uint32_t));
179         memcpy(env->regs + window + n1, env->phys_regs,
180                 (n - n1) * sizeof(uint32_t));
181     }
182 }
183 
184 static void copy_phys_from_window(CPUXtensaState *env,
185         uint32_t phys, uint32_t window, uint32_t n)
186 {
187     assert(phys < env->config->nareg);
188     if (phys + n <= env->config->nareg) {
189         memcpy(env->phys_regs + phys, env->regs + window,
190                 n * sizeof(uint32_t));
191     } else {
192         uint32_t n1 = env->config->nareg - phys;
193         memcpy(env->phys_regs + phys, env->regs + window,
194                 n1 * sizeof(uint32_t));
195         memcpy(env->phys_regs, env->regs + window + n1,
196                 (n - n1) * sizeof(uint32_t));
197     }
198 }
199 
200 
201 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
202 {
203     return a & (env->config->nareg / 4 - 1);
204 }
205 
206 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
207 {
208     return 1 << windowbase_bound(a, env);
209 }
210 
211 void xtensa_sync_window_from_phys(CPUXtensaState *env)
212 {
213     copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
214 }
215 
216 void xtensa_sync_phys_from_window(CPUXtensaState *env)
217 {
218     copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
219 }
220 
221 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
222 {
223     xtensa_sync_phys_from_window(env);
224     env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
225     xtensa_sync_window_from_phys(env);
226 }
227 
228 static void rotate_window(CPUXtensaState *env, uint32_t delta)
229 {
230     rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
231 }
232 
233 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
234 {
235     rotate_window_abs(env, v);
236 }
237 
238 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
239 {
240     int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
241     if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
242         qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
243                       pc, env->sregs[PS]);
244         HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
245     } else {
246         uint32_t windowstart = xtensa_replicate_windowstart(env) >>
247             (env->sregs[WINDOW_BASE] + 1);
248 
249         if (windowstart & ((1 << callinc) - 1)) {
250             HELPER(window_check)(env, pc, callinc);
251         }
252         env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
253         rotate_window(env, callinc);
254         env->sregs[WINDOW_START] |=
255             windowstart_bit(env->sregs[WINDOW_BASE], env);
256     }
257 }
258 
259 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
260 {
261     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
262     uint32_t windowstart = xtensa_replicate_windowstart(env) >>
263         (env->sregs[WINDOW_BASE] + 1);
264     uint32_t n = ctz32(windowstart) + 1;
265 
266     assert(n <= w);
267 
268     rotate_window(env, n);
269     env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
270         (windowbase << PS_OWB_SHIFT) | PS_EXCM;
271     env->sregs[EPC1] = env->pc = pc;
272 
273     switch (ctz32(windowstart >> n)) {
274     case 0:
275         HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
276         break;
277     case 1:
278         HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
279         break;
280     default:
281         HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
282         break;
283     }
284 }
285 
286 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
287 {
288     int n = (env->regs[0] >> 30) & 0x3;
289     int m = 0;
290     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
291     uint32_t windowstart = env->sregs[WINDOW_START];
292     uint32_t ret_pc = 0;
293 
294     if (windowstart & windowstart_bit(windowbase - 1, env)) {
295         m = 1;
296     } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
297         m = 2;
298     } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
299         m = 3;
300     }
301 
302     if (n == 0 || (m != 0 && m != n) ||
303             ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
304         qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
305                       "PS = %08x, m = %d, n = %d\n",
306                       pc, env->sregs[PS], m, n);
307         HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
308     } else {
309         int owb = windowbase;
310 
311         ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
312 
313         rotate_window(env, -n);
314         if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
315             env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
316         } else {
317             /* window underflow */
