xref: /openbmc/qemu/target/xtensa/helper.c (revision d1fd31f8)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/exec-all.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #if !defined(CONFIG_USER_ONLY)
34 #include "hw/loader.h"
35 #endif
36 
37 static struct XtensaConfigList *xtensa_cores;
38 
39 static void xtensa_core_class_init(ObjectClass *oc, void *data)
40 {
41     CPUClass *cc = CPU_CLASS(oc);
42     XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
43     const XtensaConfig *config = data;
44 
45     xcc->config = config;
46 
47     /* Use num_core_regs to see only non-privileged registers in an unmodified
48      * gdb. Use num_regs to see all registers. gdb modification is required
49      * for that: reset bit 0 in the 'flags' field of the registers definitions
50      * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
51      */
52     cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
53 }
54 
55 static void init_libisa(XtensaConfig *config)
56 {
57     unsigned i, j;
58     unsigned opcodes;
59 
60     config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
61     assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
62     opcodes = xtensa_isa_num_opcodes(config->isa);
63     config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
64 
65     for (i = 0; i < opcodes; ++i) {
66         const char *opc_name = xtensa_opcode_name(config->isa, i);
67         XtensaOpcodeOps *ops = NULL;
68 
69         assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
70         if (!config->opcode_translators) {
71             ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
72         } else {
73             for (j = 0; !ops && config->opcode_translators[j]; ++j) {
74                 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
75                                              opc_name);
76             }
77         }
78 #ifdef DEBUG
79         if (ops == NULL) {
80             fprintf(stderr,
81                     "opcode translator not found for %s's opcode '%s'\n",
82                     config->name, opc_name);
83         }
84 #endif
85         config->opcode_ops[i] = ops;
86     }
87 }
88 
89 void xtensa_finalize_config(XtensaConfig *config)
90 {
91     if (config->isa_internal) {
92         init_libisa(config);
93     }
94 
95     if (config->gdb_regmap.num_regs == 0 ||
96         config->gdb_regmap.num_core_regs == 0) {
97         unsigned i;
98         unsigned n_regs = 0;
99         unsigned n_core_regs = 0;
100 
101         for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
102             if (config->gdb_regmap.reg[i].type != 6) {
103                 ++n_regs;
104                 if ((config->gdb_regmap.reg[i].flags & 0x1) == 0) {
105                     ++n_core_regs;
106                 }
107             }
108         }
109         if (config->gdb_regmap.num_regs == 0) {
110             config->gdb_regmap.num_regs = n_regs;
111         }
112         if (config->gdb_regmap.num_core_regs == 0) {
113             config->gdb_regmap.num_core_regs = n_core_regs;
114         }
115     }
116 }
117 
118 void xtensa_register_core(XtensaConfigList *node)
119 {
120     TypeInfo type = {
121         .parent = TYPE_XTENSA_CPU,
122         .class_init = xtensa_core_class_init,
123         .class_data = (void *)node->config,
124     };
125 
126     node->next = xtensa_cores;
127     xtensa_cores = node;
128     type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
129     type_register(&type);
130     g_free((gpointer)type.name);
131 }
132 
133 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
134 {
135     unsigned i;
136 
137     for (i = 0; i < env->config->ndbreak; ++i) {
138         if (env->cpu_watchpoint[i] &&
139                 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
140             return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
141         }
142     }
143     return 0;
144 }
145 
146 void xtensa_breakpoint_handler(CPUState *cs)
147 {
148     XtensaCPU *cpu = XTENSA_CPU(cs);
149     CPUXtensaState *env = &cpu->env;
150 
151     if (cs->watchpoint_hit) {
152         if (cs->watchpoint_hit->flags & BP_CPU) {
153             uint32_t cause;
154 
155             cs->watchpoint_hit = NULL;
156             cause = check_hw_breakpoints(env);
157             if (cause) {
158                 debug_exception_env(env, cause);
159             }
160             cpu_loop_exit_noexc(cs);
161         }
162     }
163 }
164 
165 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
166 {
167     XtensaConfigList *core = xtensa_cores;
168     cpu_fprintf(f, "Available CPUs:\n");
169     for (; core; core = core->next) {
170         cpu_fprintf(f, "  %s\n", core->config->name);
171     }
172 }
173 
174 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
175 {
176 #ifndef CONFIG_USER_ONLY
177     XtensaCPU *cpu = XTENSA_CPU(cs);
178     uint32_t paddr;
179     uint32_t page_size;
180     unsigned access;
181 
182     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
183                 &paddr, &page_size, &access) == 0) {
184         return paddr;
185     }
186     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
187                 &paddr, &page_size, &access) == 0) {
188         return paddr;
189     }
190     return ~0;
191 #else
192     return addr;
193 #endif
194 }
195 
196 #ifndef CONFIG_USER_ONLY
197 
198 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
199 {
200     if (xtensa_option_enabled(env->config,
201                 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
202         return vector - env->config->vecbase + env->sregs[VECBASE];
203     } else {
204         return vector;
205     }
206 }
207 
208 /*!
