xref: /openbmc/qemu/target/xtensa/mmu_helper.c (revision aefcaf9d)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/exec-all.h"
36 #include "exec/cpu_ldst.h"
37 
38 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
39 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
40 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
41 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
42 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
43 #define XTENSA_MPU_ATTR_MASK 0x001fff00
44 
45 #define XTENSA_MPU_PROBE_B 0x40000000
46 #define XTENSA_MPU_PROBE_V 0x80000000
47 
48 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
49 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
50 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
51 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
52 
53 #define XTENSA_MPU_TYPE_SYS_C     0x0010
54 #define XTENSA_MPU_TYPE_SYS_W     0x0020
55 #define XTENSA_MPU_TYPE_SYS_R     0x0040
56 #define XTENSA_MPU_TYPE_CPU_C     0x0100
57 #define XTENSA_MPU_TYPE_CPU_W     0x0200
58 #define XTENSA_MPU_TYPE_CPU_R     0x0400
59 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
60 #define XTENSA_MPU_TYPE_B         0x1000
61 #define XTENSA_MPU_TYPE_INT       0x2000
62 
63 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
64 {
65     /*
66      * Probe the memory; we don't care about the result but
67      * only the side-effects (ie any MMU or other exception)
68      */
69     probe_access(env, vaddr, 1, MMU_INST_FETCH,
70                  cpu_mmu_index(env, true), GETPC());
71 }
72 
73 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
74 {
75     v = (v & 0xffffff00) | 0x1;
76     if (v != env->sregs[RASID]) {
77         env->sregs[RASID] = v;
78         tlb_flush(env_cpu(env));
79     }
80 }
81 
82 static uint32_t get_page_size(const CPUXtensaState *env,
83                               bool dtlb, uint32_t way)
84 {
85     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
86 
87     switch (way) {
88     case 4:
89         return (tlbcfg >> 16) & 0x3;
90 
91     case 5:
92         return (tlbcfg >> 20) & 0x1;
93 
94     case 6:
95         return (tlbcfg >> 24) & 0x1;
96 
97     default:
98         return 0;
99     }
100 }
101 
102 /*!
103  * Get bit mask for the virtual address bits translated by the TLB way
104  */
105 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
106                                          bool dtlb, uint32_t way)
107 {
108     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
109         bool varway56 = dtlb ?
110             env->config->dtlb.varway56 :
111             env->config->itlb.varway56;
112 
113         switch (way) {
114         case 4:
115             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
116 
117         case 5:
118             if (varway56) {
119                 return 0xf8000000 << get_page_size(env, dtlb, way);
120             } else {
121                 return 0xf8000000;
122             }
123 
124         case 6:
125             if (varway56) {
126                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
127             } else {
128                 return 0xf0000000;
129             }
130 
131         default:
132             return 0xfffff000;
133         }
134     } else {
135         return REGION_PAGE_MASK;
136     }
137 }
138 
139 /*!
140  * Get bit mask for the 'VPN without index' field.
141  * See ISA, 4.6.5.6, data format for RxTLB0
142  */
143 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
144 {
145     if (way < 4) {
146         bool is32 = (dtlb ?
147                 env->config->dtlb.nrefillentries :
148                 env->config->itlb.nrefillentries) == 32;
149         return is32 ? 0xffff8000 : 0xffffc000;
150     } else if (way == 4) {
151         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
152     } else if (way <= 6) {
153         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
154         bool varway56 = dtlb ?
155             env->config->dtlb.varway56 :
156             env->config->itlb.varway56;
157 
158         if (varway56) {
159             return mask << (way == 5 ? 2 : 3);
160         } else {
161             return mask << 1;
162         }
163     } else {
164         return 0xfffff000;
165     }
166 }
167 
168 /*!
169  * Split virtual address into VPN (with index) and entry index
170  * for the given TLB way
171  */
172 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
173                                      bool dtlb, uint32_t *vpn,
174                                      uint32_t wi, uint32_t *ei)
175 {
176     bool varway56 = dtlb ?
