xref: /openbmc/qemu/target/xtensa/mmu_helper.c (revision 2d89ae0c)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/exec-all.h"
36 
37 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
38 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
39 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
40 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
41 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
42 #define XTENSA_MPU_ATTR_MASK 0x001fff00
43 
44 #define XTENSA_MPU_PROBE_B 0x40000000
45 #define XTENSA_MPU_PROBE_V 0x80000000
46 
47 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
48 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
49 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
50 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
51 
52 #define XTENSA_MPU_TYPE_SYS_C     0x0010
53 #define XTENSA_MPU_TYPE_SYS_W     0x0020
54 #define XTENSA_MPU_TYPE_SYS_R     0x0040
55 #define XTENSA_MPU_TYPE_CPU_C     0x0100
56 #define XTENSA_MPU_TYPE_CPU_W     0x0200
57 #define XTENSA_MPU_TYPE_CPU_R     0x0400
58 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
59 #define XTENSA_MPU_TYPE_B         0x1000
60 #define XTENSA_MPU_TYPE_INT       0x2000
61 
62 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
63 {
64     /*
65      * Probe the memory; we don't care about the result but
66      * only the side-effects (ie any MMU or other exception)
67      */
68     probe_access(env, vaddr, 1, MMU_INST_FETCH,
69                  cpu_mmu_index(env, true), GETPC());
70 }
71 
72 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
73 {
74     v = (v & 0xffffff00) | 0x1;
75     if (v != env->sregs[RASID]) {
76         env->sregs[RASID] = v;
77         tlb_flush(env_cpu(env));
78     }
79 }
80 
81 static uint32_t get_page_size(const CPUXtensaState *env,
82                               bool dtlb, uint32_t way)
83 {
84     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
85 
86     switch (way) {
87     case 4:
88         return (tlbcfg >> 16) & 0x3;
89 
90     case 5:
91         return (tlbcfg >> 20) & 0x1;
92 
93     case 6:
94         return (tlbcfg >> 24) & 0x1;
95 
96     default:
97         return 0;
98     }
99 }
100 
101 /*!
102  * Get bit mask for the virtual address bits translated by the TLB way
103  */
104 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
105                                          bool dtlb, uint32_t way)
106 {
107     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
108         bool varway56 = dtlb ?
109             env->config->dtlb.varway56 :
110             env->config->itlb.varway56;
111 
112         switch (way) {
113         case 4:
114             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
115 
116         case 5:
117             if (varway56) {
118                 return 0xf8000000 << get_page_size(env, dtlb, way);
119             } else {
120                 return 0xf8000000;
121             }
122 
123         case 6:
124             if (varway56) {
125                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
126             } else {
127                 return 0xf0000000;
128             }
129 
130         default:
131             return 0xfffff000;
132         }
133     } else {
134         return REGION_PAGE_MASK;
135     }
136 }
137 
138 /*!
139  * Get bit mask for the 'VPN without index' field.
140  * See ISA, 4.6.5.6, data format for RxTLB0
141  */
142 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
143 {
144     if (way < 4) {
145         bool is32 = (dtlb ?
146                 env->config->dtlb.nrefillentries :
147                 env->config->itlb.nrefillentries) == 32;
148         return is32 ? 0xffff8000 : 0xffffc000;
149     } else if (way == 4) {
150         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
151     } else if (way <= 6) {
152         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
153         bool varway56 = dtlb ?
154             env->config->dtlb.varway56 :
155             env->config->itlb.varway56;
156 
157         if (varway56) {
158             return mask << (way == 5 ? 2 : 3);
159         } else {
160             return mask << 1;
161         }
162     } else {
163         return 0xfffff000;
164     }
165 }
166 
167 /*!
168  * Split virtual address into VPN (with index) and entry index
169  * for the given TLB way
170  */
171 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
172                                      bool dtlb, uint32_t *vpn,
173                                      uint32_t wi, uint32_t *ei)
174 {
175     bool varway56 = dtlb ?
