xref: /openbmc/qemu/target/xtensa/mmu_helper.c (revision fe1a3ace13a8b53fc20c74fb7e3337f754396e6b)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/cputlb.h"
36 #include "accel/tcg/cpu-mmu-index.h"
37 #include "accel/tcg/probe.h"
38 #include "exec/exec-all.h"
39 #include "exec/page-protection.h"
40 #include "exec/target_page.h"
41 #include "system/memory.h"
42 
43 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
44 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
45 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
46 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
47 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
48 #define XTENSA_MPU_ATTR_MASK 0x001fff00
49 
50 #define XTENSA_MPU_PROBE_B 0x40000000
51 #define XTENSA_MPU_PROBE_V 0x80000000
52 
53 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
54 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
55 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
56 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
57 
58 #define XTENSA_MPU_TYPE_SYS_C     0x0010
59 #define XTENSA_MPU_TYPE_SYS_W     0x0020
60 #define XTENSA_MPU_TYPE_SYS_R     0x0040
61 #define XTENSA_MPU_TYPE_CPU_C     0x0100
62 #define XTENSA_MPU_TYPE_CPU_W     0x0200
63 #define XTENSA_MPU_TYPE_CPU_R     0x0400
64 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
65 #define XTENSA_MPU_TYPE_B         0x1000
66 #define XTENSA_MPU_TYPE_INT       0x2000
67 
68 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
69 {
70     /*
71      * Probe the memory; we don't care about the result but
72      * only the side-effects (ie any MMU or other exception)
73      */
74     probe_access(env, vaddr, 1, MMU_INST_FETCH,
75                  cpu_mmu_index(env_cpu(env), true), GETPC());
76 }
77 
78 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
79 {
80     v = (v & 0xffffff00) | 0x1;
81     if (v != env->sregs[RASID]) {
82         env->sregs[RASID] = v;
83         tlb_flush(env_cpu(env));
84     }
85 }
86 
87 static uint32_t get_page_size(const CPUXtensaState *env,
88                               bool dtlb, uint32_t way)
89 {
90     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
91 
92     switch (way) {
93     case 4:
94         return (tlbcfg >> 16) & 0x3;
95 
96     case 5:
97         return (tlbcfg >> 20) & 0x1;
98 
99     case 6:
100         return (tlbcfg >> 24) & 0x1;
101 
102     default:
103         return 0;
104     }
105 }
106 
107 /*!
108  * Get bit mask for the virtual address bits translated by the TLB way
109  */
110 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
111                                          bool dtlb, uint32_t way)
112 {
113     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
114         bool varway56 = dtlb ?
115             env->config->dtlb.varway56 :
116             env->config->itlb.varway56;
117 
118         switch (way) {
119         case 4:
120             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
121 
122         case 5:
123             if (varway56) {
124                 return 0xf8000000 << get_page_size(env, dtlb, way);
125             } else {
126                 return 0xf8000000;
127             }
128 
129         case 6:
130             if (varway56) {
131                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
132             } else {
133                 return 0xf0000000;
134             }
135 
136         default:
137             return 0xfffff000;
138         }
139     } else {
140         return REGION_PAGE_MASK;
141     }
142 }
143 
144 /*!
145  * Get bit mask for the 'VPN without index' field.
146  * See ISA, 4.6.5.6, data format for RxTLB0
147  */
148 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
149 {
150     if (way < 4) {
151         bool is32 = (dtlb ?
152                 env->config->dtlb.nrefillentries :
153                 env->config->itlb.nrefillentries) == 32;
154         return is32 ? 0xffff8000 : 0xffffc000;
155     } else if (way == 4) {
156         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
157     } else if (way <= 6) {
158         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
159         bool varway56 = dtlb ?
160             env->config->dtlb.varway56 :
161             env->config->itlb.varway56;
162 
163         if (varway56) {
164             return mask << (way == 5 ? 2 : 3);
165         } else {
166             return mask << 1;
167         }
168     } else {
169         return 0xfffff000;
170     }
171 }
172 
173 /*!
