xref: /openbmc/qemu/target/xtensa/mmu_helper.c (revision f0984d40)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/main-loop.h"
31 #include "qemu/qemu-print.h"
32 #include "qemu/units.h"
33 #include "cpu.h"
34 #include "exec/helper-proto.h"
35 #include "qemu/host-utils.h"
36 #include "exec/exec-all.h"
37 #include "exec/cpu_ldst.h"
38 
39 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
40 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
41 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
42 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
43 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
44 #define XTENSA_MPU_ATTR_MASK 0x001fff00
45 
46 #define XTENSA_MPU_PROBE_B 0x40000000
47 #define XTENSA_MPU_PROBE_V 0x80000000
48 
49 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
50 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
51 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
52 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
53 
54 #define XTENSA_MPU_TYPE_SYS_C     0x0010
55 #define XTENSA_MPU_TYPE_SYS_W     0x0020
56 #define XTENSA_MPU_TYPE_SYS_R     0x0040
57 #define XTENSA_MPU_TYPE_CPU_C     0x0100
58 #define XTENSA_MPU_TYPE_CPU_W     0x0200
59 #define XTENSA_MPU_TYPE_CPU_R     0x0400
60 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
61 #define XTENSA_MPU_TYPE_B         0x1000
62 #define XTENSA_MPU_TYPE_INT       0x2000
63 
64 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
65 {
66     /*
67      * Probe the memory; we don't care about the result but
68      * only the side-effects (ie any MMU or other exception)
69      */
70     probe_access(env, vaddr, 1, MMU_INST_FETCH,
71                  cpu_mmu_index(env, true), GETPC());
72 }
73 
74 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
75 {
76     v = (v & 0xffffff00) | 0x1;
77     if (v != env->sregs[RASID]) {
78         env->sregs[RASID] = v;
79         tlb_flush(env_cpu(env));
80     }
81 }
82 
83 static uint32_t get_page_size(const CPUXtensaState *env,
84                               bool dtlb, uint32_t way)
85 {
86     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
87 
88     switch (way) {
89     case 4:
90         return (tlbcfg >> 16) & 0x3;
91 
92     case 5:
93         return (tlbcfg >> 20) & 0x1;
94 
95     case 6:
96         return (tlbcfg >> 24) & 0x1;
97 
98     default:
99         return 0;
100     }
101 }
102 
103 /*!
104  * Get bit mask for the virtual address bits translated by the TLB way
105  */
106 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
107                                          bool dtlb, uint32_t way)
108 {
109     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
110         bool varway56 = dtlb ?
111             env->config->dtlb.varway56 :
112             env->config->itlb.varway56;
113 
114         switch (way) {
115         case 4:
116             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
117 
118         case 5:
119             if (varway56) {
120                 return 0xf8000000 << get_page_size(env, dtlb, way);
121             } else {
122                 return 0xf8000000;
123             }
124 
125         case 6:
126             if (varway56) {
127                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
128             } else {
129                 return 0xf0000000;
130             }
131 
132         default:
133             return 0xfffff000;
134         }
135     } else {
136         return REGION_PAGE_MASK;
137     }
138 }
139 
140 /*!
141  * Get bit mask for the 'VPN without index' field.
142  * See ISA, 4.6.5.6, data format for RxTLB0
143  */
144 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
145 {
146     if (way < 4) {
147         bool is32 = (dtlb ?
148                 env->config->dtlb.nrefillentries :
149                 env->config->itlb.nrefillentries) == 32;
150         return is32 ? 0xffff8000 : 0xffffc000;
151     } else if (way == 4) {
152         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
153     } else if (way <= 6) {
154         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
155         bool varway56 = dtlb ?
156             env->config->dtlb.varway56 :
157             env->config->itlb.varway56;
158 
159         if (varway56) {
160             return mask << (way == 5 ? 2 : 3);
161         } else {
162             return mask << 1;
163         }
164     } else {
165         return 0xfffff000;
166     }
167 }
168 
169 /*!
