xref: /openbmc/qemu/target/xtensa/helper.c (revision e7b79428)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "cpu.h"
31 #include "exec/exec-all.h"
32 #include "exec/gdbstub.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/error-report.h"
35 #include "qemu/qemu-print.h"
36 #include "qemu/host-utils.h"
37 
38 static struct XtensaConfigList *xtensa_cores;
39 
40 static void add_translator_to_hash(GHashTable *translator,
41                                    const char *name,
42                                    const XtensaOpcodeOps *opcode)
43 {
44     if (!g_hash_table_insert(translator, (void *)name, (void *)opcode)) {
45         error_report("Multiple definitions of '%s' opcode in a single table",
46                      name);
47     }
48 }
49 
50 static GHashTable *hash_opcode_translators(const XtensaOpcodeTranslators *t)
51 {
52     unsigned i, j;
53     GHashTable *translator = g_hash_table_new(g_str_hash, g_str_equal);
54 
55     for (i = 0; i < t->num_opcodes; ++i) {
56         if (t->opcode[i].op_flags & XTENSA_OP_NAME_ARRAY) {
57             const char * const *name = t->opcode[i].name;
58 
59             for (j = 0; name[j]; ++j) {
60                 add_translator_to_hash(translator,
61                                        (void *)name[j],
62                                        (void *)(t->opcode + i));
63             }
64         } else {
65             add_translator_to_hash(translator,
66                                    (void *)t->opcode[i].name,
67                                    (void *)(t->opcode + i));
68         }
69     }
70     return translator;
71 }
72 
73 static XtensaOpcodeOps *
74 xtensa_find_opcode_ops(const XtensaOpcodeTranslators *t,
75                        const char *name)
76 {
77     static GHashTable *translators;
78     GHashTable *translator;
79 
80     if (translators == NULL) {
81         translators = g_hash_table_new(g_direct_hash, g_direct_equal);
82     }
83     translator = g_hash_table_lookup(translators, t);
84     if (translator == NULL) {
85         translator = hash_opcode_translators(t);
86         g_hash_table_insert(translators, (void *)t, translator);
87     }
88     return g_hash_table_lookup(translator, name);
89 }
90 
91 static void init_libisa(XtensaConfig *config)
92 {
93     unsigned i, j;
94     unsigned opcodes;
95     unsigned formats;
96     unsigned regfiles;
97 
98     config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
99     assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
100     assert(xtensa_insnbuf_size(config->isa) <= MAX_INSNBUF_LENGTH);
101     opcodes = xtensa_isa_num_opcodes(config->isa);
102     formats = xtensa_isa_num_formats(config->isa);
103     regfiles = xtensa_isa_num_regfiles(config->isa);
104     config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
105 
106     for (i = 0; i < formats; ++i) {
107         assert(xtensa_format_num_slots(config->isa, i) <= MAX_INSN_SLOTS);
108     }
109 
110     for (i = 0; i < opcodes; ++i) {
111         const char *opc_name = xtensa_opcode_name(config->isa, i);
112         XtensaOpcodeOps *ops = NULL;
113 
114         assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
115         if (!config->opcode_translators) {
116             ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
117         } else {
118             for (j = 0; !ops && config->opcode_translators[j]; ++j) {
119                 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
120                                              opc_name);
121             }
122         }
123 #ifdef DEBUG
124         if (ops == NULL) {
125             fprintf(stderr,
126                     "opcode translator not found for %s's opcode '%s'\n",
127                     config->name, opc_name);
128         }
129 #endif
130         config->opcode_ops[i] = ops;
131     }
132     config->a_regfile = xtensa_regfile_lookup(config->isa, "AR");
133 
134     config->regfile = g_new(void **, regfiles);
135     for (i = 0; i < regfiles; ++i) {
136         const char *name = xtensa_regfile_name(config->isa, i);
137         int entries = xtensa_regfile_num_entries(config->isa, i);
138         int bits = xtensa_regfile_num_bits(config->isa, i);
139 
140         config->regfile[i] = xtensa_get_regfile_by_name(name, entries, bits);
141 #ifdef DEBUG
142         if (config->regfile[i] == NULL) {
143             fprintf(stderr, "regfile '%s' not found for %s\n",
144                     name, config->name);
145         }
146 #endif
147     }
148     xtensa_collect_sr_names(config);
149 }
150 
151 static void xtensa_finalize_config(XtensaConfig *config)
152 {
153     if (config->isa_internal) {
154         init_libisa(config);
155     }
156 
157     if (config->gdb_regmap.num_regs == 0 ||
158         config->gdb_regmap.num_core_regs == 0) {
159         unsigned n_regs = 0;
160         unsigned n_core_regs = 0;
161 
162         xtensa_count_regs(config, &n_regs, &n_core_regs);
163         if (config->gdb_regmap.num_regs == 0) {
164             config->gdb_regmap.num_regs = n_regs;
165         }
166         if (config->gdb_regmap.num_core_regs == 0) {
167             config->gdb_regmap.num_core_regs = n_core_regs;
168         }
169     }
170 }
171 
172 static void xtensa_core_class_init(ObjectClass *oc, void *data)