174  * Split virtual address into VPN (with index) and entry index
175  * for the given TLB way
176  */
177 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
178                                      bool dtlb, uint32_t *vpn,
179                                      uint32_t wi, uint32_t *ei)
180 {
181     bool varway56 = dtlb ?
182         env->config->dtlb.varway56 :
183         env->config->itlb.varway56;
184 
185     if (!dtlb) {
186         wi &= 7;
187     }
188 
189     if (wi < 4) {
190         bool is32 = (dtlb ?
191                 env->config->dtlb.nrefillentries :
192                 env->config->itlb.nrefillentries) == 32;
193         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
194     } else {
195         switch (wi) {
196         case 4:
197             {
198                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
199                 *ei = (v >> eibase) & 0x3;
200             }
201             break;
202 
203         case 5:
204             if (varway56) {
205                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
206                 *ei = (v >> eibase) & 0x3;
207             } else {
208                 *ei = (v >> 27) & 0x1;
209             }
210             break;
211 
212         case 6:
213             if (varway56) {
214                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
215                 *ei = (v >> eibase) & 0x7;
216             } else {
217                 *ei = (v >> 28) & 0x1;
218             }
219             break;
220 
221         default:
222             *ei = 0;
223             break;
224         }
225     }
226     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
227 }
228 
229 /*!
230  * Split TLB address into TLB way, entry index and VPN (with index).
231  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
232  */
233 static bool split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
234                                  uint32_t *vpn, uint32_t *wi, uint32_t *ei)
235 {
236     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
237         *wi = v & (dtlb ? 0xf : 0x7);
238         if (*wi < (dtlb ? env->config->dtlb.nways : env->config->itlb.nways)) {
239             split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
240             return true;
241         } else {
242             return false;
243         }
244     } else {
245         *vpn = v & REGION_PAGE_MASK;
246         *wi = 0;
247         *ei = (v >> 29) & 0x7;
248         return true;
249     }
250 }
251 
252 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
253                                               unsigned wi, unsigned ei)
254 {
255     const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb;
256 
257     assert(wi < tlb->nways && ei < tlb->way_size[wi]);
258     return dtlb ?
259         env->dtlb[wi] + ei :
260         env->itlb[wi] + ei;
261 }
262 
263 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
264         uint32_t v, bool dtlb, uint32_t *pwi)
265 {
266     uint32_t vpn;
267     uint32_t wi;
268     uint32_t ei;
269 
270     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
271         if (pwi) {
272             *pwi = wi;
273         }
274         return xtensa_tlb_get_entry(env, dtlb, wi, ei);
275     } else {
276         return NULL;
277     }
278 }
279 
280 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
281                                      xtensa_tlb_entry *entry, bool dtlb,
282                                      unsigned wi, unsigned ei, uint32_t vpn,
283                                      uint32_t pte)
284 {
285     entry->vaddr = vpn;
286     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
287     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
288     entry->attr = pte & 0xf;
289 }
290 
291 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
292                                  unsigned wi, unsigned ei,
293                                  uint32_t vpn, uint32_t pte)
294 {
295     CPUState *cs = env_cpu(env);
296     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
297 
298     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
299         if (entry->variable) {
300             if (entry->asid) {
301                 tlb_flush_page(cs, entry->vaddr);
302             }
303             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
304             tlb_flush_page(cs, entry->vaddr);
305         } else {
306             qemu_log_mask(LOG_GUEST_ERROR,
307                           "%s %d, %d, %d trying to set immutable entry\n",
308                           __func__, dtlb, wi, ei);
309         }
310     } else {
311         tlb_flush_page(cs, entry->vaddr);
312         if (xtensa_option_enabled(env->config,
313                     XTENSA_OPTION_REGION_TRANSLATION)) {
314             entry->paddr = pte & REGION_PAGE_MASK;
315         }
316         entry->attr = pte & 0xf;
317     }
318 }
319 
320 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