176         env->config->dtlb.varway56 :
177         env->config->itlb.varway56;
178 
179     if (!dtlb) {
180         wi &= 7;
181     }
182 
183     if (wi < 4) {
184         bool is32 = (dtlb ?
185                 env->config->dtlb.nrefillentries :
186                 env->config->itlb.nrefillentries) == 32;
187         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
188     } else {
189         switch (wi) {
190         case 4:
191             {
192                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
193                 *ei = (v >> eibase) & 0x3;
194             }
195             break;
196 
197         case 5:
198             if (varway56) {
199                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
200                 *ei = (v >> eibase) & 0x3;
201             } else {
202                 *ei = (v >> 27) & 0x1;
203             }
204             break;
205 
206         case 6:
207             if (varway56) {
208                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
209                 *ei = (v >> eibase) & 0x7;
210             } else {
211                 *ei = (v >> 28) & 0x1;
212             }
213             break;
214 
215         default:
216             *ei = 0;
217             break;
218         }
219     }
220     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
221 }
222 
223 /*!
224  * Split TLB address into TLB way, entry index and VPN (with index).
225  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
226  */
227 static bool split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
228                                  uint32_t *vpn, uint32_t *wi, uint32_t *ei)
229 {
230     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
231         *wi = v & (dtlb ? 0xf : 0x7);
232         if (*wi < (dtlb ? env->config->dtlb.nways : env->config->itlb.nways)) {
233             split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
234             return true;
235         } else {
236             return false;
237         }
238     } else {
239         *vpn = v & REGION_PAGE_MASK;
240         *wi = 0;
241         *ei = (v >> 29) & 0x7;
242         return true;
243     }
244 }
245 
246 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
247                                               unsigned wi, unsigned ei)
248 {
249     const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb;
250 
251     assert(wi < tlb->nways && ei < tlb->way_size[wi]);
252     return dtlb ?
253         env->dtlb[wi] + ei :
254         env->itlb[wi] + ei;
255 }
256 
257 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
258         uint32_t v, bool dtlb, uint32_t *pwi)
259 {
260     uint32_t vpn;
261     uint32_t wi;
262     uint32_t ei;
263 
264     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
265         if (pwi) {
266             *pwi = wi;
267         }
268         return xtensa_tlb_get_entry(env, dtlb, wi, ei);
269     } else {
270         return NULL;
271     }
272 }
273 
274 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
275                                      xtensa_tlb_entry *entry, bool dtlb,
276                                      unsigned wi, unsigned ei, uint32_t vpn,
277                                      uint32_t pte)
278 {
279     entry->vaddr = vpn;
280     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
281     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
282     entry->attr = pte & 0xf;
283 }
284 
285 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
286                                  unsigned wi, unsigned ei,
287                                  uint32_t vpn, uint32_t pte)
288 {
289     CPUState *cs = env_cpu(env);
290     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
291 
292     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
293         if (entry->variable) {
294             if (entry->asid) {
295                 tlb_flush_page(cs, entry->vaddr);
296             }
297             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
298             tlb_flush_page(cs, entry->vaddr);
299         } else {
300             qemu_log_mask(LOG_GUEST_ERROR,
301                           "%s %d, %d, %d trying to set immutable entry\n",
302                           __func__, dtlb, wi, ei);
303         }
304     } else {
305         tlb_flush_page(cs, entry->vaddr);
306         if (xtensa_option_enabled(env->config,
307                     XTENSA_OPTION_REGION_TRANSLATION)) {
308             entry->paddr = pte & REGION_PAGE_MASK;
309         }
310         entry->attr = pte & 0xf;
311     }
312 }
313 
314 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
315 {
316     XtensaCPU *cpu = XTENSA_CPU(cs);
317     uint32_t paddr;
318     uint32_t page_size;
319     unsigned access;
320 
321     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
322                 &paddr, &page_size, &access) == 0) {
323         return paddr;
324     }
325     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
326                 &paddr, &page_size, &access) == 0) {
327         return paddr;
328     }
329     return ~0;