170  * Split virtual address into VPN (with index) and entry index
171  * for the given TLB way
172  */
173 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
174                                      bool dtlb, uint32_t *vpn,
175                                      uint32_t wi, uint32_t *ei)
176 {
177     bool varway56 = dtlb ?
178         env->config->dtlb.varway56 :
179         env->config->itlb.varway56;
180 
181     if (!dtlb) {
182         wi &= 7;
183     }
184 
185     if (wi < 4) {
186         bool is32 = (dtlb ?
187                 env->config->dtlb.nrefillentries :
188                 env->config->itlb.nrefillentries) == 32;
189         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
190     } else {
191         switch (wi) {
192         case 4:
193             {
194                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
195                 *ei = (v >> eibase) & 0x3;
196             }
197             break;
198 
199         case 5:
200             if (varway56) {
201                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
202                 *ei = (v >> eibase) & 0x3;
203             } else {
204                 *ei = (v >> 27) & 0x1;
205             }
206             break;
207 
208         case 6:
209             if (varway56) {
210                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
211                 *ei = (v >> eibase) & 0x7;
212             } else {
213                 *ei = (v >> 28) & 0x1;
214             }
215             break;
216 
217         default:
218             *ei = 0;
219             break;
220         }
221     }
222     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
223 }
224 
225 /*!
226  * Split TLB address into TLB way, entry index and VPN (with index).
227  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
228  */
229 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
230         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
231 {
232     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
233         *wi = v & (dtlb ? 0xf : 0x7);
234         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
235     } else {
236         *vpn = v & REGION_PAGE_MASK;
237         *wi = 0;
238         *ei = (v >> 29) & 0x7;
239     }
240 }
241 
242 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
243                                               unsigned wi, unsigned ei)
244 {
245     return dtlb ?
246         env->dtlb[wi] + ei :
247         env->itlb[wi] + ei;
248 }
249 
250 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
251         uint32_t v, bool dtlb, uint32_t *pwi)
252 {
253     uint32_t vpn;
254     uint32_t wi;
255     uint32_t ei;
256 
257     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
258     if (pwi) {
259         *pwi = wi;
260     }
261     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
262 }
263 
264 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
265                                      xtensa_tlb_entry *entry, bool dtlb,
266                                      unsigned wi, unsigned ei, uint32_t vpn,
267                                      uint32_t pte)
268 {
269     entry->vaddr = vpn;
270     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
271     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
272     entry->attr = pte & 0xf;
273 }
274 
275 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
276                                  unsigned wi, unsigned ei,
277                                  uint32_t vpn, uint32_t pte)
278 {
279     CPUState *cs = env_cpu(env);
280     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
281 
282     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
283         if (entry->variable) {
284             if (entry->asid) {
285                 tlb_flush_page(cs, entry->vaddr);
286             }
287             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
288             tlb_flush_page(cs, entry->vaddr);
289         } else {
290             qemu_log_mask(LOG_GUEST_ERROR,
291                           "%s %d, %d, %d trying to set immutable entry\n",
292                           __func__, dtlb, wi, ei);
293         }
294     } else {
295         tlb_flush_page(cs, entry->vaddr);
296         if (xtensa_option_enabled(env->config,
297                     XTENSA_OPTION_REGION_TRANSLATION)) {
298             entry->paddr = pte & REGION_PAGE_MASK;
299         }
300         entry->attr = pte & 0xf;
301     }
302 }
303 
304 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
305 {
306     XtensaCPU *cpu = XTENSA_CPU(cs);
307     uint32_t paddr;
308     uint32_t page_size;
309     unsigned access;
310 
311     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
312                 &paddr, &page_size, &access) == 0) {
313         return paddr;
314     }
315     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
316                 &paddr, &page_size, &access) == 0) {
317         return paddr;
318     }
319     return ~0;
320 }
321 
322 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