321 {
322     XtensaCPU *cpu = XTENSA_CPU(cs);
323     uint32_t paddr;
324     uint32_t page_size;
325     unsigned access;
326 
327     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
328                 &paddr, &page_size, &access) == 0) {
329         return paddr;
330     }
331     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
332                 &paddr, &page_size, &access) == 0) {
333         return paddr;
334     }
335     return ~0;
336 }
337 
338 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
339                                    const xtensa_tlb *tlb,
340                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
341 {
342     unsigned wi, ei;
343 
344     for (wi = 0; wi < tlb->nways; ++wi) {
345         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
346             entry[wi][ei].asid = 0;
347             entry[wi][ei].variable = true;
348         }
349     }
350 }
351 
352 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
353                                  const xtensa_tlb *tlb,
354                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
355 {
356     if (!tlb->varway56) {
357         static const xtensa_tlb_entry way5[] = {
358             {
359                 .vaddr = 0xd0000000,
360                 .paddr = 0,
361                 .asid = 1,
362                 .attr = 7,
363                 .variable = false,
364             }, {
365                 .vaddr = 0xd8000000,
366                 .paddr = 0,
367                 .asid = 1,
368                 .attr = 3,
369                 .variable = false,
370             }
371         };
372         static const xtensa_tlb_entry way6[] = {
373             {
374                 .vaddr = 0xe0000000,
375                 .paddr = 0xf0000000,
376                 .asid = 1,
377                 .attr = 7,
378                 .variable = false,
379             }, {
380                 .vaddr = 0xf0000000,
381                 .paddr = 0xf0000000,
382                 .asid = 1,
383                 .attr = 3,
384                 .variable = false,
385             }
386         };
387         memcpy(entry[5], way5, sizeof(way5));
388         memcpy(entry[6], way6, sizeof(way6));
389     } else {
390         uint32_t ei;
391         for (ei = 0; ei < 8; ++ei) {
392             entry[6][ei].vaddr = ei << 29;
393             entry[6][ei].paddr = ei << 29;
394             entry[6][ei].asid = 1;
395             entry[6][ei].attr = 3;
396         }
397     }
398 }
399 
400 static void reset_tlb_region_way0(CPUXtensaState *env,
401                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
402 {
403     unsigned ei;
404 
405     for (ei = 0; ei < 8; ++ei) {
406         entry[0][ei].vaddr = ei << 29;
407         entry[0][ei].paddr = ei << 29;
408         entry[0][ei].asid = 1;
409         entry[0][ei].attr = 2;
410         entry[0][ei].variable = true;
411     }
412 }
413 
414 void reset_mmu(CPUXtensaState *env)
415 {
416     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
417         env->sregs[RASID] = 0x04030201;
418         env->sregs[ITLBCFG] = 0;
419         env->sregs[DTLBCFG] = 0;
420         env->autorefill_idx = 0;
421         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
422         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
423         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
424         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
425     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
426         unsigned i;
427 
428         env->sregs[MPUENB] = 0;
429         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
430         env->sregs[CACHEADRDIS] = 0;
431         assert(env->config->n_mpu_bg_segments > 0 &&
432                env->config->mpu_bg[0].vaddr == 0);
433         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
434             assert(env->config->mpu_bg[i].vaddr >=
435                    env->config->mpu_bg[i - 1].vaddr);
436         }
437     } else {
438         env->sregs[CACHEATTR] = 0x22222222;
439         reset_tlb_region_way0(env, env->itlb);
440         reset_tlb_region_way0(env, env->dtlb);
441     }
442 }
443 
444 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
445 {
446     unsigned i;
447     for (i = 0; i < 4; ++i) {
448         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
449             return i;
450         }
451     }
452     return 0xff;
453 }
454 
455 /*!
456  * Lookup xtensa TLB for the given virtual address.
457  * See ISA, 4.6.2.2
458  *
459  * \param pwi: [out] way index
460  * \param pei: [out] entry index
461  * \param pring: [out] access ring
462  * \return 0 if ok, exception cause code otherwise
463  */
464 static int xtensa_tlb_lookup(const CPUXtensaState *env,
465                              uint32_t addr, bool dtlb,
466                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
467 {
468     const xtensa_tlb *tlb = dtlb ?
