xref: /openbmc/qemu/target/xtensa/helper.c (revision c40d4792)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "cpu.h"
31 #include "exec/exec-all.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #if !defined(CONFIG_USER_ONLY)
35 #include "hw/loader.h"
36 #endif
37 
38 static struct XtensaConfigList *xtensa_cores;
39 
40 static void xtensa_core_class_init(ObjectClass *oc, void *data)
41 {
42     CPUClass *cc = CPU_CLASS(oc);
43     XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
44     const XtensaConfig *config = data;
45 
46     xcc->config = config;
47 
48     /* Use num_core_regs to see only non-privileged registers in an unmodified
49      * gdb. Use num_regs to see all registers. gdb modification is required
50      * for that: reset bit 0 in the 'flags' field of the registers definitions
51      * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
52      */
53     cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
54 }
55 
56 static void init_libisa(XtensaConfig *config)
57 {
58     unsigned i, j;
59     unsigned opcodes;
60 
61     config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
62     assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
63     opcodes = xtensa_isa_num_opcodes(config->isa);
64     config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
65 
66     for (i = 0; i < opcodes; ++i) {
67         const char *opc_name = xtensa_opcode_name(config->isa, i);
68         XtensaOpcodeOps *ops = NULL;
69 
70         assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
71         if (!config->opcode_translators) {
72             ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
73         } else {
74             for (j = 0; !ops && config->opcode_translators[j]; ++j) {
75                 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
76                                              opc_name);
77             }
78         }
79 #ifdef DEBUG
80         if (ops == NULL) {
81             fprintf(stderr,
82                     "opcode translator not found for %s's opcode '%s'\n",
83                     config->name, opc_name);
84         }
85 #endif
86         config->opcode_ops[i] = ops;
87     }
88 }
89 
90 void xtensa_finalize_config(XtensaConfig *config)
91 {
92     if (config->isa_internal) {
93         init_libisa(config);
94     }
95 
96     if (config->gdb_regmap.num_regs == 0 ||
97         config->gdb_regmap.num_core_regs == 0) {
98         unsigned i;
99         unsigned n_regs = 0;
100         unsigned n_core_regs = 0;
101 
102         for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
103             if (config->gdb_regmap.reg[i].type != 6) {
104                 ++n_regs;
105                 if ((config->gdb_regmap.reg[i].flags & 0x1) == 0) {
106                     ++n_core_regs;
107                 }
108             }
109         }
110         if (config->gdb_regmap.num_regs == 0) {
111             config->gdb_regmap.num_regs = n_regs;
112         }
113         if (config->gdb_regmap.num_core_regs == 0) {
114             config->gdb_regmap.num_core_regs = n_core_regs;
115         }
116     }
117 }
118 
119 void xtensa_register_core(XtensaConfigList *node)
120 {
121     TypeInfo type = {
122         .parent = TYPE_XTENSA_CPU,
123         .class_init = xtensa_core_class_init,
124         .class_data = (void *)node->config,
125     };
126 
127     node->next = xtensa_cores;
128     xtensa_cores = node;
129     type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
130     type_register(&type);
131     g_free((gpointer)type.name);
132 }
133 
134 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
135 {
136     unsigned i;
137 
138     for (i = 0; i < env->config->ndbreak; ++i) {
139         if (env->cpu_watchpoint[i] &&
140                 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
141             return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
142         }
143     }
144     return 0;
145 }
146 
147 void xtensa_breakpoint_handler(CPUState *cs)
148 {
149     XtensaCPU *cpu = XTENSA_CPU(cs);
150     CPUXtensaState *env = &cpu->env;
151 
152     if (cs->watchpoint_hit) {
153         if (cs->watchpoint_hit->flags & BP_CPU) {
154             uint32_t cause;
155 
156             cs->watchpoint_hit = NULL;
157             cause = check_hw_breakpoints(env);
158             if (cause) {
159                 debug_exception_env(env, cause);
160             }
161             cpu_loop_exit_noexc(cs);
162         }
163     }
164 }
165 
166 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
167 {
168     XtensaConfigList *core = xtensa_cores;
169     cpu_fprintf(f, "Available CPUs:\n");
170     for (; core; core = core->next) {
171         cpu_fprintf(f, "  %s\n", core->config->name);
172     }
173 }
174 
175 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
176 {
177 #ifndef CONFIG_USER_ONLY
178     XtensaCPU *cpu = XTENSA_CPU(cs);
179     uint32_t paddr;
180     uint32_t page_size;
181     unsigned access;
182 
183     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
184                 &paddr, &page_size, &access) == 0) {
185         return paddr;
186     }
187     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
188                 &paddr, &page_size, &access) == 0) {
189         return paddr;
190     }
191     return ~0;
192 #else
193     return addr;
194 #endif
195 }
196 
197 #ifndef CONFIG_USER_ONLY
198 
199 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
200 {
201     if (xtensa_option_enabled(env->config,
202                 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
203         return vector - env->config->vecbase + env->sregs[VECBASE];
204     } else {
205         return vector;
206     }
207 }
208 
209 /*!