323                                    const xtensa_tlb *tlb,
324                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
325 {
326     unsigned wi, ei;
327 
328     for (wi = 0; wi < tlb->nways; ++wi) {
329         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
330             entry[wi][ei].asid = 0;
331             entry[wi][ei].variable = true;
332         }
333     }
334 }
335 
336 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
337                                  const xtensa_tlb *tlb,
338                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
339 {
340     if (!tlb->varway56) {
341         static const xtensa_tlb_entry way5[] = {
342             {
343                 .vaddr = 0xd0000000,
344                 .paddr = 0,
345                 .asid = 1,
346                 .attr = 7,
347                 .variable = false,
348             }, {
349                 .vaddr = 0xd8000000,
350                 .paddr = 0,
351                 .asid = 1,
352                 .attr = 3,
353                 .variable = false,
354             }
355         };
356         static const xtensa_tlb_entry way6[] = {
357             {
358                 .vaddr = 0xe0000000,
359                 .paddr = 0xf0000000,
360                 .asid = 1,
361                 .attr = 7,
362                 .variable = false,
363             }, {
364                 .vaddr = 0xf0000000,
365                 .paddr = 0xf0000000,
366                 .asid = 1,
367                 .attr = 3,
368                 .variable = false,
369             }
370         };
371         memcpy(entry[5], way5, sizeof(way5));
372         memcpy(entry[6], way6, sizeof(way6));
373     } else {
374         uint32_t ei;
375         for (ei = 0; ei < 8; ++ei) {
376             entry[6][ei].vaddr = ei << 29;
377             entry[6][ei].paddr = ei << 29;
378             entry[6][ei].asid = 1;
379             entry[6][ei].attr = 3;
380         }
381     }
382 }
383 
384 static void reset_tlb_region_way0(CPUXtensaState *env,
385                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
386 {
387     unsigned ei;
388 
389     for (ei = 0; ei < 8; ++ei) {
390         entry[0][ei].vaddr = ei << 29;
391         entry[0][ei].paddr = ei << 29;
392         entry[0][ei].asid = 1;
393         entry[0][ei].attr = 2;
394         entry[0][ei].variable = true;
395     }
396 }
397 
398 void reset_mmu(CPUXtensaState *env)
399 {
400     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
401         env->sregs[RASID] = 0x04030201;
402         env->sregs[ITLBCFG] = 0;
403         env->sregs[DTLBCFG] = 0;
404         env->autorefill_idx = 0;
405         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
406         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
407         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
408         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
409     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
410         unsigned i;
411 
412         env->sregs[MPUENB] = 0;
413         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
414         env->sregs[CACHEADRDIS] = 0;
415         assert(env->config->n_mpu_bg_segments > 0 &&
416                env->config->mpu_bg[0].vaddr == 0);
417         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
418             assert(env->config->mpu_bg[i].vaddr >=
419                    env->config->mpu_bg[i - 1].vaddr);
420         }
421     } else {
422         env->sregs[CACHEATTR] = 0x22222222;
423         reset_tlb_region_way0(env, env->itlb);
424         reset_tlb_region_way0(env, env->dtlb);
425     }
426 }
427 
428 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
429 {
430     unsigned i;
431     for (i = 0; i < 4; ++i) {
432         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
433             return i;
434         }
435     }
436     return 0xff;
437 }
438 
439 /*!
440  * Lookup xtensa TLB for the given virtual address.
441  * See ISA, 4.6.2.2
442  *
443  * \param pwi: [out] way index
444  * \param pei: [out] entry index
445  * \param pring: [out] access ring
446  * \return 0 if ok, exception cause code otherwise
447  */
448 static int xtensa_tlb_lookup(const CPUXtensaState *env,
449                              uint32_t addr, bool dtlb,
450                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
451 {
452     const xtensa_tlb *tlb = dtlb ?
453         &env->config->dtlb : &env->config->itlb;
454     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
455         env->dtlb : env->itlb;
456 
457     int nhits = 0;
458     unsigned wi;
459 
460     for (wi = 0; wi < tlb->nways; ++wi) {
461         uint32_t vpn;
462         uint32_t ei;
463         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
464         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
465             unsigned ring = get_ring(env, entry[wi][ei].asid);
466             if (ring < 4) {
467                 if (++nhits > 1) {
468                     return dtlb ?