469         &env->config->dtlb : &env->config->itlb;
470     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
471         env->dtlb : env->itlb;
472 
473     int nhits = 0;
474     unsigned wi;
475 
476     for (wi = 0; wi < tlb->nways; ++wi) {
477         uint32_t vpn;
478         uint32_t ei;
479         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
480         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
481             unsigned ring = get_ring(env, entry[wi][ei].asid);
482             if (ring < 4) {
483                 if (++nhits > 1) {
484                     return dtlb ?
485                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
486                         INST_TLB_MULTI_HIT_CAUSE;
487                 }
488                 *pwi = wi;
489                 *pei = ei;
490                 *pring = ring;
491             }
492         }
493     }
494     return nhits ? 0 :
495         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
496 }
497 
498 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
499 {
500     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
501         uint32_t wi;
502         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
503 
504         if (entry) {
505             return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
506         } else {
507             return 0;
508         }
509     } else {
510         return v & REGION_PAGE_MASK;
511     }
512 }
513 
514 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
515 {
516     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
517 
518     if (entry) {
519         return entry->paddr | entry->attr;
520     } else {
521         return 0;
522     }
523 }
524 
525 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
526 {
527     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
528         uint32_t wi;
529         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
530         if (entry && entry->variable && entry->asid) {
531             tlb_flush_page(env_cpu(env), entry->vaddr);
532             entry->asid = 0;
533         }
534     }
535 }
536 
537 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
538 {
539     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
540         uint32_t wi;
541         uint32_t ei;
542         uint8_t ring;
543         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
544 
545         switch (res) {
546         case 0:
547             if (ring >= xtensa_get_ring(env)) {
548                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
549             }
550             break;
551 
552         case INST_TLB_MULTI_HIT_CAUSE:
553         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
554             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
555             break;
556         }
557         return 0;
558     } else {
559         return (v & REGION_PAGE_MASK) | 0x1;
560     }
561 }
562 
563 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
564 {
565     uint32_t vpn;
566     uint32_t wi;
567     uint32_t ei;
568     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
569         xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
570     }
571 }
572 
573 /*!
574  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
575  * See ISA, 4.6.5.10
576  */
577 static unsigned mmu_attr_to_access(uint32_t attr)
578 {
579     unsigned access = 0;
580 
581     if (attr < 12) {
582         access |= PAGE_READ;
583         if (attr & 0x1) {
584             access |= PAGE_EXEC;
585         }
586         if (attr & 0x2) {
587             access |= PAGE_WRITE;
588         }
589 
590         switch (attr & 0xc) {
591         case 0:
592             access |= PAGE_CACHE_BYPASS;
593             break;
594 
595         case 4:
596             access |= PAGE_CACHE_WB;
597             break;
598 
599         case 8:
600             access |= PAGE_CACHE_WT;
601             break;
602         }
603     } else if (attr == 13) {
604         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
605     }
606     return access;
607 }
608 
609 /*!
610  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
611  * See ISA, 4.6.3.3
612  */
613 static unsigned region_attr_to_access(uint32_t attr)
614 {
615     static const unsigned access[16] = {
616          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
617          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
618          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
619          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
620          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
621          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
622         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
623     };
624 
625     return access[attr & 0xf];
626 }
627 
628 /*!