177         env->config->dtlb.varway56 :
178         env->config->itlb.varway56;
179 
180     if (!dtlb) {
181         wi &= 7;
182     }
183 
184     if (wi < 4) {
185         bool is32 = (dtlb ?
186                 env->config->dtlb.nrefillentries :
187                 env->config->itlb.nrefillentries) == 32;
188         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
189     } else {
190         switch (wi) {
191         case 4:
192             {
193                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
194                 *ei = (v >> eibase) & 0x3;
195             }
196             break;
197 
198         case 5:
199             if (varway56) {
200                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
201                 *ei = (v >> eibase) & 0x3;
202             } else {
203                 *ei = (v >> 27) & 0x1;
204             }
205             break;
206 
207         case 6:
208             if (varway56) {
209                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
210                 *ei = (v >> eibase) & 0x7;
211             } else {
212                 *ei = (v >> 28) & 0x1;
213             }
214             break;
215 
216         default:
217             *ei = 0;
218             break;
219         }
220     }
221     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
222 }
223 
224 /*!
225  * Split TLB address into TLB way, entry index and VPN (with index).
226  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
227  */
228 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
229         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
230 {
231     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
232         *wi = v & (dtlb ? 0xf : 0x7);
233         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
234     } else {
235         *vpn = v & REGION_PAGE_MASK;
236         *wi = 0;
237         *ei = (v >> 29) & 0x7;
238     }
239 }
240 
241 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
242                                               unsigned wi, unsigned ei)
243 {
244     return dtlb ?
245         env->dtlb[wi] + ei :
246         env->itlb[wi] + ei;
247 }
248 
249 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
250         uint32_t v, bool dtlb, uint32_t *pwi)
251 {
252     uint32_t vpn;
253     uint32_t wi;
254     uint32_t ei;
255 
256     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
257     if (pwi) {
258         *pwi = wi;
259     }
260     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
261 }
262 
263 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
264                                      xtensa_tlb_entry *entry, bool dtlb,
265                                      unsigned wi, unsigned ei, uint32_t vpn,
266                                      uint32_t pte)
267 {
268     entry->vaddr = vpn;
269     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
270     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
271     entry->attr = pte & 0xf;
272 }
273 
274 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
275                                  unsigned wi, unsigned ei,
276                                  uint32_t vpn, uint32_t pte)
277 {
278     CPUState *cs = env_cpu(env);
279     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
280 
281     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
282         if (entry->variable) {
283             if (entry->asid) {
284                 tlb_flush_page(cs, entry->vaddr);
285             }
286             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
287             tlb_flush_page(cs, entry->vaddr);
288         } else {
289             qemu_log_mask(LOG_GUEST_ERROR,
290                           "%s %d, %d, %d trying to set immutable entry\n",
291                           __func__, dtlb, wi, ei);
292         }
293     } else {
294         tlb_flush_page(cs, entry->vaddr);
295         if (xtensa_option_enabled(env->config,
296                     XTENSA_OPTION_REGION_TRANSLATION)) {
297             entry->paddr = pte & REGION_PAGE_MASK;
298         }
299         entry->attr = pte & 0xf;
300     }
301 }
302 
303 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
304 {
305     XtensaCPU *cpu = XTENSA_CPU(cs);
306     uint32_t paddr;
307     uint32_t page_size;
308     unsigned access;
309 
310     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
311                 &paddr, &page_size, &access) == 0) {
312         return paddr;
313     }
314     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
315                 &paddr, &page_size, &access) == 0) {
316         return paddr;
317     }
318     return ~0;
319 }
320 
321 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
322                                    const xtensa_tlb *tlb,
323                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
324 {