469                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
470                         INST_TLB_MULTI_HIT_CAUSE;
471                 }
472                 *pwi = wi;
473                 *pei = ei;
474                 *pring = ring;
475             }
476         }
477     }
478     return nhits ? 0 :
479         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
480 }
481 
482 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
483 {
484     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
485         uint32_t wi;
486         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
487         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
488     } else {
489         return v & REGION_PAGE_MASK;
490     }
491 }
492 
493 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
494 {
495     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
496     return entry->paddr | entry->attr;
497 }
498 
499 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
500 {
501     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
502         uint32_t wi;
503         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
504         if (entry->variable && entry->asid) {
505             tlb_flush_page(env_cpu(env), entry->vaddr);
506             entry->asid = 0;
507         }
508     }
509 }
510 
511 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
512 {
513     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
514         uint32_t wi;
515         uint32_t ei;
516         uint8_t ring;
517         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
518 
519         switch (res) {
520         case 0:
521             if (ring >= xtensa_get_ring(env)) {
522                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
523             }
524             break;
525 
526         case INST_TLB_MULTI_HIT_CAUSE:
527         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
528             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
529             break;
530         }
531         return 0;
532     } else {
533         return (v & REGION_PAGE_MASK) | 0x1;
534     }
535 }
536 
537 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
538 {
539     uint32_t vpn;
540     uint32_t wi;
541     uint32_t ei;
542     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
543     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
544 }
545 
546 /*!
547  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
548  * See ISA, 4.6.5.10
549  */
550 static unsigned mmu_attr_to_access(uint32_t attr)
551 {
552     unsigned access = 0;
553 
554     if (attr < 12) {
555         access |= PAGE_READ;
556         if (attr & 0x1) {
557             access |= PAGE_EXEC;
558         }
559         if (attr & 0x2) {
560             access |= PAGE_WRITE;
561         }
562 
563         switch (attr & 0xc) {
564         case 0:
565             access |= PAGE_CACHE_BYPASS;
566             break;
567 
568         case 4:
569             access |= PAGE_CACHE_WB;
570             break;
571 
572         case 8:
573             access |= PAGE_CACHE_WT;
574             break;
575         }
576     } else if (attr == 13) {
577         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
578     }
579     return access;
580 }
581 
582 /*!
583  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
584  * See ISA, 4.6.3.3
585  */
586 static unsigned region_attr_to_access(uint32_t attr)
587 {
588     static const unsigned access[16] = {
589          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
590          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
591          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
592          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
593          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
594          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
595         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
596     };
597 
598     return access[attr & 0xf];
599 }
600 
601 /*!
602  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
603  * See ISA, A.2.14 The Cache Attribute Register
604  */
605 static unsigned cacheattr_attr_to_access(uint32_t attr)
606 {
607     static const unsigned access[16] = {
608          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
609          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
610          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
611          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
612          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
613         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
614     };
615 
616     return access[attr & 0xf];