210  * Handle penging IRQ.
211  * For the high priority interrupt jump to the corresponding interrupt vector.
212  * For the level-1 interrupt convert it to either user, kernel or double
213  * exception with the 'level-1 interrupt' exception cause.
214  */
215 static void handle_interrupt(CPUXtensaState *env)
216 {
217     int level = env->pending_irq_level;
218 
219     if (level > xtensa_get_cintlevel(env) &&
220             level <= env->config->nlevel &&
221             (env->config->level_mask[level] &
222              env->sregs[INTSET] &
223              env->sregs[INTENABLE])) {
224         CPUState *cs = CPU(xtensa_env_get_cpu(env));
225 
226         if (level > 1) {
227             env->sregs[EPC1 + level - 1] = env->pc;
228             env->sregs[EPS2 + level - 2] = env->sregs[PS];
229             env->sregs[PS] =
230                 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
231             env->pc = relocated_vector(env,
232                     env->config->interrupt_vector[level]);
233         } else {
234             env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
235 
236             if (env->sregs[PS] & PS_EXCM) {
237                 if (env->config->ndepc) {
238                     env->sregs[DEPC] = env->pc;
239                 } else {
240                     env->sregs[EPC1] = env->pc;
241                 }
242                 cs->exception_index = EXC_DOUBLE;
243             } else {
244                 env->sregs[EPC1] = env->pc;
245                 cs->exception_index =
246                     (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
247             }
248             env->sregs[PS] |= PS_EXCM;
249         }
250         env->exception_taken = 1;
251     }
252 }
253 
254 /* Called from cpu_handle_interrupt with BQL held */
255 void xtensa_cpu_do_interrupt(CPUState *cs)
256 {
257     XtensaCPU *cpu = XTENSA_CPU(cs);
258     CPUXtensaState *env = &cpu->env;
259 
260     if (cs->exception_index == EXC_IRQ) {
261         qemu_log_mask(CPU_LOG_INT,
262                 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
263                 "pc = %08x, a0 = %08x, ps = %08x, "
264                 "intset = %08x, intenable = %08x, "
265                 "ccount = %08x\n",
266                 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
267                 env->pc, env->regs[0], env->sregs[PS],
268                 env->sregs[INTSET], env->sregs[INTENABLE],
269                 env->sregs[CCOUNT]);
270         handle_interrupt(env);
271     }
272 
273     switch (cs->exception_index) {
274     case EXC_WINDOW_OVERFLOW4:
275     case EXC_WINDOW_UNDERFLOW4:
276     case EXC_WINDOW_OVERFLOW8:
277     case EXC_WINDOW_UNDERFLOW8:
278     case EXC_WINDOW_OVERFLOW12:
279     case EXC_WINDOW_UNDERFLOW12:
280     case EXC_KERNEL:
281     case EXC_USER:
282     case EXC_DOUBLE:
283     case EXC_DEBUG:
284         qemu_log_mask(CPU_LOG_INT, "%s(%d) "
285                 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
286                 __func__, cs->exception_index,
287                 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
288         if (env->config->exception_vector[cs->exception_index]) {
289             env->pc = relocated_vector(env,
290                     env->config->exception_vector[cs->exception_index]);
291             env->exception_taken = 1;
292         } else {
293             qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
294                           __func__, env->pc, cs->exception_index);
295         }
296         break;
297 
298     case EXC_IRQ:
299         break;
300 
301     default:
302         qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
303                 __func__, env->pc, cs->exception_index);
304         break;
305     }
306     check_interrupts(env);
307 }
308 #else
309 void xtensa_cpu_do_interrupt(CPUState *cs)
310 {
311 }
312 #endif
313 
314 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
315 {
316     if (interrupt_request & CPU_INTERRUPT_HARD) {
317         cs->exception_index = EXC_IRQ;
318         xtensa_cpu_do_interrupt(cs);
319         return true;
320     }
321     return false;
322 }
323 
324 #ifdef CONFIG_USER_ONLY
325 
326 int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
327                                 int mmu_idx)
328 {
329     XtensaCPU *cpu = XTENSA_CPU(cs);
330     CPUXtensaState *env = &cpu->env;
331 
332     qemu_log_mask(CPU_LOG_INT,
333                   "%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