325     unsigned wi, ei;
326 
327     for (wi = 0; wi < tlb->nways; ++wi) {
328         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
329             entry[wi][ei].asid = 0;
330             entry[wi][ei].variable = true;
331         }
332     }
333 }
334 
335 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
336                                  const xtensa_tlb *tlb,
337                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
338 {
339     if (!tlb->varway56) {
340         static const xtensa_tlb_entry way5[] = {
341             {
342                 .vaddr = 0xd0000000,
343                 .paddr = 0,
344                 .asid = 1,
345                 .attr = 7,
346                 .variable = false,
347             }, {
348                 .vaddr = 0xd8000000,
349                 .paddr = 0,
350                 .asid = 1,
351                 .attr = 3,
352                 .variable = false,
353             }
354         };
355         static const xtensa_tlb_entry way6[] = {
356             {
357                 .vaddr = 0xe0000000,
358                 .paddr = 0xf0000000,
359                 .asid = 1,
360                 .attr = 7,
361                 .variable = false,
362             }, {
363                 .vaddr = 0xf0000000,
364                 .paddr = 0xf0000000,
365                 .asid = 1,
366                 .attr = 3,
367                 .variable = false,
368             }
369         };
370         memcpy(entry[5], way5, sizeof(way5));
371         memcpy(entry[6], way6, sizeof(way6));
372     } else {
373         uint32_t ei;
374         for (ei = 0; ei < 8; ++ei) {
375             entry[6][ei].vaddr = ei << 29;
376             entry[6][ei].paddr = ei << 29;
377             entry[6][ei].asid = 1;
378             entry[6][ei].attr = 3;
379         }
380     }
381 }
382 
383 static void reset_tlb_region_way0(CPUXtensaState *env,
384                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
385 {
386     unsigned ei;
387 
388     for (ei = 0; ei < 8; ++ei) {
389         entry[0][ei].vaddr = ei << 29;
390         entry[0][ei].paddr = ei << 29;
391         entry[0][ei].asid = 1;
392         entry[0][ei].attr = 2;
393         entry[0][ei].variable = true;
394     }
395 }
396 
397 void reset_mmu(CPUXtensaState *env)
398 {
399     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
400         env->sregs[RASID] = 0x04030201;
401         env->sregs[ITLBCFG] = 0;
402         env->sregs[DTLBCFG] = 0;
403         env->autorefill_idx = 0;
404         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
405         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
406         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
407         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
408     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
409         unsigned i;
410 
411         env->sregs[MPUENB] = 0;
412         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
413         env->sregs[CACHEADRDIS] = 0;
414         assert(env->config->n_mpu_bg_segments > 0 &&
415                env->config->mpu_bg[0].vaddr == 0);
416         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
417             assert(env->config->mpu_bg[i].vaddr >=
418                    env->config->mpu_bg[i - 1].vaddr);
419         }
420     } else {
421         env->sregs[CACHEATTR] = 0x22222222;
422         reset_tlb_region_way0(env, env->itlb);
423         reset_tlb_region_way0(env, env->dtlb);
424     }
425 }
426 
427 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
428 {
429     unsigned i;
430     for (i = 0; i < 4; ++i) {
431         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
432             return i;
433         }
434     }
435     return 0xff;
436 }
437 
438 /*!
439  * Lookup xtensa TLB for the given virtual address.
440  * See ISA, 4.6.2.2
441  *
442  * \param pwi: [out] way index
443  * \param pei: [out] entry index
444  * \param pring: [out] access ring
445  * \return 0 if ok, exception cause code otherwise
446  */
447 static int xtensa_tlb_lookup(const CPUXtensaState *env,
448                              uint32_t addr, bool dtlb,
449                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
450 {
451     const xtensa_tlb *tlb = dtlb ?
452         &env->config->dtlb : &env->config->itlb;
453     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
454         env->dtlb : env->itlb;
455 
456     int nhits = 0;
457     unsigned wi;
458 
459     for (wi = 0; wi < tlb->nways; ++wi) {
460         uint32_t vpn;
461         uint32_t ei;
462         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
463         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
464             unsigned ring = get_ring(env, entry[wi][ei].asid);
465             if (ring < 4) {
466                 if (++nhits > 1) {
467                     return dtlb ?