629  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
630  * See ISA, A.2.14 The Cache Attribute Register
631  */
632 static unsigned cacheattr_attr_to_access(uint32_t attr)
633 {
634     static const unsigned access[16] = {
635          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
636          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
637          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
638          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
639          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
640         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
641     };
642 
643     return access[attr & 0xf];
644 }
645 
646 struct attr_pattern {
647     uint32_t mask;
648     uint32_t value;
649 };
650 
651 static int attr_pattern_match(uint32_t attr,
652                               const struct attr_pattern *pattern,
653                               size_t n)
654 {
655     size_t i;
656 
657     for (i = 0; i < n; ++i) {
658         if ((attr & pattern[i].mask) == pattern[i].value) {
659             return 1;
660         }
661     }
662     return 0;
663 }
664 
665 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
666 {
667     static const struct attr_pattern cpu_c[] = {
668         { .mask = 0x18f, .value = 0x089 },
669         { .mask = 0x188, .value = 0x080 },
670         { .mask = 0x180, .value = 0x180 },
671     };
672 
673     unsigned type = 0;
674 
675     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
676         type |= XTENSA_MPU_TYPE_CPU_CACHE;
677         if (attr & 0x10) {
678             type |= XTENSA_MPU_TYPE_CPU_C;
679         }
680         if (attr & 0x20) {
681             type |= XTENSA_MPU_TYPE_CPU_W;
682         }
683         if (attr & 0x40) {
684             type |= XTENSA_MPU_TYPE_CPU_R;
685         }
686     }
687     return type;
688 }
689 
690 static unsigned mpu_attr_to_type(uint32_t attr)
691 {
692     static const struct attr_pattern device_type[] = {
693         { .mask = 0x1f6, .value = 0x000 },
694         { .mask = 0x1f6, .value = 0x006 },
695     };
696     static const struct attr_pattern sys_nc_type[] = {
697         { .mask = 0x1fe, .value = 0x018 },
698         { .mask = 0x1fe, .value = 0x01e },
699         { .mask = 0x18f, .value = 0x089 },
700     };
701     static const struct attr_pattern sys_c_type[] = {
702         { .mask = 0x1f8, .value = 0x010 },
703         { .mask = 0x188, .value = 0x080 },
704         { .mask = 0x1f0, .value = 0x030 },
705         { .mask = 0x180, .value = 0x180 },
706     };
707     static const struct attr_pattern b[] = {
708         { .mask = 0x1f7, .value = 0x001 },
709         { .mask = 0x1f7, .value = 0x007 },
710         { .mask = 0x1ff, .value = 0x019 },
711         { .mask = 0x1ff, .value = 0x01f },
712     };
713 
714     unsigned type = 0;
715 
716     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
717     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
718         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
719         if (attr & 0x80) {
720             type |= XTENSA_MPU_TYPE_INT;
721         }
722     }
723     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
724         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
725     }
726     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
727         type |= XTENSA_MPU_SYSTEM_TYPE_C;
728         if (attr & 0x1) {
729             type |= XTENSA_MPU_TYPE_SYS_C;
730         }
731         if (attr & 0x2) {
732             type |= XTENSA_MPU_TYPE_SYS_W;
733         }
734         if (attr & 0x4) {
735             type |= XTENSA_MPU_TYPE_SYS_R;
736         }
737     }
738     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
739         type |= XTENSA_MPU_TYPE_B;
740     }
741     type |= mpu_attr_to_cpu_cache(attr);
742 
743     return type;
744 }
745 
746 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
747 {
748     static const unsigned access[2][16] = {
749         [0] = {
750              [4] = PAGE_READ,
751              [5] = PAGE_READ              | PAGE_EXEC,
752              [6] = PAGE_READ | PAGE_WRITE,
753              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
754              [8] =             PAGE_WRITE,
755              [9] = PAGE_READ | PAGE_WRITE,
756             [10] = PAGE_READ | PAGE_WRITE,
757             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
758             [12] = PAGE_READ,
759             [13] = PAGE_READ              | PAGE_EXEC,
760             [14] = PAGE_READ | PAGE_WRITE,
761             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
762         },
763         [1] = {
764              [8] =             PAGE_WRITE,
765              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
766             [10] = PAGE_READ,
767             [11] = PAGE_READ              | PAGE_EXEC,
768             [12] = PAGE_READ,
769             [13] = PAGE_READ              | PAGE_EXEC,
770             [14] = PAGE_READ | PAGE_WRITE,