334                   __func__, rw, address, size);
335     env->sregs[EXCVADDR] = address;
336     env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
337     cs->exception_index = EXC_USER;
338     return 1;
339 }
340 
341 #else
342 
343 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
344         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
345 {
346     unsigned wi, ei;
347 
348     for (wi = 0; wi < tlb->nways; ++wi) {
349         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
350             entry[wi][ei].asid = 0;
351             entry[wi][ei].variable = true;
352         }
353     }
354 }
355 
356 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
357         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
358 {
359     if (!tlb->varway56) {
360         static const xtensa_tlb_entry way5[] = {
361             {
362                 .vaddr = 0xd0000000,
363                 .paddr = 0,
364                 .asid = 1,
365                 .attr = 7,
366                 .variable = false,
367             }, {
368                 .vaddr = 0xd8000000,
369                 .paddr = 0,
370                 .asid = 1,
371                 .attr = 3,
372                 .variable = false,
373             }
374         };
375         static const xtensa_tlb_entry way6[] = {
376             {
377                 .vaddr = 0xe0000000,
378                 .paddr = 0xf0000000,
379                 .asid = 1,
380                 .attr = 7,
381                 .variable = false,
382             }, {
383                 .vaddr = 0xf0000000,
384                 .paddr = 0xf0000000,
385                 .asid = 1,
386                 .attr = 3,
387                 .variable = false,
388             }
389         };
390         memcpy(entry[5], way5, sizeof(way5));
391         memcpy(entry[6], way6, sizeof(way6));
392     } else {
393         uint32_t ei;
394         for (ei = 0; ei < 8; ++ei) {
395             entry[6][ei].vaddr = ei << 29;
396             entry[6][ei].paddr = ei << 29;
397             entry[6][ei].asid = 1;
398             entry[6][ei].attr = 3;
399         }
400     }
401 }
402 
403 static void reset_tlb_region_way0(CPUXtensaState *env,
404         xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
405 {
406     unsigned ei;
407 
408     for (ei = 0; ei < 8; ++ei) {
409         entry[0][ei].vaddr = ei << 29;
410         entry[0][ei].paddr = ei << 29;
411         entry[0][ei].asid = 1;
412         entry[0][ei].attr = 2;
413         entry[0][ei].variable = true;
414     }
415 }
416 
417 void reset_mmu(CPUXtensaState *env)
418 {
419     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
420         env->sregs[RASID] = 0x04030201;
421         env->sregs[ITLBCFG] = 0;
422         env->sregs[DTLBCFG] = 0;
423         env->autorefill_idx = 0;
424         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
425         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
426         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
427         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
428     } else {
429         reset_tlb_region_way0(env, env->itlb);
430         reset_tlb_region_way0(env, env->dtlb);
431     }
432 }
433 
434 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
435 {
436     unsigned i;
437     for (i = 0; i < 4; ++i) {
438         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
439             return i;
440         }
441     }
442     return 0xff;
443 }
444 
445 /*!
446  * Lookup xtensa TLB for the given virtual address.
447  * See ISA, 4.6.2.2
448  *
449  * \param pwi: [out] way index
450  * \param pei: [out] entry index
451  * \param pring: [out] access ring
452  * \return 0 if ok, exception cause code otherwise
453  */
454 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
455         uint32_t *pwi, uint32_t *pei, uint8_t *pring)
456 {
457     const xtensa_tlb *tlb = dtlb ?
458         &env->config->dtlb : &env->config->itlb;
459     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
460         env->dtlb : env->itlb;
461 
462     int nhits = 0;
463     unsigned wi;
464 
465     for (wi = 0; wi < tlb->nways; ++wi) {
466         uint32_t vpn;
467         uint32_t ei;
468         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
469         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
470             unsigned ring = get_ring(env, entry[wi][ei].asid);
471             if (ring < 4) {
472                 if (++nhits > 1) {
473                     return dtlb ?