468                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
469                         INST_TLB_MULTI_HIT_CAUSE;
470                 }
471                 *pwi = wi;
472                 *pei = ei;
473                 *pring = ring;
474             }
475         }
476     }
477     return nhits ? 0 :
478         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
479 }
480 
481 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
482 {
483     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
484         uint32_t wi;
485         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
486         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
487     } else {
488         return v & REGION_PAGE_MASK;
489     }
490 }
491 
492 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
493 {
494     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
495     return entry->paddr | entry->attr;
496 }
497 
498 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
499 {
500     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
501         uint32_t wi;
502         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
503         if (entry->variable && entry->asid) {
504             tlb_flush_page(env_cpu(env), entry->vaddr);
505             entry->asid = 0;
506         }
507     }
508 }
509 
510 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
511 {
512     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
513         uint32_t wi;
514         uint32_t ei;
515         uint8_t ring;
516         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
517 
518         switch (res) {
519         case 0:
520             if (ring >= xtensa_get_ring(env)) {
521                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
522             }
523             break;
524 
525         case INST_TLB_MULTI_HIT_CAUSE:
526         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
527             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
528             break;
529         }
530         return 0;
531     } else {
532         return (v & REGION_PAGE_MASK) | 0x1;
533     }
534 }
535 
536 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
537 {
538     uint32_t vpn;
539     uint32_t wi;
540     uint32_t ei;
541     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
542     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
543 }
544 
545 /*!
546  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
547  * See ISA, 4.6.5.10
548  */
549 static unsigned mmu_attr_to_access(uint32_t attr)
550 {
551     unsigned access = 0;
552 
553     if (attr < 12) {
554         access |= PAGE_READ;
555         if (attr & 0x1) {
556             access |= PAGE_EXEC;
557         }
558         if (attr & 0x2) {
559             access |= PAGE_WRITE;
560         }
561 
562         switch (attr & 0xc) {
563         case 0:
564             access |= PAGE_CACHE_BYPASS;
565             break;
566 
567         case 4:
568             access |= PAGE_CACHE_WB;
569             break;
570 
571         case 8:
572             access |= PAGE_CACHE_WT;
573             break;
574         }
575     } else if (attr == 13) {
576         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
577     }
578     return access;
579 }
580 
581 /*!
582  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
583  * See ISA, 4.6.3.3
584  */
585 static unsigned region_attr_to_access(uint32_t attr)
586 {
587     static const unsigned access[16] = {
588          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
589          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
590          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
591          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
592          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
593          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
594         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
595     };
596 
597     return access[attr & 0xf];
598 }
599 
600 /*!
601  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
602  * See ISA, A.2.14 The Cache Attribute Register
603  */
604 static unsigned cacheattr_attr_to_access(uint32_t attr)
605 {
606     static const unsigned access[16] = {
607          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
608          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
609          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
610          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
611          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
612         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
613     };
614 
615     return access[attr & 0xf];
616 }
617 
618 struct attr_pattern {
619     uint32_t mask;
620     uint32_t value;
621 };
622 
623 static int attr_pattern_match(uint32_t attr,
624                               const struct attr_pattern *pattern,
625                               size_t n)
626 {
627     size_t i;
628 
629     for (i = 0; i < n; ++i) {
630         if ((attr & pattern[i].mask) == pattern[i].value) {
631             return 1;
632         }
633     }
634     return 0;
635 }
636 
637 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
638 {
639     static const struct attr_pattern cpu_c[] = {
640         { .mask = 0x18f, .value = 0x089 },
641         { .mask = 0x188, .value = 0x080 },
642         { .mask = 0x180, .value = 0x180 },
643     };
644 
645     unsigned type = 0;
646 
647     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
648         type |= XTENSA_MPU_TYPE_CPU_CACHE;
649         if (attr & 0x10) {
650             type |= XTENSA_MPU_TYPE_CPU_C;
651         }
652         if (attr & 0x20) {
653             type |= XTENSA_MPU_TYPE_CPU_W;