617 }
618 
619 struct attr_pattern {
620     uint32_t mask;
621     uint32_t value;
622 };
623 
624 static int attr_pattern_match(uint32_t attr,
625                               const struct attr_pattern *pattern,
626                               size_t n)
627 {
628     size_t i;
629 
630     for (i = 0; i < n; ++i) {
631         if ((attr & pattern[i].mask) == pattern[i].value) {
632             return 1;
633         }
634     }
635     return 0;
636 }
637 
638 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
639 {
640     static const struct attr_pattern cpu_c[] = {
641         { .mask = 0x18f, .value = 0x089 },
642         { .mask = 0x188, .value = 0x080 },
643         { .mask = 0x180, .value = 0x180 },
644     };
645 
646     unsigned type = 0;
647 
648     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
649         type |= XTENSA_MPU_TYPE_CPU_CACHE;
650         if (attr & 0x10) {
651             type |= XTENSA_MPU_TYPE_CPU_C;
652         }
653         if (attr & 0x20) {
654             type |= XTENSA_MPU_TYPE_CPU_W;
655         }
656         if (attr & 0x40) {
657             type |= XTENSA_MPU_TYPE_CPU_R;
658         }
659     }
660     return type;
661 }
662 
663 static unsigned mpu_attr_to_type(uint32_t attr)
664 {
665     static const struct attr_pattern device_type[] = {
666         { .mask = 0x1f6, .value = 0x000 },
667         { .mask = 0x1f6, .value = 0x006 },
668     };
669     static const struct attr_pattern sys_nc_type[] = {
670         { .mask = 0x1fe, .value = 0x018 },
671         { .mask = 0x1fe, .value = 0x01e },
672         { .mask = 0x18f, .value = 0x089 },
673     };
674     static const struct attr_pattern sys_c_type[] = {
675         { .mask = 0x1f8, .value = 0x010 },
676         { .mask = 0x188, .value = 0x080 },
677         { .mask = 0x1f0, .value = 0x030 },
678         { .mask = 0x180, .value = 0x180 },
679     };
680     static const struct attr_pattern b[] = {
681         { .mask = 0x1f7, .value = 0x001 },
682         { .mask = 0x1f7, .value = 0x007 },
683         { .mask = 0x1ff, .value = 0x019 },
684         { .mask = 0x1ff, .value = 0x01f },
685     };
686 
687     unsigned type = 0;
688 
689     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
690     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
691         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
692         if (attr & 0x80) {
693             type |= XTENSA_MPU_TYPE_INT;
694         }
695     }
696     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
697         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
698     }
699     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
700         type |= XTENSA_MPU_SYSTEM_TYPE_C;
701         if (attr & 0x1) {
702             type |= XTENSA_MPU_TYPE_SYS_C;
703         }
704         if (attr & 0x2) {
705             type |= XTENSA_MPU_TYPE_SYS_W;
706         }
707         if (attr & 0x4) {
708             type |= XTENSA_MPU_TYPE_SYS_R;
709         }
710     }
711     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
712         type |= XTENSA_MPU_TYPE_B;
713     }
714     type |= mpu_attr_to_cpu_cache(attr);
715 
716     return type;
717 }
718 
719 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
720 {
721     static const unsigned access[2][16] = {
722         [0] = {
723              [4] = PAGE_READ,
724              [5] = PAGE_READ              | PAGE_EXEC,
725              [6] = PAGE_READ | PAGE_WRITE,
726              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
727              [8] =             PAGE_WRITE,
728              [9] = PAGE_READ | PAGE_WRITE,
729             [10] = PAGE_READ | PAGE_WRITE,
730             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
731             [12] = PAGE_READ,
732             [13] = PAGE_READ              | PAGE_EXEC,
733             [14] = PAGE_READ | PAGE_WRITE,
734             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
735         },
736         [1] = {
737              [8] =             PAGE_WRITE,
738              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
739             [10] = PAGE_READ,
740             [11] = PAGE_READ              | PAGE_EXEC,
741             [12] = PAGE_READ,
742             [13] = PAGE_READ              | PAGE_EXEC,
743             [14] = PAGE_READ | PAGE_WRITE,
744             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
745         },
746     };
747     unsigned rv;
748     unsigned type;
749 
750     type = mpu_attr_to_cpu_cache(attr);
751     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
752         XTENSA_MPU_ACC_RIGHTS_SHIFT];
753 
754     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