474                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
475                         INST_TLB_MULTI_HIT_CAUSE;
476                 }
477                 *pwi = wi;
478                 *pei = ei;
479                 *pring = ring;
480             }
481         }
482     }
483     return nhits ? 0 :
484         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
485 }
486 
487 /*!
488  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
489  * See ISA, 4.6.5.10
490  */
491 static unsigned mmu_attr_to_access(uint32_t attr)
492 {
493     unsigned access = 0;
494 
495     if (attr < 12) {
496         access |= PAGE_READ;
497         if (attr & 0x1) {
498             access |= PAGE_EXEC;
499         }
500         if (attr & 0x2) {
501             access |= PAGE_WRITE;
502         }
503 
504         switch (attr & 0xc) {
505         case 0:
506             access |= PAGE_CACHE_BYPASS;
507             break;
508 
509         case 4:
510             access |= PAGE_CACHE_WB;
511             break;
512 
513         case 8:
514             access |= PAGE_CACHE_WT;
515             break;
516         }
517     } else if (attr == 13) {
518         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
519     }
520     return access;
521 }
522 
523 /*!
524  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
525  * See ISA, 4.6.3.3
526  */
527 static unsigned region_attr_to_access(uint32_t attr)
528 {
529     static const unsigned access[16] = {
530          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
531          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
532          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
533          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
534          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
535          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
536         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
537     };
538 
539     return access[attr & 0xf];
540 }
541 
542 /*!
543  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
544  * See ISA, A.2.14 The Cache Attribute Register
545  */
546 static unsigned cacheattr_attr_to_access(uint32_t attr)
547 {
548     static const unsigned access[16] = {
549          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
550          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
551          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
552          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
553          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
554         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
555     };
556 
557     return access[attr & 0xf];
558 }
559 
560 static bool is_access_granted(unsigned access, int is_write)
561 {
562     switch (is_write) {
563     case 0:
564         return access & PAGE_READ;
565 
566     case 1:
567         return access & PAGE_WRITE;
568 
569     case 2:
570         return access & PAGE_EXEC;
571 
572     default:
573         return 0;
574     }
575 }
576 
577 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
578 
579 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
580         uint32_t vaddr, int is_write, int mmu_idx,
581         uint32_t *paddr, uint32_t *page_size, unsigned *access,
582         bool may_lookup_pt)
583 {
584     bool dtlb = is_write != 2;
585     uint32_t wi;
586     uint32_t ei;
587     uint8_t ring;
588     uint32_t vpn;
589     uint32_t pte;
590     const xtensa_tlb_entry *entry = NULL;
591     xtensa_tlb_entry tmp_entry;
592     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
593 
594     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
595             may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
596         ring = (pte >> 4) & 0x3;
597         wi = 0;
598         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
599 
600         if (update_tlb) {
601             wi = ++env->autorefill_idx & 0x3;
602             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
603             env->sregs[EXCVADDR] = vaddr;
604             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
605                           __func__, vaddr, vpn, pte);
606         } else {
607             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
608             entry = &tmp_entry;
609         }
610         ret = 0;
611     }
612     if (ret != 0) {
613         return ret;
614     }
615 
616     if (entry == NULL) {
617         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
618     }
619 
620     if (ring < mmu_idx) {
621         return dtlb ?
622             LOAD_STORE_PRIVILEGE_CAUSE :
623             INST_FETCH_PRIVILEGE_CAUSE;
624     }
625 
626     *access = mmu_attr_to_access(entry->attr) &
627         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
628     if (!is_access_granted(*access, is_write)) {
629         return dtlb ?
630             (is_write ?