771             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
772         },
773     };
774     unsigned rv;
775     unsigned type;
776 
777     type = mpu_attr_to_cpu_cache(attr);
778     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
779         XTENSA_MPU_ACC_RIGHTS_SHIFT];
780 
781     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
782         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
783     } else {
784         rv |= PAGE_CACHE_BYPASS;
785     }
786     return rv;
787 }
788 
789 static bool is_access_granted(unsigned access, int is_write)
790 {
791     switch (is_write) {
792     case 0:
793         return access & PAGE_READ;
794 
795     case 1:
796         return access & PAGE_WRITE;
797 
798     case 2:
799         return access & PAGE_EXEC;
800 
801     default:
802         return 0;
803     }
804 }
805 
806 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
807 
808 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
809                                  uint32_t vaddr, int is_write, int mmu_idx,
810                                  uint32_t *paddr, uint32_t *page_size,
811                                  unsigned *access, bool may_lookup_pt)
812 {
813     bool dtlb = is_write != 2;
814     uint32_t wi;
815     uint32_t ei;
816     uint8_t ring;
817     uint32_t vpn;
818     uint32_t pte;
819     const xtensa_tlb_entry *entry = NULL;
820     xtensa_tlb_entry tmp_entry;
821     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
822 
823     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
824         may_lookup_pt && get_pte(env, vaddr, &pte)) {
825         ring = (pte >> 4) & 0x3;
826         wi = 0;
827         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
828 
829         if (update_tlb) {
830             wi = ++env->autorefill_idx & 0x3;
831             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
832             env->sregs[EXCVADDR] = vaddr;
833             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
834                           __func__, vaddr, vpn, pte);
835         } else {
836             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
837             entry = &tmp_entry;
838         }
839         ret = 0;
840     }
841     if (ret != 0) {
842         return ret;
843     }
844 
845     if (entry == NULL) {
846         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
847     }
848 
849     if (ring < mmu_idx) {
850         return dtlb ?
851             LOAD_STORE_PRIVILEGE_CAUSE :
852             INST_FETCH_PRIVILEGE_CAUSE;
853     }
854 
855     *access = mmu_attr_to_access(entry->attr) &
856         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
857     if (!is_access_granted(*access, is_write)) {
858         return dtlb ?
859             (is_write ?
860              STORE_PROHIBITED_CAUSE :
861              LOAD_PROHIBITED_CAUSE) :
862             INST_FETCH_PROHIBITED_CAUSE;
863     }
864 
865     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
866     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
867 
868     return 0;
869 }
870 
871 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
872 {
873     CPUState *cs = env_cpu(env);
874     uint32_t paddr;
875     uint32_t page_size;
876     unsigned access;
877     uint32_t pt_vaddr =
878         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
879     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
880                                     &paddr, &page_size, &access, false);
881 
882     if (ret == 0) {
883         qemu_log_mask(CPU_LOG_MMU,
884                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
885                       __func__, vaddr, pt_vaddr, paddr);
886     } else {
887         qemu_log_mask(CPU_LOG_MMU,
888                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
889                       __func__, vaddr, pt_vaddr, ret);
890     }
891 
892     if (ret == 0) {
893         MemTxResult result;
894 
895         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
896                                  &result);
897         if (result != MEMTX_OK) {
898             qemu_log_mask(CPU_LOG_MMU,
899                           "%s: couldn't load PTE: transaction failed (%u)\n",
900                           __func__, (unsigned)result);
901             ret = 1;
902         }
903     }
904     return ret == 0;
905 }
906 
907 static int get_physical_addr_region(CPUXtensaState *env,
908                                     uint32_t vaddr, int is_write, int mmu_idx,
909                                     uint32_t *paddr, uint32_t *page_size,
910                                     unsigned *access)
911 {
912     bool dtlb = is_write != 2;
913     uint32_t wi = 0;
914     uint32_t ei = (vaddr >> 29) & 0x7;
915     const xtensa_tlb_entry *entry =
916         xtensa_tlb_get_entry(env, dtlb, wi, ei);
917 
918     *access = region_attr_to_access(entry->attr);
919     if (!is_access_granted(*access, is_write)) {
920         return dtlb ?
921             (is_write ?