654         }
655         if (attr & 0x40) {
656             type |= XTENSA_MPU_TYPE_CPU_R;
657         }
658     }
659     return type;
660 }
661 
662 static unsigned mpu_attr_to_type(uint32_t attr)
663 {
664     static const struct attr_pattern device_type[] = {
665         { .mask = 0x1f6, .value = 0x000 },
666         { .mask = 0x1f6, .value = 0x006 },
667     };
668     static const struct attr_pattern sys_nc_type[] = {
669         { .mask = 0x1fe, .value = 0x018 },
670         { .mask = 0x1fe, .value = 0x01e },
671         { .mask = 0x18f, .value = 0x089 },
672     };
673     static const struct attr_pattern sys_c_type[] = {
674         { .mask = 0x1f8, .value = 0x010 },
675         { .mask = 0x188, .value = 0x080 },
676         { .mask = 0x1f0, .value = 0x030 },
677         { .mask = 0x180, .value = 0x180 },
678     };
679     static const struct attr_pattern b[] = {
680         { .mask = 0x1f7, .value = 0x001 },
681         { .mask = 0x1f7, .value = 0x007 },
682         { .mask = 0x1ff, .value = 0x019 },
683         { .mask = 0x1ff, .value = 0x01f },
684     };
685 
686     unsigned type = 0;
687 
688     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
689     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
690         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
691         if (attr & 0x80) {
692             type |= XTENSA_MPU_TYPE_INT;
693         }
694     }
695     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
696         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
697     }
698     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
699         type |= XTENSA_MPU_SYSTEM_TYPE_C;
700         if (attr & 0x1) {
701             type |= XTENSA_MPU_TYPE_SYS_C;
702         }
703         if (attr & 0x2) {
704             type |= XTENSA_MPU_TYPE_SYS_W;
705         }
706         if (attr & 0x4) {
707             type |= XTENSA_MPU_TYPE_SYS_R;
708         }
709     }
710     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
711         type |= XTENSA_MPU_TYPE_B;
712     }
713     type |= mpu_attr_to_cpu_cache(attr);
714 
715     return type;
716 }
717 
718 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
719 {
720     static const unsigned access[2][16] = {
721         [0] = {
722              [4] = PAGE_READ,
723              [5] = PAGE_READ              | PAGE_EXEC,
724              [6] = PAGE_READ | PAGE_WRITE,
725              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
726              [8] =             PAGE_WRITE,
727              [9] = PAGE_READ | PAGE_WRITE,
728             [10] = PAGE_READ | PAGE_WRITE,
729             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
730             [12] = PAGE_READ,
731             [13] = PAGE_READ              | PAGE_EXEC,
732             [14] = PAGE_READ | PAGE_WRITE,
733             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
734         },
735         [1] = {
736              [8] =             PAGE_WRITE,
737              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
738             [10] = PAGE_READ,
739             [11] = PAGE_READ              | PAGE_EXEC,
740             [12] = PAGE_READ,
741             [13] = PAGE_READ              | PAGE_EXEC,
742             [14] = PAGE_READ | PAGE_WRITE,
743             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
744         },
745     };
746     unsigned rv;
747     unsigned type;
748 
749     type = mpu_attr_to_cpu_cache(attr);
750     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
751         XTENSA_MPU_ACC_RIGHTS_SHIFT];
752 
753     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
754         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
755     } else {
756         rv |= PAGE_CACHE_BYPASS;
757     }
758     return rv;
759 }
760 
761 static bool is_access_granted(unsigned access, int is_write)
762 {
763     switch (is_write) {
764     case 0:
765         return access & PAGE_READ;
766 
767     case 1:
768         return access & PAGE_WRITE;
769 
770     case 2:
771         return access & PAGE_EXEC;
772 
773     default:
774         return 0;
775     }
776 }
777 
778 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
779 
780 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
781                                  uint32_t vaddr, int is_write, int mmu_idx,
782                                  uint32_t *paddr, uint32_t *page_size,
783                                  unsigned *access, bool may_lookup_pt)
784 {
785     bool dtlb = is_write != 2;
786     uint32_t wi;
787     uint32_t ei;
788     uint8_t ring;
789     uint32_t vpn;
790     uint32_t pte;
791     const xtensa_tlb_entry *entry = NULL;
792     xtensa_tlb_entry tmp_entry;
793     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
794 
795     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
796         may_lookup_pt && get_pte(env, vaddr, &pte)) {
797         ring = (pte >> 4) & 0x3;
798         wi = 0;
799         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
800 
801         if (update_tlb) {
802             wi = ++env->autorefill_idx & 0x3;
803             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
804             env->sregs[EXCVADDR] = vaddr;
805             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
806                           __func__, vaddr, vpn, pte);
807         } else {
808             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
809             entry = &tmp_entry;
810         }
811         ret = 0;
812     }
813     if (ret != 0) {
814         return ret;
815     }
816 
817     if (entry == NULL) {
818         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
819     }
820 
821     if (ring < mmu_idx) {
822         return dtlb ?