330 }
331 
332 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
333                                    const xtensa_tlb *tlb,
334                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
335 {
336     unsigned wi, ei;
337 
338     for (wi = 0; wi < tlb->nways; ++wi) {
339         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
340             entry[wi][ei].asid = 0;
341             entry[wi][ei].variable = true;
342         }
343     }
344 }
345 
346 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
347                                  const xtensa_tlb *tlb,
348                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
349 {
350     if (!tlb->varway56) {
351         static const xtensa_tlb_entry way5[] = {
352             {
353                 .vaddr = 0xd0000000,
354                 .paddr = 0,
355                 .asid = 1,
356                 .attr = 7,
357                 .variable = false,
358             }, {
359                 .vaddr = 0xd8000000,
360                 .paddr = 0,
361                 .asid = 1,
362                 .attr = 3,
363                 .variable = false,
364             }
365         };
366         static const xtensa_tlb_entry way6[] = {
367             {
368                 .vaddr = 0xe0000000,
369                 .paddr = 0xf0000000,
370                 .asid = 1,
371                 .attr = 7,
372                 .variable = false,
373             }, {
374                 .vaddr = 0xf0000000,
375                 .paddr = 0xf0000000,
376                 .asid = 1,
377                 .attr = 3,
378                 .variable = false,
379             }
380         };
381         memcpy(entry[5], way5, sizeof(way5));
382         memcpy(entry[6], way6, sizeof(way6));
383     } else {
384         uint32_t ei;
385         for (ei = 0; ei < 8; ++ei) {
386             entry[6][ei].vaddr = ei << 29;
387             entry[6][ei].paddr = ei << 29;
388             entry[6][ei].asid = 1;
389             entry[6][ei].attr = 3;
390         }
391     }
392 }
393 
394 static void reset_tlb_region_way0(CPUXtensaState *env,
395                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
396 {
397     unsigned ei;
398 
399     for (ei = 0; ei < 8; ++ei) {
400         entry[0][ei].vaddr = ei << 29;
401         entry[0][ei].paddr = ei << 29;
402         entry[0][ei].asid = 1;
403         entry[0][ei].attr = 2;
404         entry[0][ei].variable = true;
405     }
406 }
407 
408 void reset_mmu(CPUXtensaState *env)
409 {
410     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
411         env->sregs[RASID] = 0x04030201;
412         env->sregs[ITLBCFG] = 0;
413         env->sregs[DTLBCFG] = 0;
414         env->autorefill_idx = 0;
415         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
416         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
417         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
418         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
419     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
420         unsigned i;
421 
422         env->sregs[MPUENB] = 0;
423         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
424         env->sregs[CACHEADRDIS] = 0;
425         assert(env->config->n_mpu_bg_segments > 0 &&
426                env->config->mpu_bg[0].vaddr == 0);
427         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
428             assert(env->config->mpu_bg[i].vaddr >=
429                    env->config->mpu_bg[i - 1].vaddr);
430         }
431     } else {
432         env->sregs[CACHEATTR] = 0x22222222;
433         reset_tlb_region_way0(env, env->itlb);
434         reset_tlb_region_way0(env, env->dtlb);
435     }
436 }
437 
438 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
439 {
440     unsigned i;
441     for (i = 0; i < 4; ++i) {
442         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
443             return i;
444         }
445     }
446     return 0xff;
447 }
448 
449 /*!
450  * Lookup xtensa TLB for the given virtual address.
451  * See ISA, 4.6.2.2
452  *
453  * \param pwi: [out] way index
454  * \param pei: [out] entry index
455  * \param pring: [out] access ring
456  * \return 0 if ok, exception cause code otherwise
457  */
458 static int xtensa_tlb_lookup(const CPUXtensaState *env,
459                              uint32_t addr, bool dtlb,
460                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
461 {
462     const xtensa_tlb *tlb = dtlb ?
463         &env->config->dtlb : &env->config->itlb;
464     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
465         env->dtlb : env->itlb;
466 
467     int nhits = 0;
468     unsigned wi;
469 
470     for (wi = 0; wi < tlb->nways; ++wi) {
471         uint32_t vpn;
472         uint32_t ei;
473         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
474         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
475             unsigned ring = get_ring(env, entry[wi][ei].asid);
476             if (ring < 4) {
477                 if (++nhits > 1) {
478                     return dtlb ?