209  * Handle penging IRQ.
210  * For the high priority interrupt jump to the corresponding interrupt vector.
211  * For the level-1 interrupt convert it to either user, kernel or double
212  * exception with the 'level-1 interrupt' exception cause.
213  */
214 static void handle_interrupt(CPUXtensaState *env)
215 {
216     int level = env->pending_irq_level;
217 
218     if (level > xtensa_get_cintlevel(env) &&
219             level <= env->config->nlevel &&
220             (env->config->level_mask[level] &
221              env->sregs[INTSET] &
222              env->sregs[INTENABLE])) {
223         CPUState *cs = CPU(xtensa_env_get_cpu(env));
224 
225         if (level > 1) {
226             env->sregs[EPC1 + level - 1] = env->pc;
227             env->sregs[EPS2 + level - 2] = env->sregs[PS];
228             env->sregs[PS] =
229                 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
230             env->pc = relocated_vector(env,
231                     env->config->interrupt_vector[level]);
232         } else {
233             env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
234 
235             if (env->sregs[PS] & PS_EXCM) {
236                 if (env->config->ndepc) {
237                     env->sregs[DEPC] = env->pc;
238                 } else {
239                     env->sregs[EPC1] = env->pc;
240                 }
241                 cs->exception_index = EXC_DOUBLE;
242             } else {
243                 env->sregs[EPC1] = env->pc;
244                 cs->exception_index =
245                     (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
246             }
247             env->sregs[PS] |= PS_EXCM;
248         }
249         env->exception_taken = 1;
250     }
251 }
252 
253 /* Called from cpu_handle_interrupt with BQL held */
254 void xtensa_cpu_do_interrupt(CPUState *cs)
255 {
256     XtensaCPU *cpu = XTENSA_CPU(cs);
257     CPUXtensaState *env = &cpu->env;
258 
259     if (cs->exception_index == EXC_IRQ) {
260         qemu_log_mask(CPU_LOG_INT,
261                 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
262                 "pc = %08x, a0 = %08x, ps = %08x, "
263                 "intset = %08x, intenable = %08x, "
264                 "ccount = %08x\n",
265                 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
266                 env->pc, env->regs[0], env->sregs[PS],
267                 env->sregs[INTSET], env->sregs[INTENABLE],
268                 env->sregs[CCOUNT]);
269         handle_interrupt(env);
270     }
271 
272     switch (cs->exception_index) {
273     case EXC_WINDOW_OVERFLOW4:
274     case EXC_WINDOW_UNDERFLOW4:
275     case EXC_WINDOW_OVERFLOW8:
276     case EXC_WINDOW_UNDERFLOW8:
277     case EXC_WINDOW_OVERFLOW12:
278     case EXC_WINDOW_UNDERFLOW12:
279     case EXC_KERNEL:
280     case EXC_USER:
281     case EXC_DOUBLE:
282     case EXC_DEBUG:
283         qemu_log_mask(CPU_LOG_INT, "%s(%d) "
284                 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
285                 __func__, cs->exception_index,
286                 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
287         if (env->config->exception_vector[cs->exception_index]) {
288             env->pc = relocated_vector(env,
289                     env->config->exception_vector[cs->exception_index]);
290             env->exception_taken = 1;
291         } else {
292             qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
293                           __func__, env->pc, cs->exception_index);
294         }
295         break;
296 
297     case EXC_IRQ:
298         break;
299 
300     default:
301         qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
302                 __func__, env->pc, cs->exception_index);
303         break;
304     }
305     check_interrupts(env);
306 }
307 #else
308 void xtensa_cpu_do_interrupt(CPUState *cs)
309 {
310 }
311 #endif
312 
313 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
314 {
315     if (interrupt_request & CPU_INTERRUPT_HARD) {
316         cs->exception_index = EXC_IRQ;
317         xtensa_cpu_do_interrupt(cs);
318         return true;
319     }
320     return false;
321 }
322 
323 #ifdef CONFIG_USER_ONLY
324 
325 int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
326                                 int mmu_idx)
327 {
328     XtensaCPU *cpu = XTENSA_CPU(cs);
329     CPUXtensaState *env = &cpu->env;
330 
331     qemu_log_mask(CPU_LOG_INT,
332                   "%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