922              STORE_PROHIBITED_CAUSE :
923              LOAD_PROHIBITED_CAUSE) :
924             INST_FETCH_PROHIBITED_CAUSE;
925     }
926 
927     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
928     *page_size = ~REGION_PAGE_MASK + 1;
929 
930     return 0;
931 }
932 
933 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
934                              uint32_t vaddr, unsigned *segment)
935 {
936     unsigned nhits = 0;
937     unsigned i;
938 
939     for (i = 0; i < n; ++i) {
940         if (vaddr >= entry[i].vaddr &&
941             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
942             if (nhits++) {
943                 break;
944             }
945             *segment = i;
946         }
947     }
948     return nhits;
949 }
950 
951 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
952 {
953     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
954 
955     if (v != env->sregs[MPUENB]) {
956         env->sregs[MPUENB] = v;
957         tlb_flush(env_cpu(env));
958     }
959 }
960 
961 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
962 {
963     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
964 
965     if (segment < env->config->n_mpu_fg_segments) {
966         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
967         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
968         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
969         tlb_flush(env_cpu(env));
970     }
971 }
972 
973 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
974 {
975     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
976 
977     if (segment < env->config->n_mpu_fg_segments) {
978         return env->mpu_fg[segment].vaddr |
979             extract32(env->sregs[MPUENB], segment, 1);
980     } else {
981         return 0;
982     }
983 }
984 
985 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
986 {
987     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
988 
989     if (segment < env->config->n_mpu_fg_segments) {
990         return env->mpu_fg[segment].attr;
991     } else {
992         return 0;
993     }
994 }
995 
996 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
997 {
998     unsigned nhits;
999     unsigned segment;
1000     unsigned bg_segment;
1001 
1002     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1003                               v, &segment);
1004     if (nhits > 1) {
1005         HELPER(exception_cause_vaddr)(env, env->pc,
1006                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
1007     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1008         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
1009     } else {
1010         xtensa_mpu_lookup(env->config->mpu_bg,
1011                           env->config->n_mpu_bg_segments,
1012                           v, &bg_segment);
1013         return env->config->mpu_bg[bg_segment].attr | XTENSA_MPU_PROBE_B;
1014     }
1015 }
1016 
1017 static int get_physical_addr_mpu(CPUXtensaState *env,
1018                                  uint32_t vaddr, int is_write, int mmu_idx,
1019                                  uint32_t *paddr, uint32_t *page_size,
1020                                  unsigned *access)
1021 {
1022     unsigned nhits;
1023     unsigned segment;
1024     uint32_t attr;
1025 
1026     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1027                               vaddr, &segment);
1028     if (nhits > 1) {
1029         return is_write < 2 ?
1030             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1031             INST_TLB_MULTI_HIT_CAUSE;
1032     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1033         attr = env->mpu_fg[segment].attr;
1034     } else {
1035         xtensa_mpu_lookup(env->config->mpu_bg,
1036                           env->config->n_mpu_bg_segments,
1037                           vaddr, &segment);
1038         attr = env->config->mpu_bg[segment].attr;
1039     }
1040 
1041     *access = mpu_attr_to_access(attr, mmu_idx);
1042     if (!is_access_granted(*access, is_write)) {
1043         return is_write < 2 ?
1044             (is_write ?
1045              STORE_PROHIBITED_CAUSE :
1046              LOAD_PROHIBITED_CAUSE) :
1047             INST_FETCH_PROHIBITED_CAUSE;
1048     }
1049     *paddr = vaddr;
1050     *page_size = env->config->mpu_align;
1051     return 0;
1052 }
1053 
1054 /*!
1055  * Convert virtual address to physical addr.