479                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
480                         INST_TLB_MULTI_HIT_CAUSE;
481                 }
482                 *pwi = wi;
483                 *pei = ei;
484                 *pring = ring;
485             }
486         }
487     }
488     return nhits ? 0 :
489         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
490 }
491 
492 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
493 {
494     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
495         uint32_t wi;
496         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
497 
498         if (entry) {
499             return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
500         } else {
501             return 0;
502         }
503     } else {
504         return v & REGION_PAGE_MASK;
505     }
506 }
507 
508 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
509 {
510     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
511 
512     if (entry) {
513         return entry->paddr | entry->attr;
514     } else {
515         return 0;
516     }
517 }
518 
519 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
520 {
521     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
522         uint32_t wi;
523         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
524         if (entry && entry->variable && entry->asid) {
525             tlb_flush_page(env_cpu(env), entry->vaddr);
526             entry->asid = 0;
527         }
528     }
529 }
530 
531 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
532 {
533     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
534         uint32_t wi;
535         uint32_t ei;
536         uint8_t ring;
537         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
538 
539         switch (res) {
540         case 0:
541             if (ring >= xtensa_get_ring(env)) {
542                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
543             }
544             break;
545 
546         case INST_TLB_MULTI_HIT_CAUSE:
547         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
548             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
549             break;
550         }
551         return 0;
552     } else {
553         return (v & REGION_PAGE_MASK) | 0x1;
554     }
555 }
556 
557 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
558 {
559     uint32_t vpn;
560     uint32_t wi;
561     uint32_t ei;
562     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
563         xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
564     }
565 }
566 
567 /*!
568  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
569  * See ISA, 4.6.5.10
570  */
571 static unsigned mmu_attr_to_access(uint32_t attr)
572 {
573     unsigned access = 0;
574 
575     if (attr < 12) {
576         access |= PAGE_READ;
577         if (attr & 0x1) {
578             access |= PAGE_EXEC;
579         }
580         if (attr & 0x2) {
581             access |= PAGE_WRITE;
582         }
583 
584         switch (attr & 0xc) {
585         case 0:
586             access |= PAGE_CACHE_BYPASS;
587             break;
588 
589         case 4:
590             access |= PAGE_CACHE_WB;
591             break;
592 
593         case 8:
594             access |= PAGE_CACHE_WT;
595             break;
596         }
597     } else if (attr == 13) {
598         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
599     }
600     return access;
601 }
602 
603 /*!
604  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
605  * See ISA, 4.6.3.3
606  */
607 static unsigned region_attr_to_access(uint32_t attr)
608 {
609     static const unsigned access[16] = {
610          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
611          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
612          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
613          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
614          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
615          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
616         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
617     };
618 
619     return access[attr & 0xf];
620 }
621 
622 /*!