823             LOAD_STORE_PRIVILEGE_CAUSE :
824             INST_FETCH_PRIVILEGE_CAUSE;
825     }
826 
827     *access = mmu_attr_to_access(entry->attr) &
828         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
829     if (!is_access_granted(*access, is_write)) {
830         return dtlb ?
831             (is_write ?
832              STORE_PROHIBITED_CAUSE :
833              LOAD_PROHIBITED_CAUSE) :
834             INST_FETCH_PROHIBITED_CAUSE;
835     }
836 
837     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
838     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
839 
840     return 0;
841 }
842 
843 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
844 {
845     CPUState *cs = env_cpu(env);
846     uint32_t paddr;
847     uint32_t page_size;
848     unsigned access;
849     uint32_t pt_vaddr =
850         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
851     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
852                                     &paddr, &page_size, &access, false);
853 
854     if (ret == 0) {
855         qemu_log_mask(CPU_LOG_MMU,
856                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
857                       __func__, vaddr, pt_vaddr, paddr);
858     } else {
859         qemu_log_mask(CPU_LOG_MMU,
860                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
861                       __func__, vaddr, pt_vaddr, ret);
862     }
863 
864     if (ret == 0) {
865         MemTxResult result;
866 
867         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
868                                  &result);
869         if (result != MEMTX_OK) {
870             qemu_log_mask(CPU_LOG_MMU,
871                           "%s: couldn't load PTE: transaction failed (%u)\n",
872                           __func__, (unsigned)result);
873             ret = 1;
874         }
875     }
876     return ret == 0;
877 }
878 
879 static int get_physical_addr_region(CPUXtensaState *env,
880                                     uint32_t vaddr, int is_write, int mmu_idx,
881                                     uint32_t *paddr, uint32_t *page_size,
882                                     unsigned *access)
883 {
884     bool dtlb = is_write != 2;
885     uint32_t wi = 0;
886     uint32_t ei = (vaddr >> 29) & 0x7;
887     const xtensa_tlb_entry *entry =
888         xtensa_tlb_get_entry(env, dtlb, wi, ei);
889 
890     *access = region_attr_to_access(entry->attr);
891     if (!is_access_granted(*access, is_write)) {
892         return dtlb ?
893             (is_write ?