1056  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1057  *
1058  * \return 0 if ok, exception cause code otherwise
1059  */
1060 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1061                              uint32_t vaddr, int is_write, int mmu_idx,
1062                              uint32_t *paddr, uint32_t *page_size,
1063                              unsigned *access)
1064 {
1065     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1066         return get_physical_addr_mmu(env, update_tlb,
1067                                      vaddr, is_write, mmu_idx, paddr,
1068                                      page_size, access, true);
1069     } else if (xtensa_option_bits_enabled(env->config,
1070                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1071                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1072         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1073                                         paddr, page_size, access);
1074     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1075         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1076                                      paddr, page_size, access);
1077     } else {
1078         *paddr = vaddr;
1079         *page_size = TARGET_PAGE_SIZE;
1080         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1081                                            ((vaddr & 0xe0000000) >> 27));
1082         return 0;
1083     }
1084 }
1085 
1086 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1087 {
1088     unsigned wi, ei;
1089     const xtensa_tlb *conf =
1090         dtlb ? &env->config->dtlb : &env->config->itlb;
1091     unsigned (*attr_to_access)(uint32_t) =
1092         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1093         mmu_attr_to_access : region_attr_to_access;
1094 
1095     for (wi = 0; wi < conf->nways; ++wi) {
1096         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1097         const char *sz_text;
1098         bool print_header = true;
1099 
1100         if (sz >= 0x100000) {
1101             sz /= MiB;
1102             sz_text = "MB";
1103         } else {
1104             sz /= KiB;
1105             sz_text = "KB";
1106         }
1107 
1108         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1109             const xtensa_tlb_entry *entry =
1110                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1111 
1112             if (entry->asid) {
1113                 static const char * const cache_text[8] = {
1114                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1115                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1116                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1117                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1118                 };
1119                 unsigned access = attr_to_access(entry->attr);
1120                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1121                     PAGE_CACHE_SHIFT;
1122 
1123                 if (print_header) {
1124                     print_header = false;
1125                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1126                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1127                                 "\t----------  ----------  ----  ---- --- -------\n");
1128                 }
1129                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1130                             entry->vaddr,
1131                             entry->paddr,
1132                             entry->asid,
1133                             entry->attr,
1134                             (access & PAGE_READ) ? 'R' : '-',
1135                             (access & PAGE_WRITE) ? 'W' : '-',
1136                             (access & PAGE_EXEC) ? 'X' : '-',
1137                             cache_text[cache_idx] ?
1138                             cache_text[cache_idx] : "Invalid");
1139             }
1140         }
1141     }
1142 }
1143 
1144 static void dump_mpu(CPUXtensaState *env,
1145                      const xtensa_mpu_entry *entry, unsigned n)
1146 {
1147     unsigned i;
1148 
1149     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1150                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1151                 env ? "En" : "  ",
1152                 env ? "--" : "  ");
1153 
1154     for (i = 0; i < n; ++i) {
1155         uint32_t attr = entry[i].attr;
1156         unsigned access0 = mpu_attr_to_access(attr, 0);
1157         unsigned access1 = mpu_attr_to_access(attr, 1);
1158         unsigned type = mpu_attr_to_type(attr);
1159         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1160 
1161         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1162                     env ?
1163                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1164                     entry[i].vaddr, attr,
1165                     (access0 & PAGE_READ) ? 'R' : '-',
1166                     (access0 & PAGE_WRITE) ? 'W' : '-',
1167                     (access0 & PAGE_EXEC) ? 'X' : '-',
1168                     (access1 & PAGE_READ) ? 'R' : '-',
1169                     (access1 & PAGE_WRITE) ? 'W' : '-',
1170                     (access1 & PAGE_EXEC) ? 'X' : '-');
1171 
1172         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1173         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1174             qemu_printf("Device %cB %3s\n",
1175                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1176                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1177             break;
1178         case XTENSA_MPU_SYSTEM_TYPE_NC:
1179             qemu_printf("Sys NC %cB      %c%c%c\n",
1180                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1181                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1182                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1183                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1184             break;
1185         case XTENSA_MPU_SYSTEM_TYPE_C:
1186             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1187                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1188                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1189                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1190                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1191                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1192                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1193             break;
1194         default:
1195             qemu_printf("Unknown\n");
1196             break;
1197         }
1198     }
1199 }
1200 
1201 void dump_mmu(CPUXtensaState *env)
1202 {
1203     if (xtensa_option_bits_enabled(env->config,
1204                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1205                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1206                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1207 
1208         qemu_printf("ITLB:\n");
1209         dump_tlb(env, false);
1210         qemu_printf("\nDTLB:\n");
1211         dump_tlb(env, true);
1212     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1213         qemu_printf("Foreground map:\n");
1214         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1215         qemu_printf("\nBackground map:\n");
1216         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1217     } else {
1218         qemu_printf("No TLB for this CPU core\n");
1219     }
1220 }
1221