333                   __func__, rw, address, size);
334     env->sregs[EXCVADDR] = address;
335     env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
336     cs->exception_index = EXC_USER;
337     return 1;
338 }
339 
340 #else
341 
342 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
343         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
344 {
345     unsigned wi, ei;
346 
347     for (wi = 0; wi < tlb->nways; ++wi) {
348         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
349             entry[wi][ei].asid = 0;
350             entry[wi][ei].variable = true;
351         }
352     }
353 }
354 
355 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
356         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
357 {
358     if (!tlb->varway56) {
359         static const xtensa_tlb_entry way5[] = {
360             {
361                 .vaddr = 0xd0000000,
362                 .paddr = 0,
363                 .asid = 1,
364                 .attr = 7,
365                 .variable = false,
366             }, {
367                 .vaddr = 0xd8000000,
368                 .paddr = 0,
369                 .asid = 1,
370                 .attr = 3,
371                 .variable = false,
372             }
373         };
374         static const xtensa_tlb_entry way6[] = {
375             {
376                 .vaddr = 0xe0000000,
377                 .paddr = 0xf0000000,
378                 .asid = 1,
379                 .attr = 7,
380                 .variable = false,
381             }, {
382                 .vaddr = 0xf0000000,
383                 .paddr = 0xf0000000,
384                 .asid = 1,
385                 .attr = 3,
386                 .variable = false,
387             }
388         };
389         memcpy(entry[5], way5, sizeof(way5));
390         memcpy(entry[6], way6, sizeof(way6));
391     } else {
392         uint32_t ei;
393         for (ei = 0; ei < 8; ++ei) {
394             entry[6][ei].vaddr = ei << 29;
395             entry[6][ei].paddr = ei << 29;
396             entry[6][ei].asid = 1;
397             entry[6][ei].attr = 3;
398         }
399     }
400 }
401 
402 static void reset_tlb_region_way0(CPUXtensaState *env,
403         xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
404 {
405     unsigned ei;
406 
407     for (ei = 0; ei < 8; ++ei) {
408         entry[0][ei].vaddr = ei << 29;
409         entry[0][ei].paddr = ei << 29;
410         entry[0][ei].asid = 1;
411         entry[0][ei].attr = 2;
412         entry[0][ei].variable = true;
413     }
414 }
415 
416 void reset_mmu(CPUXtensaState *env)
417 {
418     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
419         env->sregs[RASID] = 0x04030201;
420         env->sregs[ITLBCFG] = 0;
421         env->sregs[DTLBCFG] = 0;
422         env->autorefill_idx = 0;
423         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
424         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
425         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
426         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
427     } else {
428         reset_tlb_region_way0(env, env->itlb);
429         reset_tlb_region_way0(env, env->dtlb);
430     }
431 }
432 
433 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
434 {
435     unsigned i;
436     for (i = 0; i < 4; ++i) {
437         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
438             return i;
439         }
440     }
441     return 0xff;
442 }
443 
444 /*!
445  * Lookup xtensa TLB for the given virtual address.
446  * See ISA, 4.6.2.2
447  *
448  * \param pwi: [out] way index
449  * \param pei: [out] entry index
450  * \param pring: [out] access ring
451  * \return 0 if ok, exception cause code otherwise
452  */
453 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
454         uint32_t *pwi, uint32_t *pei, uint8_t *pring)
455 {
456     const xtensa_tlb *tlb = dtlb ?
457         &env->config->dtlb : &env->config->itlb;
458     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
459         env->dtlb : env->itlb;
460 
461     int nhits = 0;
462     unsigned wi;
463 
464     for (wi = 0; wi < tlb->nways; ++wi) {
465         uint32_t vpn;
466         uint32_t ei;
467         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
468         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
469             unsigned ring = get_ring(env, entry[wi][ei].asid);
470             if (ring < 4) {
471                 if (++nhits > 1) {
472                     return dtlb ?