755         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
756     } else {
757         rv |= PAGE_CACHE_BYPASS;
758     }
759     return rv;
760 }
761 
762 static bool is_access_granted(unsigned access, int is_write)
763 {
764     switch (is_write) {
765     case 0:
766         return access & PAGE_READ;
767 
768     case 1:
769         return access & PAGE_WRITE;
770 
771     case 2:
772         return access & PAGE_EXEC;
773 
774     default:
775         return 0;
776     }
777 }
778 
779 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
780 
781 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
782                                  uint32_t vaddr, int is_write, int mmu_idx,
783                                  uint32_t *paddr, uint32_t *page_size,
784                                  unsigned *access, bool may_lookup_pt)
785 {
786     bool dtlb = is_write != 2;
787     uint32_t wi;
788     uint32_t ei;
789     uint8_t ring;
790     uint32_t vpn;
791     uint32_t pte;
792     const xtensa_tlb_entry *entry = NULL;
793     xtensa_tlb_entry tmp_entry;
794     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
795 
796     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
797         may_lookup_pt && get_pte(env, vaddr, &pte)) {
798         ring = (pte >> 4) & 0x3;
799         wi = 0;
800         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
801 
802         if (update_tlb) {
803             wi = ++env->autorefill_idx & 0x3;
804             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
805             env->sregs[EXCVADDR] = vaddr;
806             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
807                           __func__, vaddr, vpn, pte);
808         } else {
809             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
810             entry = &tmp_entry;
811         }
812         ret = 0;
813     }
814     if (ret != 0) {
815         return ret;
816     }
817 
818     if (entry == NULL) {
819         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
820     }
821 
822     if (ring < mmu_idx) {
823         return dtlb ?
824             LOAD_STORE_PRIVILEGE_CAUSE :
825             INST_FETCH_PRIVILEGE_CAUSE;
826     }
827 
828     *access = mmu_attr_to_access(entry->attr) &
829         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
830     if (!is_access_granted(*access, is_write)) {
831         return dtlb ?
832             (is_write ?
833              STORE_PROHIBITED_CAUSE :
834              LOAD_PROHIBITED_CAUSE) :
835             INST_FETCH_PROHIBITED_CAUSE;
836     }
837 
838     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
839     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
840 
841     return 0;
842 }
843 
844 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
845 {
846     CPUState *cs = env_cpu(env);
847     uint32_t paddr;
848     uint32_t page_size;
849     unsigned access;
850     uint32_t pt_vaddr =
851         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
852     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
853                                     &paddr, &page_size, &access, false);
854 
855     if (ret == 0) {
856         qemu_log_mask(CPU_LOG_MMU,
857                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
858                       __func__, vaddr, pt_vaddr, paddr);
859     } else {
860         qemu_log_mask(CPU_LOG_MMU,
861                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
862                       __func__, vaddr, pt_vaddr, ret);
863     }
864 
865     if (ret == 0) {
866         MemTxResult result;
867 
868         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
869                                  &result);
870         if (result != MEMTX_OK) {
871             qemu_log_mask(CPU_LOG_MMU,
872                           "%s: couldn't load PTE: transaction failed (%u)\n",
873                           __func__, (unsigned)result);
874             ret = 1;
875         }
876     }
877     return ret == 0;
878 }
879 
880 static int get_physical_addr_region(CPUXtensaState *env,
881                                     uint32_t vaddr, int is_write, int mmu_idx,
882                                     uint32_t *paddr, uint32_t *page_size,
883                                     unsigned *access)
884 {
885     bool dtlb = is_write != 2;
886     uint32_t wi = 0;
887     uint32_t ei = (vaddr >> 29) & 0x7;
888     const xtensa_tlb_entry *entry =
889         xtensa_tlb_get_entry(env, dtlb, wi, ei);
890 
891     *access = region_attr_to_access(entry->attr);
892     if (!is_access_granted(*access, is_write)) {
893         return dtlb ?
894             (is_write ?