318             env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
319                 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
320             env->sregs[EPC1] = env->pc = pc;
321 
322             if (n == 1) {
323                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
324             } else if (n == 2) {
325                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
326             } else if (n == 3) {
327                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
328             }
329         }
330     }
331     return ret_pc;
332 }
333 
334 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
335 {
336     rotate_window(env, imm4);
337 }
338 
339 void HELPER(restore_owb)(CPUXtensaState *env)
340 {
341     rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
342 }
343 
344 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
345 {
346     if ((env->sregs[WINDOW_START] &
347             (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
348              windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
349              windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
350         HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
351     }
352 }
353 
354 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
355 {
356     if (env->sregs[LBEG] != v) {
357         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
358         env->sregs[LBEG] = v;
359     }
360 }
361 
362 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
363 {
364     if (env->sregs[LEND] != v) {
365         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
366         env->sregs[LEND] = v;
367         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
368     }
369 }
370 
371 void HELPER(dump_state)(CPUXtensaState *env)
372 {
373     XtensaCPU *cpu = xtensa_env_get_cpu(env);
374 
375     cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
376 }
377 
378 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
379 {
380     CPUState *cpu;
381 
382     env->pc = pc;
383     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
384         (intlevel << PS_INTLEVEL_SHIFT);
385 
386     qemu_mutex_lock_iothread();
387     check_interrupts(env);
388     qemu_mutex_unlock_iothread();
389 
390     if (env->pending_irq_level) {
391         cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
392         return;
393     }
394 
395     cpu = CPU(xtensa_env_get_cpu(env));
396     cpu->halted = 1;
397     HELPER(exception)(env, EXCP_HLT);
398 }
399 
400 void HELPER(update_ccount)(CPUXtensaState *env)
401 {
402     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
403 
404     env->ccount_time = now;
405     env->sregs[CCOUNT] = env->ccount_base +
406         (uint32_t)((now - env->time_base) *
407                    env->config->clock_freq_khz / 1000000);
408 }
409 
410 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
411 {
412     int i;
413 
414     HELPER(update_ccount)(env);
415     env->ccount_base += v - env->sregs[CCOUNT];
416     for (i = 0; i < env->config->nccompare; ++i) {
417         HELPER(update_ccompare)(env, i);
418     }
419 }
420 
421 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
422 {
423     uint64_t dcc;
424 
425     HELPER(update_ccount)(env);
426     dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
427     timer_mod(env->ccompare[i].timer,
428               env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
429     env->yield_needed = 1;
430 }
431 
432 void HELPER(check_interrupts)(CPUXtensaState *env)
433 {
434     qemu_mutex_lock_iothread();
435     check_interrupts(env);
436     qemu_mutex_unlock_iothread();
437 }
438 
439 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
440 {
441     get_page_addr_code(env, vaddr);
442 }
443 
444 /*!
445  * Check vaddr accessibility/cache attributes and raise an exception if
446  * specified by the ATOMCTL SR.
447  *
448  * Note: local memory exclusion is not implemented
449  */
450 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
451 {
452     uint32_t paddr, page_size, access;
453     uint32_t atomctl = env->sregs[ATOMCTL];
454     int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
455             xtensa_get_cring(env), &paddr, &page_size, &access);
456 
457     /*
458      * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
459      * see opcode description in the ISA
460      */
461     if (rc == 0 &&
462             (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
463         rc = STORE_PROHIBITED_CAUSE;
464     }
465 
466     if (rc) {
467         HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
468     }
469 
470     /*
471      * When data cache is not configured use ATOMCTL bypass field.
472      * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
473      * under the Conditional Store Option.