894              STORE_PROHIBITED_CAUSE :
895              LOAD_PROHIBITED_CAUSE) :
896             INST_FETCH_PROHIBITED_CAUSE;
897     }
898 
899     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
900     *page_size = ~REGION_PAGE_MASK + 1;
901 
902     return 0;
903 }
904 
905 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
906                              uint32_t vaddr, unsigned *segment)
907 {
908     unsigned nhits = 0;
909     unsigned i;
910 
911     for (i = 0; i < n; ++i) {
912         if (vaddr >= entry[i].vaddr &&
913             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
914             if (nhits++) {
915                 break;
916             }
917             *segment = i;
918         }
919     }
920     return nhits;
921 }
922 
923 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
924 {
925     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
926 
927     if (v != env->sregs[MPUENB]) {
928         env->sregs[MPUENB] = v;
929         tlb_flush(env_cpu(env));
930     }
931 }
932 
933 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
934 {
935     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
936 
937     if (segment < env->config->n_mpu_fg_segments) {
938         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
939         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
940         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
941         tlb_flush(env_cpu(env));
942     }
943 }
944 
945 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
946 {
947     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
948 
949     if (segment < env->config->n_mpu_fg_segments) {
950         return env->mpu_fg[segment].vaddr |
951             extract32(env->sregs[MPUENB], segment, 1);
952     } else {
953         return 0;
954     }
955 }
956 
957 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
958 {
959     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
960 
961     if (segment < env->config->n_mpu_fg_segments) {
962         return env->mpu_fg[segment].attr;
963     } else {
964         return 0;
965     }
966 }
967 
968 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
969 {
970     unsigned nhits;
971     unsigned segment = XTENSA_MPU_PROBE_B;
972     unsigned bg_segment;
973 
974     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
975                               v, &segment);
976     if (nhits > 1) {
977         HELPER(exception_cause_vaddr)(env, env->pc,
978                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
979     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
980         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
981     } else {
982         xtensa_mpu_lookup(env->config->mpu_bg,
983                           env->config->n_mpu_bg_segments,
984                           v, &bg_segment);
985         return env->config->mpu_bg[bg_segment].attr | segment;
986     }
987 }
988 
989 static int get_physical_addr_mpu(CPUXtensaState *env,
990                                  uint32_t vaddr, int is_write, int mmu_idx,
991                                  uint32_t *paddr, uint32_t *page_size,
992                                  unsigned *access)
993 {
994     unsigned nhits;
995     unsigned segment;
996     uint32_t attr;
997 
998     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
999                               vaddr, &segment);
1000     if (nhits > 1) {
1001         return is_write < 2 ?
1002             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1003             INST_TLB_MULTI_HIT_CAUSE;
1004     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1005         attr = env->mpu_fg[segment].attr;
1006     } else {
1007         xtensa_mpu_lookup(env->config->mpu_bg,
1008                           env->config->n_mpu_bg_segments,
1009                           vaddr, &segment);
1010         attr = env->config->mpu_bg[segment].attr;
1011     }
1012 
1013     *access = mpu_attr_to_access(attr, mmu_idx);
1014     if (!is_access_granted(*access, is_write)) {
1015         return is_write < 2 ?
1016             (is_write ?
1017              STORE_PROHIBITED_CAUSE :
1018              LOAD_PROHIBITED_CAUSE) :
1019             INST_FETCH_PROHIBITED_CAUSE;
1020     }
1021     *paddr = vaddr;
1022     *page_size = env->config->mpu_align;
1023     return 0;
1024 }
1025 
1026 /*!
1027  * Convert virtual address to physical addr.