631              STORE_PROHIBITED_CAUSE :
632              LOAD_PROHIBITED_CAUSE) :
633             INST_FETCH_PROHIBITED_CAUSE;
634     }
635 
636     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
637     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
638 
639     return 0;
640 }
641 
642 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
643 {
644     CPUState *cs = CPU(xtensa_env_get_cpu(env));
645     uint32_t paddr;
646     uint32_t page_size;
647     unsigned access;
648     uint32_t pt_vaddr =
649         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
650     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
651             &paddr, &page_size, &access, false);
652 
653     qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
654                   __func__, vaddr, ret ? ~0 : paddr);
655 
656     if (ret == 0) {
657         *pte = ldl_phys(cs->as, paddr);
658     }
659     return ret;
660 }
661 
662 static int get_physical_addr_region(CPUXtensaState *env,
663         uint32_t vaddr, int is_write, int mmu_idx,
664         uint32_t *paddr, uint32_t *page_size, unsigned *access)
665 {
666     bool dtlb = is_write != 2;
667     uint32_t wi = 0;
668     uint32_t ei = (vaddr >> 29) & 0x7;
669     const xtensa_tlb_entry *entry =
670         xtensa_tlb_get_entry(env, dtlb, wi, ei);
671 
672     *access = region_attr_to_access(entry->attr);
673     if (!is_access_granted(*access, is_write)) {
674         return dtlb ?
675             (is_write ?
676              STORE_PROHIBITED_CAUSE :
677              LOAD_PROHIBITED_CAUSE) :
678             INST_FETCH_PROHIBITED_CAUSE;
679     }
680 
681     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
682     *page_size = ~REGION_PAGE_MASK + 1;
683 
684     return 0;
685 }
686 
687 /*!
688  * Convert virtual address to physical addr.
689  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
690  *
691  * \return 0 if ok, exception cause code otherwise
692  */
693 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
694         uint32_t vaddr, int is_write, int mmu_idx,
695         uint32_t *paddr, uint32_t *page_size, unsigned *access)
696 {
697     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
698         return get_physical_addr_mmu(env, update_tlb,
699                 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
700     } else if (xtensa_option_bits_enabled(env->config,
701                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
702                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
703         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
704                 paddr, page_size, access);
705     } else {
706         *paddr = vaddr;
707         *page_size = TARGET_PAGE_SIZE;
708         *access = cacheattr_attr_to_access(
709                 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
710         return 0;
711     }
712 }
713 
714 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
715         CPUXtensaState *env, bool dtlb)
716 {
717     unsigned wi, ei;
718     const xtensa_tlb *conf =
719         dtlb ? &env->config->dtlb : &env->config->itlb;
720     unsigned (*attr_to_access)(uint32_t) =
721         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
722         mmu_attr_to_access : region_attr_to_access;
723 
724     for (wi = 0; wi < conf->nways; ++wi) {
725         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
726         const char *sz_text;
727         bool print_header = true;
728 
729         if (sz >= 0x100000) {
730             sz /= MiB;
731             sz_text = "MB";
732         } else {
733             sz /= KiB;
734             sz_text = "KB";
735         }
736 
737         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
738             const xtensa_tlb_entry *entry =
739                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
740 
741             if (entry->asid) {
742                 static const char * const cache_text[8] = {
743                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
744                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
745                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
746                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
747                 };
748                 unsigned access = attr_to_access(entry->attr);
749                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
750                     PAGE_CACHE_SHIFT;
751 
752                 if (print_header) {
753                     print_header = false;
754                     cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
755                     cpu_fprintf(f,
756                             "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
757                             "\t----------  ----------  ----  ---- --- -------\n");
758                 }
759                 cpu_fprintf(f,
760                         "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
761                         entry->vaddr,
762                         entry->paddr,
763                         entry->asid,
764                         entry->attr,
765                         (access & PAGE_READ) ? 'R' : '-',
766                         (access & PAGE_WRITE) ? 'W' : '-',
767                         (access & PAGE_EXEC) ? 'X' : '-',
768                         cache_text[cache_idx] ? cache_text[cache_idx] :
769                             "Invalid");
770             }
771         }
772     }
773 }
774 
775 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
776 {
777     if (xtensa_option_bits_enabled(env->config,
778                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
779                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
780                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
781 
782         cpu_fprintf(f, "ITLB:\n");
783         dump_tlb(f, cpu_fprintf, env, false);
784         cpu_fprintf(f, "\nDTLB:\n");
785         dump_tlb(f, cpu_fprintf, env, true);
786     } else {
787         cpu_fprintf(f, "No TLB for this CPU core\n");
788     }
789 }
790 
791 void xtensa_runstall(CPUXtensaState *env, bool runstall)
792 {
793     CPUState *cpu = CPU(xtensa_env_get_cpu(env));
794 
795     env->runstall = runstall;
796     cpu->halted = runstall;
797     if (runstall) {
798         cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
799     } else {
800         cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
801     }
802 }
803 #endif
804