623  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
624  * See ISA, A.2.14 The Cache Attribute Register
625  */
626 static unsigned cacheattr_attr_to_access(uint32_t attr)
627 {
628     static const unsigned access[16] = {
629          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
630          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
631          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
632          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
633          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
634         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
635     };
636 
637     return access[attr & 0xf];
638 }
639 
640 struct attr_pattern {
641     uint32_t mask;
642     uint32_t value;
643 };
644 
645 static int attr_pattern_match(uint32_t attr,
646                               const struct attr_pattern *pattern,
647                               size_t n)
648 {
649     size_t i;
650 
651     for (i = 0; i < n; ++i) {
652         if ((attr & pattern[i].mask) == pattern[i].value) {
653             return 1;
654         }
655     }
656     return 0;
657 }
658 
659 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
660 {
661     static const struct attr_pattern cpu_c[] = {
662         { .mask = 0x18f, .value = 0x089 },
663         { .mask = 0x188, .value = 0x080 },
664         { .mask = 0x180, .value = 0x180 },
665     };
666 
667     unsigned type = 0;
668 
669     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
670         type |= XTENSA_MPU_TYPE_CPU_CACHE;
671         if (attr & 0x10) {
672             type |= XTENSA_MPU_TYPE_CPU_C;
673         }
674         if (attr & 0x20) {
675             type |= XTENSA_MPU_TYPE_CPU_W;
676         }
677         if (attr & 0x40) {
678             type |= XTENSA_MPU_TYPE_CPU_R;
679         }
680     }
681     return type;
682 }
683 
684 static unsigned mpu_attr_to_type(uint32_t attr)
685 {
686     static const struct attr_pattern device_type[] = {
687         { .mask = 0x1f6, .value = 0x000 },
688         { .mask = 0x1f6, .value = 0x006 },
689     };
690     static const struct attr_pattern sys_nc_type[] = {
691         { .mask = 0x1fe, .value = 0x018 },
692         { .mask = 0x1fe, .value = 0x01e },
693         { .mask = 0x18f, .value = 0x089 },
694     };
695     static const struct attr_pattern sys_c_type[] = {
696         { .mask = 0x1f8, .value = 0x010 },
697         { .mask = 0x188, .value = 0x080 },
698         { .mask = 0x1f0, .value = 0x030 },
699         { .mask = 0x180, .value = 0x180 },
700     };
701     static const struct attr_pattern b[] = {
702         { .mask = 0x1f7, .value = 0x001 },
703         { .mask = 0x1f7, .value = 0x007 },
704         { .mask = 0x1ff, .value = 0x019 },
705         { .mask = 0x1ff, .value = 0x01f },
706     };
707 
708     unsigned type = 0;
709 
710     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
711     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
712         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
713         if (attr & 0x80) {
714             type |= XTENSA_MPU_TYPE_INT;
715         }
716     }
717     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
718         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
719     }
720     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
721         type |= XTENSA_MPU_SYSTEM_TYPE_C;
722         if (attr & 0x1) {
723             type |= XTENSA_MPU_TYPE_SYS_C;
724         }
725         if (attr & 0x2) {
726             type |= XTENSA_MPU_TYPE_SYS_W;
727         }
728         if (attr & 0x4) {
729             type |= XTENSA_MPU_TYPE_SYS_R;
730         }
731     }
732     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
733         type |= XTENSA_MPU_TYPE_B;
734     }
735     type |= mpu_attr_to_cpu_cache(attr);
736 
737     return type;
738 }
739 
740 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
741 {
742     static const unsigned access[2][16] = {
743         [0] = {
744              [4] = PAGE_READ,
745              [5] = PAGE_READ              | PAGE_EXEC,
746              [6] = PAGE_READ | PAGE_WRITE,
747              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
748              [8] =             PAGE_WRITE,
749              [9] = PAGE_READ | PAGE_WRITE,
750             [10] = PAGE_READ | PAGE_WRITE,
751             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
752             [12] = PAGE_READ,
753             [13] = PAGE_READ              | PAGE_EXEC,
754             [14] = PAGE_READ | PAGE_WRITE,
755             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
756         },
757         [1] = {
758              [8] =             PAGE_WRITE,
759              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
760             [10] = PAGE_READ,
761             [11] = PAGE_READ              | PAGE_EXEC,
762             [12] = PAGE_READ,
763             [13] = PAGE_READ              | PAGE_EXEC,
764             [14] = PAGE_READ | PAGE_WRITE,