473                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
474                         INST_TLB_MULTI_HIT_CAUSE;
475                 }
476                 *pwi = wi;
477                 *pei = ei;
478                 *pring = ring;
479             }
480         }
481     }
482     return nhits ? 0 :
483         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
484 }
485 
486 /*!
487  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
488  * See ISA, 4.6.5.10
489  */
490 static unsigned mmu_attr_to_access(uint32_t attr)
491 {
492     unsigned access = 0;
493 
494     if (attr < 12) {
495         access |= PAGE_READ;
496         if (attr & 0x1) {
497             access |= PAGE_EXEC;
498         }
499         if (attr & 0x2) {
500             access |= PAGE_WRITE;
501         }
502 
503         switch (attr & 0xc) {
504         case 0:
505             access |= PAGE_CACHE_BYPASS;
506             break;
507 
508         case 4:
509             access |= PAGE_CACHE_WB;
510             break;
511 
512         case 8:
513             access |= PAGE_CACHE_WT;
514             break;
515         }
516     } else if (attr == 13) {
517         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
518     }
519     return access;
520 }
521 
522 /*!
523  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
524  * See ISA, 4.6.3.3
525  */
526 static unsigned region_attr_to_access(uint32_t attr)
527 {
528     static const unsigned access[16] = {
529          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
530          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
531          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
532          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
533          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
534          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
535         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
536     };
537 
538     return access[attr & 0xf];
539 }
540 
541 /*!
542  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
543  * See ISA, A.2.14 The Cache Attribute Register
544  */
545 static unsigned cacheattr_attr_to_access(uint32_t attr)
546 {
547     static const unsigned access[16] = {
548          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
549          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
550          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
551          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
552          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
553         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
554     };
555 
556     return access[attr & 0xf];
557 }
558 
559 static bool is_access_granted(unsigned access, int is_write)
560 {
561     switch (is_write) {
562     case 0:
563         return access & PAGE_READ;
564 
565     case 1:
566         return access & PAGE_WRITE;
567 
568     case 2:
569         return access & PAGE_EXEC;
570 
571     default:
572         return 0;
573     }
574 }
575 
576 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
577 
578 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
579         uint32_t vaddr, int is_write, int mmu_idx,
580         uint32_t *paddr, uint32_t *page_size, unsigned *access,
581         bool may_lookup_pt)
582 {
583     bool dtlb = is_write != 2;
584     uint32_t wi;
585     uint32_t ei;
586     uint8_t ring;
587     uint32_t vpn;
588     uint32_t pte;
589     const xtensa_tlb_entry *entry = NULL;
590     xtensa_tlb_entry tmp_entry;
591     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
592 
593     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
594             may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
595         ring = (pte >> 4) & 0x3;
596         wi = 0;
597         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
598 
599         if (update_tlb) {
600             wi = ++env->autorefill_idx & 0x3;
601             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
602             env->sregs[EXCVADDR] = vaddr;
603             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
604                           __func__, vaddr, vpn, pte);
605         } else {
606             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
607             entry = &tmp_entry;
608         }
609         ret = 0;
610     }
611     if (ret != 0) {
612         return ret;
613     }
614 
615     if (entry == NULL) {
616         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
617     }
618 
619     if (ring < mmu_idx) {
620         return dtlb ?
621             LOAD_STORE_PRIVILEGE_CAUSE :
622             INST_FETCH_PRIVILEGE_CAUSE;
623     }
624 
625     *access = mmu_attr_to_access(entry->attr) &
626         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
627     if (!is_access_granted(*access, is_write)) {
628         return dtlb ?
629             (is_write ?