895              STORE_PROHIBITED_CAUSE :
896              LOAD_PROHIBITED_CAUSE) :
897             INST_FETCH_PROHIBITED_CAUSE;
898     }
899 
900     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
901     *page_size = ~REGION_PAGE_MASK + 1;
902 
903     return 0;
904 }
905 
906 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
907                              uint32_t vaddr, unsigned *segment)
908 {
909     unsigned nhits = 0;
910     unsigned i;
911 
912     for (i = 0; i < n; ++i) {
913         if (vaddr >= entry[i].vaddr &&
914             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
915             if (nhits++) {
916                 break;
917             }
918             *segment = i;
919         }
920     }
921     return nhits;
922 }
923 
924 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
925 {
926     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
927 
928     if (v != env->sregs[MPUENB]) {
929         env->sregs[MPUENB] = v;
930         tlb_flush(env_cpu(env));
931     }
932 }
933 
934 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
935 {
936     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
937 
938     if (segment < env->config->n_mpu_fg_segments) {
939         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
940         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
941         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
942         tlb_flush(env_cpu(env));
943     }
944 }
945 
946 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
947 {
948     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
949 
950     if (segment < env->config->n_mpu_fg_segments) {
951         return env->mpu_fg[segment].vaddr |
952             extract32(env->sregs[MPUENB], segment, 1);
953     } else {
954         return 0;
955     }
956 }
957 
958 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
959 {
960     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
961 
962     if (segment < env->config->n_mpu_fg_segments) {
963         return env->mpu_fg[segment].attr;
964     } else {
965         return 0;
966     }
967 }
968 
969 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
970 {
971     unsigned nhits;
972     unsigned segment = XTENSA_MPU_PROBE_B;
973     unsigned bg_segment;
974 
975     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
976                               v, &segment);
977     if (nhits > 1) {
978         HELPER(exception_cause_vaddr)(env, env->pc,
979                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
980     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
981         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
982     } else {
983         xtensa_mpu_lookup(env->config->mpu_bg,
984                           env->config->n_mpu_bg_segments,
985                           v, &bg_segment);
986         return env->config->mpu_bg[bg_segment].attr | segment;
987     }
988 }
989 
990 static int get_physical_addr_mpu(CPUXtensaState *env,
991                                  uint32_t vaddr, int is_write, int mmu_idx,
992                                  uint32_t *paddr, uint32_t *page_size,
993                                  unsigned *access)
994 {
995     unsigned nhits;
996     unsigned segment;
997     uint32_t attr;
998 
999     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1000                               vaddr, &segment);
1001     if (nhits > 1) {
1002         return is_write < 2 ?
1003             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1004             INST_TLB_MULTI_HIT_CAUSE;
1005     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1006         attr = env->mpu_fg[segment].attr;
1007     } else {
1008         xtensa_mpu_lookup(env->config->mpu_bg,
1009                           env->config->n_mpu_bg_segments,
1010                           vaddr, &segment);
1011         attr = env->config->mpu_bg[segment].attr;
1012     }
1013 
1014     *access = mpu_attr_to_access(attr, mmu_idx);
1015     if (!is_access_granted(*access, is_write)) {
1016         return is_write < 2 ?
1017             (is_write ?
1018              STORE_PROHIBITED_CAUSE :
1019              LOAD_PROHIBITED_CAUSE) :
1020             INST_FETCH_PROHIBITED_CAUSE;
1021     }
1022     *paddr = vaddr;
1023     *page_size = env->config->mpu_align;
1024     return 0;
1025 }
1026 
1027 /*!
1028  * Convert virtual address to physical addr.