474      */
475     if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
476         access = PAGE_CACHE_BYPASS;
477     }
478 
479     switch (access & PAGE_CACHE_MASK) {
480     case PAGE_CACHE_WB:
481         atomctl >>= 2;
482         /* fall through */
483     case PAGE_CACHE_WT:
484         atomctl >>= 2;
485         /* fall through */
486     case PAGE_CACHE_BYPASS:
487         if ((atomctl & 0x3) == 0) {
488             HELPER(exception_cause_vaddr)(env, pc,
489                     LOAD_STORE_ERROR_CAUSE, vaddr);
490         }
491         break;
492 
493     case PAGE_CACHE_ISOLATE:
494         HELPER(exception_cause_vaddr)(env, pc,
495                 LOAD_STORE_ERROR_CAUSE, vaddr);
496         break;
497 
498     default:
499         break;
500     }
501 }
502 
503 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
504 {
505     if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
506         if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
507             env->config->icache_ways) {
508             deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
509                       env->config->icache_ways);
510         }
511     }
512     if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
513         if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
514             env->config->dcache_ways) {
515             deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
516                       env->config->dcache_ways);
517         }
518         if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
519             env->config->dcache_ways) {
520             deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
521                       env->config->dcache_ways);
522         }
523     }
524     env->sregs[MEMCTL] = v & env->config->memctl_mask;
525 }
526 
527 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
528 {
529     XtensaCPU *cpu = xtensa_env_get_cpu(env);
530 
531     v = (v & 0xffffff00) | 0x1;
532     if (v != env->sregs[RASID]) {
533         env->sregs[RASID] = v;
534         tlb_flush(CPU(cpu));
535     }
536 }
537 
538 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
539 {
540     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
541 
542     switch (way) {
543     case 4:
544         return (tlbcfg >> 16) & 0x3;
545 
546     case 5:
547         return (tlbcfg >> 20) & 0x1;
548 
549     case 6:
550         return (tlbcfg >> 24) & 0x1;
551 
552     default:
553         return 0;
554     }
555 }
556 
557 /*!
558  * Get bit mask for the virtual address bits translated by the TLB way
559  */
560 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
561 {
562     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
563         bool varway56 = dtlb ?
564             env->config->dtlb.varway56 :
565             env->config->itlb.varway56;
566 
567         switch (way) {
568         case 4:
569             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
570 
571         case 5:
572             if (varway56) {
573                 return 0xf8000000 << get_page_size(env, dtlb, way);
574             } else {
575                 return 0xf8000000;
576             }
577 
578         case 6:
579             if (varway56) {
580                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
581             } else {
582                 return 0xf0000000;
583             }
584 
585         default:
586             return 0xfffff000;
587         }
588     } else {
589         return REGION_PAGE_MASK;
590     }
591 }
592 
593 /*!
594  * Get bit mask for the 'VPN without index' field.
595  * See ISA, 4.6.5.6, data format for RxTLB0
596  */
597 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
598 {
599     if (way < 4) {
600         bool is32 = (dtlb ?
601                 env->config->dtlb.nrefillentries :
602                 env->config->itlb.nrefillentries) == 32;
603         return is32 ? 0xffff8000 : 0xffffc000;
604     } else if (way == 4) {
605         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
606     } else if (way <= 6) {
607         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
608         bool varway56 = dtlb ?
609             env->config->dtlb.varway56 :
610             env->config->itlb.varway56;
611 
612         if (varway56) {
613             return mask << (way == 5 ? 2 : 3);
614         } else {
615             return mask << 1;
616         }
617     } else {
618         return 0xfffff000;
619     }
620 }
621 
622 /*!
623  * Split virtual address into VPN (with index) and entry index
624  * for the given TLB way
625  */
626 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
627         uint32_t *vpn, uint32_t wi, uint32_t *ei)
628 {
629     bool varway56 = dtlb ?
630         env->config->dtlb.varway56 :
631         env->config->itlb.varway56;
632 
633     if (!dtlb) {
634         wi &= 7;
635     }
636 
637     if (wi < 4) {
638         bool is32 = (dtlb ?
639                 env->config->dtlb.nrefillentries :
640                 env->config->itlb.nrefillentries) == 32;
641         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
642     } else {
643         switch (wi) {
644         case 4:
645             {
646                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
647                 *ei = (v >> eibase) & 0x3;
648             }
649             break;
650 
651         case 5:
652             if (varway56) {
653                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
654                 *ei = (v >> eibase) & 0x3;
655             } else {
656                 *ei = (v >> 27) & 0x1;
657             }
658             break;
659 
660         case 6:
661             if (varway56) {
662                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
663                 *ei = (v >> eibase) & 0x7;
664             } else {
665                 *ei = (v >> 28) & 0x1;
666             }
667             break;
668 
669         default:
670             *ei = 0;
671             break;
672         }
673     }
674     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
675 }
676 
677 /*!
678  * Split TLB address into TLB way, entry index and VPN (with index).