1028  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1029  *
1030  * \return 0 if ok, exception cause code otherwise
1031  */
1032 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1033                              uint32_t vaddr, int is_write, int mmu_idx,
1034                              uint32_t *paddr, uint32_t *page_size,
1035                              unsigned *access)
1036 {
1037     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1038         return get_physical_addr_mmu(env, update_tlb,
1039                                      vaddr, is_write, mmu_idx, paddr,
1040                                      page_size, access, true);
1041     } else if (xtensa_option_bits_enabled(env->config,
1042                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1043                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1044         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1045                                         paddr, page_size, access);
1046     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1047         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1048                                      paddr, page_size, access);
1049     } else {
1050         *paddr = vaddr;
1051         *page_size = TARGET_PAGE_SIZE;
1052         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1053                                            ((vaddr & 0xe0000000) >> 27));
1054         return 0;
1055     }
1056 }
1057 
1058 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1059 {
1060     unsigned wi, ei;
1061     const xtensa_tlb *conf =
1062         dtlb ? &env->config->dtlb : &env->config->itlb;
1063     unsigned (*attr_to_access)(uint32_t) =
1064         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1065         mmu_attr_to_access : region_attr_to_access;
1066 
1067     for (wi = 0; wi < conf->nways; ++wi) {
1068         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1069         const char *sz_text;
1070         bool print_header = true;
1071 
1072         if (sz >= 0x100000) {
1073             sz /= MiB;
1074             sz_text = "MB";
1075         } else {
1076             sz /= KiB;
1077             sz_text = "KB";
1078         }
1079 
1080         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1081             const xtensa_tlb_entry *entry =
1082                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1083 
1084             if (entry->asid) {
1085                 static const char * const cache_text[8] = {
1086                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1087                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1088                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1089                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1090                 };
1091                 unsigned access = attr_to_access(entry->attr);
1092                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1093                     PAGE_CACHE_SHIFT;
1094 
1095                 if (print_header) {
1096                     print_header = false;
1097                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1098                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1099                                 "\t----------  ----------  ----  ---- --- -------\n");
1100                 }
1101                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
1102                             entry->vaddr,
1103                             entry->paddr,
1104                             entry->asid,
1105                             entry->attr,
1106                             (access & PAGE_READ) ? 'R' : '-',
1107                             (access & PAGE_WRITE) ? 'W' : '-',
1108                             (access & PAGE_EXEC) ? 'X' : '-',
1109                             cache_text[cache_idx] ?
1110                             cache_text[cache_idx] : "Invalid");
1111             }
1112         }
1113     }
1114 }
1115 
1116 static void dump_mpu(CPUXtensaState *env,
1117                      const xtensa_mpu_entry *entry, unsigned n)
1118 {
1119     unsigned i;
1120 
1121     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1122                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1123                 env ? "En" : "  ",
1124                 env ? "--" : "  ");
1125 
1126     for (i = 0; i < n; ++i) {
1127         uint32_t attr = entry[i].attr;
1128         unsigned access0 = mpu_attr_to_access(attr, 0);
1129         unsigned access1 = mpu_attr_to_access(attr, 1);
1130         unsigned type = mpu_attr_to_type(attr);
1131         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1132 
1133         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1134                     env ?
1135                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1136                     entry[i].vaddr, attr,
1137                     (access0 & PAGE_READ) ? 'R' : '-',
1138                     (access0 & PAGE_WRITE) ? 'W' : '-',
1139                     (access0 & PAGE_EXEC) ? 'X' : '-',
1140                     (access1 & PAGE_READ) ? 'R' : '-',
1141                     (access1 & PAGE_WRITE) ? 'W' : '-',
1142                     (access1 & PAGE_EXEC) ? 'X' : '-');
1143 
1144         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1145         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1146             qemu_printf("Device %cB %3s\n",
1147                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1148                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1149             break;
1150         case XTENSA_MPU_SYSTEM_TYPE_NC:
1151             qemu_printf("Sys NC %cB      %c%c%c\n",
1152                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1153                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1154                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1155                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1156             break;
1157         case XTENSA_MPU_SYSTEM_TYPE_C:
1158             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1159                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1160                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1161                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1162                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1163                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1164                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1165             break;
1166         default:
1167             qemu_printf("Unknown\n");
1168             break;
1169         }
1170     }
1171 }
1172 
1173 void dump_mmu(CPUXtensaState *env)
1174 {
1175     if (xtensa_option_bits_enabled(env->config,
1176                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1177                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1178                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1179 
1180         qemu_printf("ITLB:\n");
1181         dump_tlb(env, false);
1182         qemu_printf("\nDTLB:\n");
1183         dump_tlb(env, true);
1184     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1185         qemu_printf("Foreground map:\n");
1186         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1187         qemu_printf("\nBackground map:\n");
1188         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1189     } else {
1190         qemu_printf("No TLB for this CPU core\n");
1191     }
1192 }
1193