765             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
766         },
767     };
768     unsigned rv;
769     unsigned type;
770 
771     type = mpu_attr_to_cpu_cache(attr);
772     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
773         XTENSA_MPU_ACC_RIGHTS_SHIFT];
774 
775     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
776         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
777     } else {
778         rv |= PAGE_CACHE_BYPASS;
779     }
780     return rv;
781 }
782 
783 static bool is_access_granted(unsigned access, int is_write)
784 {
785     switch (is_write) {
786     case 0:
787         return access & PAGE_READ;
788 
789     case 1:
790         return access & PAGE_WRITE;
791 
792     case 2:
793         return access & PAGE_EXEC;
794 
795     default:
796         return 0;
797     }
798 }
799 
800 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
801 
802 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
803                                  uint32_t vaddr, int is_write, int mmu_idx,
804                                  uint32_t *paddr, uint32_t *page_size,
805                                  unsigned *access, bool may_lookup_pt)
806 {
807     bool dtlb = is_write != 2;
808     uint32_t wi;
809     uint32_t ei;
810     uint8_t ring;
811     uint32_t vpn;
812     uint32_t pte;
813     const xtensa_tlb_entry *entry = NULL;
814     xtensa_tlb_entry tmp_entry;
815     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
816 
817     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
818         may_lookup_pt && get_pte(env, vaddr, &pte)) {
819         ring = (pte >> 4) & 0x3;
820         wi = 0;
821         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
822 
823         if (update_tlb) {
824             wi = ++env->autorefill_idx & 0x3;
825             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
826             env->sregs[EXCVADDR] = vaddr;
827             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
828                           __func__, vaddr, vpn, pte);
829         } else {
830             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
831             entry = &tmp_entry;
832         }
833         ret = 0;
834     }
835     if (ret != 0) {
836         return ret;
837     }
838 
839     if (entry == NULL) {
840         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
841     }
842 
843     if (ring < mmu_idx) {
844         return dtlb ?
845             LOAD_STORE_PRIVILEGE_CAUSE :
846             INST_FETCH_PRIVILEGE_CAUSE;
847     }
848 
849     *access = mmu_attr_to_access(entry->attr) &
850         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
851     if (!is_access_granted(*access, is_write)) {
852         return dtlb ?
853             (is_write ?
854              STORE_PROHIBITED_CAUSE :
855              LOAD_PROHIBITED_CAUSE) :
856             INST_FETCH_PROHIBITED_CAUSE;
857     }
858 
859     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
860     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
861 
862     return 0;
863 }
864 
865 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
866 {
867     CPUState *cs = env_cpu(env);
868     uint32_t paddr;
869     uint32_t page_size;
870     unsigned access;
871     uint32_t pt_vaddr =
872         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
873     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
874                                     &paddr, &page_size, &access, false);
875 
876     if (ret == 0) {
877         qemu_log_mask(CPU_LOG_MMU,
878                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
879                       __func__, vaddr, pt_vaddr, paddr);
880     } else {
881         qemu_log_mask(CPU_LOG_MMU,
882                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
883                       __func__, vaddr, pt_vaddr, ret);
884     }
885 
886     if (ret == 0) {
887         MemTxResult result;
888 
889         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
890                                  &result);
891         if (result != MEMTX_OK) {
892             qemu_log_mask(CPU_LOG_MMU,
893                           "%s: couldn't load PTE: transaction failed (%u)\n",
894                           __func__, (unsigned)result);
895             ret = 1;
896         }
897     }
898     return ret == 0;
899 }
900 
901 static int get_physical_addr_region(CPUXtensaState *env,
902                                     uint32_t vaddr, int is_write, int mmu_idx,
903                                     uint32_t *paddr, uint32_t *page_size,
904                                     unsigned *access)
905 {
906     bool dtlb = is_write != 2;
907     uint32_t wi = 0;
908     uint32_t ei = (vaddr >> 29) & 0x7;
909     const xtensa_tlb_entry *entry =
910         xtensa_tlb_get_entry(env, dtlb, wi, ei);
911 
912     *access = region_attr_to_access(entry->attr);
913     if (!is_access_granted(*access, is_write)) {
914         return dtlb ?
915             (is_write ?