679  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
680  */
681 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
682         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
683 {
684     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
685         *wi = v & (dtlb ? 0xf : 0x7);
686         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
687     } else {
688         *vpn = v & REGION_PAGE_MASK;
689         *wi = 0;
690         *ei = (v >> 29) & 0x7;
691     }
692 }
693 
694 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
695         uint32_t v, bool dtlb, uint32_t *pwi)
696 {
697     uint32_t vpn;
698     uint32_t wi;
699     uint32_t ei;
700 
701     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
702     if (pwi) {
703         *pwi = wi;
704     }
705     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
706 }
707 
708 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
709 {
710     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
711         uint32_t wi;
712         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
713         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
714     } else {
715         return v & REGION_PAGE_MASK;
716     }
717 }
718 
719 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
720 {
721     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
722     return entry->paddr | entry->attr;
723 }
724 
725 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
726 {
727     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
728         uint32_t wi;
729         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
730         if (entry->variable && entry->asid) {
731             tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
732             entry->asid = 0;
733         }
734     }
735 }
736 
737 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
738 {
739     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
740         uint32_t wi;
741         uint32_t ei;
742         uint8_t ring;
743         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
744 
745         switch (res) {
746         case 0:
747             if (ring >= xtensa_get_ring(env)) {
748                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
749             }
750             break;
751 
752         case INST_TLB_MULTI_HIT_CAUSE:
753         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
754             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
755             break;
756         }
757         return 0;
758     } else {
759         return (v & REGION_PAGE_MASK) | 0x1;
760     }
761 }
762 
763 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
764         xtensa_tlb_entry *entry, bool dtlb,
765         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
766 {
767     entry->vaddr = vpn;
768     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
769     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
770     entry->attr = pte & 0xf;
771 }
772 
773 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
774         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
775 {
776     XtensaCPU *cpu = xtensa_env_get_cpu(env);
777     CPUState *cs = CPU(cpu);
778     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
779 
780     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
781         if (entry->variable) {
782             if (entry->asid) {
783                 tlb_flush_page(cs, entry->vaddr);
784             }
785             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
786             tlb_flush_page(cs, entry->vaddr);
787         } else {
788             qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
789                           __func__, dtlb, wi, ei);
790         }
791     } else {
792         tlb_flush_page(cs, entry->vaddr);
793         if (xtensa_option_enabled(env->config,
794                     XTENSA_OPTION_REGION_TRANSLATION)) {
795             entry->paddr = pte & REGION_PAGE_MASK;
796         }
797         entry->attr = pte & 0xf;
798     }
799 }
800 
801 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
802 {
803     uint32_t vpn;
804     uint32_t wi;
805     uint32_t ei;
806     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
807     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
808 }
809 
810 
811 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
812 {
813     uint32_t change = v ^ env->sregs[IBREAKENABLE];
814     unsigned i;
815 
816     for (i = 0; i < env->config->nibreak; ++i) {
817         if (change & (1 << i)) {
818             tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
819         }
820     }
821     env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
822 }
823 
824 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
825 {
826     if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
827         tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
828         tb_invalidate_virtual_addr(env, v);
829     }
830     env->sregs[IBREAKA + i] = v;
831 }
832 
833 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
834         uint32_t dbreakc)
835 {
836     CPUState *cs = CPU(xtensa_env_get_cpu(env));
837     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
838     uint32_t mask = dbreakc | ~DBREAKC_MASK;
839 
840     if (env->cpu_watchpoint[i]) {
841         cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
842     }
843     if (dbreakc & DBREAKC_SB) {
844         flags |= BP_MEM_WRITE;
845     }
846     if (dbreakc & DBREAKC_LB) {
847         flags |= BP_MEM_READ;
848     }