630              STORE_PROHIBITED_CAUSE :
631              LOAD_PROHIBITED_CAUSE) :
632             INST_FETCH_PROHIBITED_CAUSE;
633     }
634 
635     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
636     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
637 
638     return 0;
639 }
640 
641 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
642 {
643     CPUState *cs = CPU(xtensa_env_get_cpu(env));
644     uint32_t paddr;
645     uint32_t page_size;
646     unsigned access;
647     uint32_t pt_vaddr =
648         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
649     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
650             &paddr, &page_size, &access, false);
651 
652     qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
653                   __func__, vaddr, ret ? ~0 : paddr);
654 
655     if (ret == 0) {
656         *pte = ldl_phys(cs->as, paddr);
657     }
658     return ret;
659 }
660 
661 static int get_physical_addr_region(CPUXtensaState *env,
662         uint32_t vaddr, int is_write, int mmu_idx,
663         uint32_t *paddr, uint32_t *page_size, unsigned *access)
664 {
665     bool dtlb = is_write != 2;
666     uint32_t wi = 0;
667     uint32_t ei = (vaddr >> 29) & 0x7;
668     const xtensa_tlb_entry *entry =
669         xtensa_tlb_get_entry(env, dtlb, wi, ei);
670 
671     *access = region_attr_to_access(entry->attr);
672     if (!is_access_granted(*access, is_write)) {
673         return dtlb ?
674             (is_write ?
675              STORE_PROHIBITED_CAUSE :
676              LOAD_PROHIBITED_CAUSE) :
677             INST_FETCH_PROHIBITED_CAUSE;
678     }
679 
680     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
681     *page_size = ~REGION_PAGE_MASK + 1;
682 
683     return 0;
684 }
685 
686 /*!
687  * Convert virtual address to physical addr.
688  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
689  *
690  * \return 0 if ok, exception cause code otherwise
691  */
692 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
693         uint32_t vaddr, int is_write, int mmu_idx,
694         uint32_t *paddr, uint32_t *page_size, unsigned *access)
695 {
696     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
697         return get_physical_addr_mmu(env, update_tlb,
698                 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
699     } else if (xtensa_option_bits_enabled(env->config,
700                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
701                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
702         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
703                 paddr, page_size, access);
704     } else {
705         *paddr = vaddr;
706         *page_size = TARGET_PAGE_SIZE;
707         *access = cacheattr_attr_to_access(
708                 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
709         return 0;
710     }
711 }
712 
713 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
714         CPUXtensaState *env, bool dtlb)
715 {
716     unsigned wi, ei;
717     const xtensa_tlb *conf =
718         dtlb ? &env->config->dtlb : &env->config->itlb;
719     unsigned (*attr_to_access)(uint32_t) =
720         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
721         mmu_attr_to_access : region_attr_to_access;
722 
723     for (wi = 0; wi < conf->nways; ++wi) {
724         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
725         const char *sz_text;
726         bool print_header = true;
727 
728         if (sz >= 0x100000) {
729             sz >>= 20;
730             sz_text = "MB";
731         } else {
732             sz >>= 10;
733             sz_text = "KB";
734         }
735 
736         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
737             const xtensa_tlb_entry *entry =
738                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
739 
740             if (entry->asid) {
741                 static const char * const cache_text[8] = {
742                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
743                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
744                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
745                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
746                 };
747                 unsigned access = attr_to_access(entry->attr);
748                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
749                     PAGE_CACHE_SHIFT;
750 
751                 if (print_header) {
752                     print_header = false;
753                     cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
754                     cpu_fprintf(f,
755                             "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
756                             "\t----------  ----------  ----  ---- --- -------\n");
757                 }
758                 cpu_fprintf(f,
759                         "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
760                         entry->vaddr,
761                         entry->paddr,
762                         entry->asid,
763                         entry->attr,
764                         (access & PAGE_READ) ? 'R' : '-',
765                         (access & PAGE_WRITE) ? 'W' : '-',
766                         (access & PAGE_EXEC) ? 'X' : '-',
767                         cache_text[cache_idx] ? cache_text[cache_idx] :
768                             "Invalid");
769             }
770         }
771     }
772 }
773 
774 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
775 {
776     if (xtensa_option_bits_enabled(env->config,
777                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
778                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
779                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
780 
781         cpu_fprintf(f, "ITLB:\n");
782         dump_tlb(f, cpu_fprintf, env, false);
783         cpu_fprintf(f, "\nDTLB:\n");
784         dump_tlb(f, cpu_fprintf, env, true);
785     } else {
786         cpu_fprintf(f, "No TLB for this CPU core\n");
787     }
788 }
789 
790 void xtensa_runstall(CPUXtensaState *env, bool runstall)
791 {
792     CPUState *cpu = CPU(xtensa_env_get_cpu(env));
793 
794     env->runstall = runstall;
795     cpu->halted = runstall;
796     if (runstall) {
797         cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
798     } else {
799         cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
800     }
801 }
802 #endif
803