173 {
174     CPUClass *cc = CPU_CLASS(oc);
175     XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
176     XtensaConfig *config = data;
177 
178     xtensa_finalize_config(config);
179     xcc->config = config;
180 
181     /*
182      * Use num_core_regs to see only non-privileged registers in an unmodified
183      * gdb. Use num_regs to see all registers. gdb modification is required
184      * for that: reset bit 0 in the 'flags' field of the registers definitions
185      * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
186      */
187     cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
188 }
189 
190 void xtensa_register_core(XtensaConfigList *node)
191 {
192     TypeInfo type = {
193         .parent = TYPE_XTENSA_CPU,
194         .class_init = xtensa_core_class_init,
195         .class_data = (void *)node->config,
196     };
197 
198     node->next = xtensa_cores;
199     xtensa_cores = node;
200     type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
201     type_register(&type);
202     g_free((gpointer)type.name);
203 }
204 
205 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
206 {
207     unsigned i;
208 
209     for (i = 0; i < env->config->ndbreak; ++i) {
210         if (env->cpu_watchpoint[i] &&
211                 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
212             return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
213         }
214     }
215     return 0;
216 }
217 
218 void xtensa_breakpoint_handler(CPUState *cs)
219 {
220     XtensaCPU *cpu = XTENSA_CPU(cs);
221     CPUXtensaState *env = &cpu->env;
222 
223     if (cs->watchpoint_hit) {
224         if (cs->watchpoint_hit->flags & BP_CPU) {
225             uint32_t cause;
226 
227             cs->watchpoint_hit = NULL;
228             cause = check_hw_breakpoints(env);
229             if (cause) {
230                 debug_exception_env(env, cause);
231             }
232             cpu_loop_exit_noexc(cs);
233         }
234     }
235 }
236 
237 void xtensa_cpu_list(void)
238 {
239     XtensaConfigList *core = xtensa_cores;
240     qemu_printf("Available CPUs:\n");
241     for (; core; core = core->next) {
242         qemu_printf("  %s\n", core->config->name);
243     }
244 }
245 
246 #ifndef CONFIG_USER_ONLY
247 void xtensa_cpu_do_unaligned_access(CPUState *cs,
248                                     vaddr addr, MMUAccessType access_type,
249                                     int mmu_idx, uintptr_t retaddr)
250 {
251     XtensaCPU *cpu = XTENSA_CPU(cs);
252     CPUXtensaState *env = &cpu->env;
253 
254     assert(xtensa_option_enabled(env->config,
255                                  XTENSA_OPTION_UNALIGNED_EXCEPTION));
256     cpu_restore_state(CPU(cpu), retaddr, true);
257     HELPER(exception_cause_vaddr)(env,
258                                   env->pc, LOAD_STORE_ALIGNMENT_CAUSE,
259                                   addr);
260 }
261 
262 bool xtensa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
263                          MMUAccessType access_type, int mmu_idx,
264                          bool probe, uintptr_t retaddr)
265 {
266     XtensaCPU *cpu = XTENSA_CPU(cs);
267     CPUXtensaState *env = &cpu->env;
268     uint32_t paddr;
269     uint32_t page_size;
270     unsigned access;
271     int ret = xtensa_get_physical_addr(env, true, address, access_type,
272                                        mmu_idx, &paddr, &page_size, &access);
273 
274     qemu_log_mask(CPU_LOG_MMU, "%s(%08" VADDR_PRIx
275                   ", %d, %d) -> %08x, ret = %d\n",
276                   __func__, address, access_type, mmu_idx, paddr, ret);
277 
278     if (ret == 0) {
279         tlb_set_page(cs,
280                      address & TARGET_PAGE_MASK,
281                      paddr & TARGET_PAGE_MASK,
282                      access, mmu_idx, page_size);
283         return true;
284     } else if (probe) {
285         return false;
286     } else {
287         cpu_restore_state(cs, retaddr, true);
288         HELPER(exception_cause_vaddr)(env, env->pc, ret, address);
289     }
290 }
291 
292 void xtensa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
293                                       unsigned size, MMUAccessType access_type,
294                                       int mmu_idx, MemTxAttrs attrs,
295                                       MemTxResult response, uintptr_t retaddr)
296 {
297     XtensaCPU *cpu = XTENSA_CPU(cs);
298     CPUXtensaState *env = &cpu->env;
299 
300     cpu_restore_state(cs, retaddr, true);
301     HELPER(exception_cause_vaddr)(env, env->pc,
302                                   access_type == MMU_INST_FETCH ?
303                                   INSTR_PIF_ADDR_ERROR_CAUSE :
304                                   LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
305                                   addr);
306 }
307 
308 void xtensa_runstall(CPUXtensaState *env, bool runstall)
309 {
310     CPUState *cpu = env_cpu(env);
311 
312     env->runstall = runstall;
313     cpu->halted = runstall;
314     if (runstall) {
315         cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
316     } else {
317         qemu_cpu_kick(cpu);
318     }
319 }
320 #endif /* !CONFIG_USER_ONLY */
321