849     /* contiguous mask after inversion is one less than some power of 2 */
850     if ((~mask + 1) & ~mask) {
851         qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
852         /* cut mask after the first zero bit */
853         mask = 0xffffffff << (32 - clo32(mask));
854     }
855     if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
856             flags, &env->cpu_watchpoint[i])) {
857         env->cpu_watchpoint[i] = NULL;
858         qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
859                       dbreaka & mask, ~mask + 1);
860     }
861 }
862 
863 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
864 {
865     uint32_t dbreakc = env->sregs[DBREAKC + i];
866 
867     if ((dbreakc & DBREAKC_SB_LB) &&
868             env->sregs[DBREAKA + i] != v) {
869         set_dbreak(env, i, v, dbreakc);
870     }
871     env->sregs[DBREAKA + i] = v;
872 }
873 
874 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
875 {
876     if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
877         if (v & DBREAKC_SB_LB) {
878             set_dbreak(env, i, env->sregs[DBREAKA + i], v);
879         } else {
880             if (env->cpu_watchpoint[i]) {
881                 CPUState *cs = CPU(xtensa_env_get_cpu(env));
882 
883                 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
884                 env->cpu_watchpoint[i] = NULL;
885             }
886         }
887     }
888     env->sregs[DBREAKC + i] = v;
889 }
890 
891 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
892 {
893     static const int rounding_mode[] = {
894         float_round_nearest_even,
895         float_round_to_zero,
896         float_round_up,
897         float_round_down,
898     };
899 
900     env->uregs[FCR] = v & 0xfffff07f;
901     set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
902 }
903 
904 float32 HELPER(abs_s)(float32 v)
905 {
906     return float32_abs(v);
907 }
908 
909 float32 HELPER(neg_s)(float32 v)
910 {
911     return float32_chs(v);
912 }
913 
914 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
915 {
916     return float32_add(a, b, &env->fp_status);
917 }
918 
919 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
920 {
921     return float32_sub(a, b, &env->fp_status);
922 }
923 
924 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
925 {
926     return float32_mul(a, b, &env->fp_status);
927 }
928 
929 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
930 {
931     return float32_muladd(b, c, a, 0,
932             &env->fp_status);
933 }
934 
935 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
936 {
937     return float32_muladd(b, c, a, float_muladd_negate_product,
938             &env->fp_status);
939 }
940 
941 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
942 {
943     float_status fp_status = {0};
944 
945     set_float_rounding_mode(rounding_mode, &fp_status);
946     return float32_to_int32(
947             float32_scalbn(v, scale, &fp_status), &fp_status);
948 }
949 
950 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
951 {
952     float_status fp_status = {0};
953     float32 res;
954 
955     set_float_rounding_mode(rounding_mode, &fp_status);
956 
957     res = float32_scalbn(v, scale, &fp_status);
958 
959     if (float32_is_neg(v) && !float32_is_any_nan(v)) {
960         return float32_to_int32(res, &fp_status);
961     } else {
962         return float32_to_uint32(res, &fp_status);
963     }
964 }
965 
966 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
967 {
968     return float32_scalbn(int32_to_float32(v, &env->fp_status),
969             (int32_t)scale, &env->fp_status);
970 }
971 
972 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
973 {
974     return float32_scalbn(uint32_to_float32(v, &env->fp_status),
975             (int32_t)scale, &env->fp_status);
976 }
977 
978 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
979 {
980     if (v) {
981         env->sregs[BR] |= br;
982     } else {
983         env->sregs[BR] &= ~br;
984     }
985 }
986 
987 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
988 {
989     set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
990 }
991 
992 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
993 {
994     set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
995 }
996 
997 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
998 {
999     int v = float32_compare_quiet(a, b, &env->fp_status);
1000     set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
1001 }
1002 
1003 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1004 {
1005     set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
1006 }
1007 
1008 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1009 {
1010     int v = float32_compare_quiet(a, b, &env->fp_status);
1011     set_br(env, v == float_relation_less || v == float_relation_unordered, br);
1012 }
1013 
1014 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1015 {
1016     set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
1017 }
1018 
1019 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1020 {
1021     int v = float32_compare_quiet(a, b, &env->fp_status);
1022     set_br(env, v != float_relation_greater, br);
1023 }
1024 
1025 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
1026 {
1027     return address_space_ldl(env->address_space_er, addr,
1028                              (MemTxAttrs){0}, NULL);
1029 }
1030 
1031 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
1032 {
1033     address_space_stl(env->address_space_er, addr, data,
1034                       (MemTxAttrs){0}, NULL);
1035 }
1036