916              STORE_PROHIBITED_CAUSE :
917              LOAD_PROHIBITED_CAUSE) :
918             INST_FETCH_PROHIBITED_CAUSE;
919     }
920 
921     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
922     *page_size = ~REGION_PAGE_MASK + 1;
923 
924     return 0;
925 }
926 
927 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
928                              uint32_t vaddr, unsigned *segment)
929 {
930     unsigned nhits = 0;
931     unsigned i;
932 
933     for (i = 0; i < n; ++i) {
934         if (vaddr >= entry[i].vaddr &&
935             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
936             if (nhits++) {
937                 break;
938             }
939             *segment = i;
940         }
941     }
942     return nhits;
943 }
944 
945 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
946 {
947     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
948 
949     if (v != env->sregs[MPUENB]) {
950         env->sregs[MPUENB] = v;
951         tlb_flush(env_cpu(env));
952     }
953 }
954 
955 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
956 {
957     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
958 
959     if (segment < env->config->n_mpu_fg_segments) {
960         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
961         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
962         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
963         tlb_flush(env_cpu(env));
964     }
965 }
966 
967 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
968 {
969     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
970 
971     if (segment < env->config->n_mpu_fg_segments) {
972         return env->mpu_fg[segment].vaddr |
973             extract32(env->sregs[MPUENB], segment, 1);
974     } else {
975         return 0;
976     }
977 }
978 
979 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
980 {
981     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
982 
983     if (segment < env->config->n_mpu_fg_segments) {
984         return env->mpu_fg[segment].attr;
985     } else {
986         return 0;
987     }
988 }
989 
990 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
991 {
992     unsigned nhits;
993     unsigned segment = XTENSA_MPU_PROBE_B;
994     unsigned bg_segment;
995 
996     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
997                               v, &segment);
998     if (nhits > 1) {
999         HELPER(exception_cause_vaddr)(env, env->pc,
1000                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
1001     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1002         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
1003     } else {
1004         xtensa_mpu_lookup(env->config->mpu_bg,
1005                           env->config->n_mpu_bg_segments,
1006                           v, &bg_segment);
1007         return env->config->mpu_bg[bg_segment].attr | segment;
1008     }
1009 }
1010 
1011 static int get_physical_addr_mpu(CPUXtensaState *env,
1012                                  uint32_t vaddr, int is_write, int mmu_idx,
1013                                  uint32_t *paddr, uint32_t *page_size,
1014                                  unsigned *access)
1015 {
1016     unsigned nhits;
1017     unsigned segment;
1018     uint32_t attr;
1019 
1020     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1021                               vaddr, &segment);
1022     if (nhits > 1) {
1023         return is_write < 2 ?
1024             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1025             INST_TLB_MULTI_HIT_CAUSE;
1026     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1027         attr = env->mpu_fg[segment].attr;
1028     } else {
1029         xtensa_mpu_lookup(env->config->mpu_bg,
1030                           env->config->n_mpu_bg_segments,
1031                           vaddr, &segment);
1032         attr = env->config->mpu_bg[segment].attr;
1033     }
1034 
1035     *access = mpu_attr_to_access(attr, mmu_idx);
1036     if (!is_access_granted(*access, is_write)) {
1037         return is_write < 2 ?
1038             (is_write ?
1039              STORE_PROHIBITED_CAUSE :
1040              LOAD_PROHIBITED_CAUSE) :
1041             INST_FETCH_PROHIBITED_CAUSE;
1042     }
1043     *paddr = vaddr;
1044     *page_size = env->config->mpu_align;
1045     return 0;
1046 }
1047 
1048 /*!
1049  * Convert virtual address to physical addr.