1029  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1030  *
1031  * \return 0 if ok, exception cause code otherwise
1032  */
1033 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1034                              uint32_t vaddr, int is_write, int mmu_idx,
1035                              uint32_t *paddr, uint32_t *page_size,
1036                              unsigned *access)
1037 {
1038     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1039         return get_physical_addr_mmu(env, update_tlb,
1040                                      vaddr, is_write, mmu_idx, paddr,
1041                                      page_size, access, true);
1042     } else if (xtensa_option_bits_enabled(env->config,
1043                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1044                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1045         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1046                                         paddr, page_size, access);
1047     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1048         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1049                                      paddr, page_size, access);
1050     } else {
1051         *paddr = vaddr;
1052         *page_size = TARGET_PAGE_SIZE;
1053         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1054                                            ((vaddr & 0xe0000000) >> 27));
1055         return 0;
1056     }
1057 }
1058 
1059 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1060 {
1061     unsigned wi, ei;
1062     const xtensa_tlb *conf =
1063         dtlb ? &env->config->dtlb : &env->config->itlb;
1064     unsigned (*attr_to_access)(uint32_t) =
1065         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1066         mmu_attr_to_access : region_attr_to_access;
1067 
1068     for (wi = 0; wi < conf->nways; ++wi) {
1069         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1070         const char *sz_text;
1071         bool print_header = true;
1072 
1073         if (sz >= 0x100000) {
1074             sz /= MiB;
1075             sz_text = "MB";
1076         } else {
1077             sz /= KiB;
1078             sz_text = "KB";
1079         }
1080 
1081         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1082             const xtensa_tlb_entry *entry =
1083                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1084 
1085             if (entry->asid) {
1086                 static const char * const cache_text[8] = {
1087                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1088                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1089                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1090                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1091                 };
1092                 unsigned access = attr_to_access(entry->attr);
1093                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1094                     PAGE_CACHE_SHIFT;
1095 
1096                 if (print_header) {
1097                     print_header = false;
1098                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1099                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1100                                 "\t----------  ----------  ----  ---- --- -------\n");
1101                 }
1102                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1103                             entry->vaddr,
1104                             entry->paddr,
1105                             entry->asid,
1106                             entry->attr,
1107                             (access & PAGE_READ) ? 'R' : '-',
1108                             (access & PAGE_WRITE) ? 'W' : '-',
1109                             (access & PAGE_EXEC) ? 'X' : '-',
1110                             cache_text[cache_idx] ?
1111                             cache_text[cache_idx] : "Invalid");
1112             }
1113         }
1114     }
1115 }
1116 
1117 static void dump_mpu(CPUXtensaState *env,
1118                      const xtensa_mpu_entry *entry, unsigned n)
1119 {
1120     unsigned i;
1121 
1122     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1123                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1124                 env ? "En" : "  ",
1125                 env ? "--" : "  ");
1126 
1127     for (i = 0; i < n; ++i) {
1128         uint32_t attr = entry[i].attr;
1129         unsigned access0 = mpu_attr_to_access(attr, 0);
1130         unsigned access1 = mpu_attr_to_access(attr, 1);
1131         unsigned type = mpu_attr_to_type(attr);
1132         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1133 
1134         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1135                     env ?
1136                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1137                     entry[i].vaddr, attr,
1138                     (access0 & PAGE_READ) ? 'R' : '-',
1139                     (access0 & PAGE_WRITE) ? 'W' : '-',
1140                     (access0 & PAGE_EXEC) ? 'X' : '-',
1141                     (access1 & PAGE_READ) ? 'R' : '-',
1142                     (access1 & PAGE_WRITE) ? 'W' : '-',
1143                     (access1 & PAGE_EXEC) ? 'X' : '-');
1144 
1145         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1146         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1147             qemu_printf("Device %cB %3s\n",
1148                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1149                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1150             break;
1151         case XTENSA_MPU_SYSTEM_TYPE_NC:
1152             qemu_printf("Sys NC %cB      %c%c%c\n",
1153                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1154                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1155                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1156                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1157             break;
1158         case XTENSA_MPU_SYSTEM_TYPE_C:
1159             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1160                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1161                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1162                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1163                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1164                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1165                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1166             break;
1167         default:
1168             qemu_printf("Unknown\n");
1169             break;
1170         }
1171     }
1172 }
1173 
1174 void dump_mmu(CPUXtensaState *env)
1175 {
1176     if (xtensa_option_bits_enabled(env->config,
1177                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1178                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1179                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1180 
1181         qemu_printf("ITLB:\n");
1182         dump_tlb(env, false);
1183         qemu_printf("\nDTLB:\n");
1184         dump_tlb(env, true);
1185     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1186         qemu_printf("Foreground map:\n");
1187         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1188         qemu_printf("\nBackground map:\n");
1189         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1190     } else {
1191         qemu_printf("No TLB for this CPU core\n");
1192     }
1193 }
1194