1050  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1051  *
1052  * \return 0 if ok, exception cause code otherwise
1053  */
1054 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1055                              uint32_t vaddr, int is_write, int mmu_idx,
1056                              uint32_t *paddr, uint32_t *page_size,
1057                              unsigned *access)
1058 {
1059     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1060         return get_physical_addr_mmu(env, update_tlb,
1061                                      vaddr, is_write, mmu_idx, paddr,
1062                                      page_size, access, true);
1063     } else if (xtensa_option_bits_enabled(env->config,
1064                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1065                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1066         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1067                                         paddr, page_size, access);
1068     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1069         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1070                                      paddr, page_size, access);
1071     } else {
1072         *paddr = vaddr;
1073         *page_size = TARGET_PAGE_SIZE;
1074         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1075                                            ((vaddr & 0xe0000000) >> 27));
1076         return 0;
1077     }
1078 }
1079 
1080 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1081 {
1082     unsigned wi, ei;
1083     const xtensa_tlb *conf =
1084         dtlb ? &env->config->dtlb : &env->config->itlb;
1085     unsigned (*attr_to_access)(uint32_t) =
1086         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1087         mmu_attr_to_access : region_attr_to_access;
1088 
1089     for (wi = 0; wi < conf->nways; ++wi) {
1090         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1091         const char *sz_text;
1092         bool print_header = true;
1093 
1094         if (sz >= 0x100000) {
1095             sz /= MiB;
1096             sz_text = "MB";
1097         } else {
1098             sz /= KiB;
1099             sz_text = "KB";
1100         }
1101 
1102         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1103             const xtensa_tlb_entry *entry =
1104                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1105 
1106             if (entry->asid) {
1107                 static const char * const cache_text[8] = {
1108                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1109                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1110                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1111                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1112                 };
1113                 unsigned access = attr_to_access(entry->attr);
1114                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1115                     PAGE_CACHE_SHIFT;
1116 
1117                 if (print_header) {
1118                     print_header = false;
1119                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1120                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1121                                 "\t----------  ----------  ----  ---- --- -------\n");
1122                 }
1123                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1124                             entry->vaddr,
1125                             entry->paddr,
1126                             entry->asid,
1127                             entry->attr,
1128                             (access & PAGE_READ) ? 'R' : '-',
1129                             (access & PAGE_WRITE) ? 'W' : '-',
1130                             (access & PAGE_EXEC) ? 'X' : '-',
1131                             cache_text[cache_idx] ?
1132                             cache_text[cache_idx] : "Invalid");
1133             }
1134         }
1135     }
1136 }
1137 
1138 static void dump_mpu(CPUXtensaState *env,
1139                      const xtensa_mpu_entry *entry, unsigned n)
1140 {
1141     unsigned i;
1142 
1143     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1144                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1145                 env ? "En" : "  ",
1146                 env ? "--" : "  ");
1147 
1148     for (i = 0; i < n; ++i) {
1149         uint32_t attr = entry[i].attr;
1150         unsigned access0 = mpu_attr_to_access(attr, 0);
1151         unsigned access1 = mpu_attr_to_access(attr, 1);
1152         unsigned type = mpu_attr_to_type(attr);
1153         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1154 
1155         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1156                     env ?
1157                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1158                     entry[i].vaddr, attr,
1159                     (access0 & PAGE_READ) ? 'R' : '-',
1160                     (access0 & PAGE_WRITE) ? 'W' : '-',
1161                     (access0 & PAGE_EXEC) ? 'X' : '-',
1162                     (access1 & PAGE_READ) ? 'R' : '-',
1163                     (access1 & PAGE_WRITE) ? 'W' : '-',
1164                     (access1 & PAGE_EXEC) ? 'X' : '-');
1165 
1166         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1167         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1168             qemu_printf("Device %cB %3s\n",
1169                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1170                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1171             break;
1172         case XTENSA_MPU_SYSTEM_TYPE_NC:
1173             qemu_printf("Sys NC %cB      %c%c%c\n",
1174                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1175                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1176                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1177                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1178             break;
1179         case XTENSA_MPU_SYSTEM_TYPE_C:
1180             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1181                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1182                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1183                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1184                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1185                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1186                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1187             break;
1188         default:
1189             qemu_printf("Unknown\n");
1190             break;
1191         }
1192     }
1193 }
1194 
1195 void dump_mmu(CPUXtensaState *env)
1196 {
1197     if (xtensa_option_bits_enabled(env->config,
1198                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1199                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1200                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1201 
1202         qemu_printf("ITLB:\n");
1203         dump_tlb(env, false);
1204         qemu_printf("\nDTLB:\n");
1205         dump_tlb(env, true);
1206     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1207         qemu_printf("Foreground map:\n");
1208         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1209         qemu_printf("\nBackground map:\n");
1210         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1211     } else {
1212         qemu_printf("No TLB for this CPU core\n");
1213     }
1214 }
1215