xref: /openbmc/qemu/target/xtensa/helper.c (revision 966f2ec3)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "cpu.h"
31 #include "exec/exec-all.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #if !defined(CONFIG_USER_ONLY)
35 #include "hw/loader.h"
36 #endif
37 
38 static struct XtensaConfigList *xtensa_cores;
39 
40 static void xtensa_core_class_init(ObjectClass *oc, void *data)
41 {
42     CPUClass *cc = CPU_CLASS(oc);
43     XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
44     const XtensaConfig *config = data;
45 
46     xcc->config = config;
47 
48     /* Use num_core_regs to see only non-privileged registers in an unmodified
49      * gdb. Use num_regs to see all registers. gdb modification is required
50      * for that: reset bit 0 in the 'flags' field of the registers definitions
51      * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
52      */
53     cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
54 }
55 
56 static void init_libisa(XtensaConfig *config)
57 {
58     unsigned i, j;
59     unsigned opcodes;
60     unsigned formats;
61 
62     config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
63     assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
64     opcodes = xtensa_isa_num_opcodes(config->isa);
65     formats = xtensa_isa_num_formats(config->isa);
66     config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
67 
68     for (i = 0; i < formats; ++i) {
69         assert(xtensa_format_num_slots(config->isa, i) <= MAX_INSN_SLOTS);
70     }
71 
72     for (i = 0; i < opcodes; ++i) {
73         const char *opc_name = xtensa_opcode_name(config->isa, i);
74         XtensaOpcodeOps *ops = NULL;
75 
76         assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
77         if (!config->opcode_translators) {
78             ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
79         } else {
80             for (j = 0; !ops && config->opcode_translators[j]; ++j) {
81                 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
82                                              opc_name);
83             }
84         }
85 #ifdef DEBUG
86         if (ops == NULL) {
87             fprintf(stderr,
88                     "opcode translator not found for %s's opcode '%s'\n",
89                     config->name, opc_name);
90         }
91 #endif
92         config->opcode_ops[i] = ops;
93     }
94 }
95 
96 void xtensa_finalize_config(XtensaConfig *config)
97 {
98     if (config->isa_internal) {
99         init_libisa(config);
100     }
101 
102     if (config->gdb_regmap.num_regs == 0 ||
103         config->gdb_regmap.num_core_regs == 0) {
104         unsigned n_regs = 0;
105         unsigned n_core_regs = 0;
106 
107         xtensa_count_regs(config, &n_regs, &n_core_regs);
108         if (config->gdb_regmap.num_regs == 0) {
109             config->gdb_regmap.num_regs = n_regs;
110         }
111         if (config->gdb_regmap.num_core_regs == 0) {
112             config->gdb_regmap.num_core_regs = n_core_regs;
113         }
114     }
115 }
116 
117 void xtensa_register_core(XtensaConfigList *node)
118 {
119     TypeInfo type = {
120         .parent = TYPE_XTENSA_CPU,
121         .class_init = xtensa_core_class_init,
122         .class_data = (void *)node->config,
123     };
124 
125     node->next = xtensa_cores;
126     xtensa_cores = node;
127     type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
128     type_register(&type);
129     g_free((gpointer)type.name);
130 }
131 
132 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
133 {
134     unsigned i;
135 
136     for (i = 0; i < env->config->ndbreak; ++i) {
137         if (env->cpu_watchpoint[i] &&
138                 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
139             return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
140         }
141     }
142     return 0;
143 }
144 
145 void xtensa_breakpoint_handler(CPUState *cs)
146 {
147     XtensaCPU *cpu = XTENSA_CPU(cs);
148     CPUXtensaState *env = &cpu->env;
149 
150     if (cs->watchpoint_hit) {
151         if (cs->watchpoint_hit->flags & BP_CPU) {
152             uint32_t cause;
153 
154             cs->watchpoint_hit = NULL;
155             cause = check_hw_breakpoints(env);
156             if (cause) {
157                 debug_exception_env(env, cause);
158             }
159             cpu_loop_exit_noexc(cs);
160         }
161     }
162 }
163 
164 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
165 {
166     XtensaConfigList *core = xtensa_cores;
167     cpu_fprintf(f, "Available CPUs:\n");
168     for (; core; core = core->next) {
169         cpu_fprintf(f, "  %s\n", core->config->name);
170     }
171 }
172 
173 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
174 {
175 #ifndef CONFIG_USER_ONLY
176     XtensaCPU *cpu = XTENSA_CPU(cs);
177     uint32_t paddr;
178     uint32_t page_size;
179     unsigned access;
180 
181     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
182                 &paddr, &page_size, &access) == 0) {
183         return paddr;
184     }
185     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
186                 &paddr, &page_size, &access) == 0) {
187         return paddr;
188     }
189     return ~0;
190 #else
191     return addr;
192 #endif
193 }
194 
195 #ifndef CONFIG_USER_ONLY
196 
197 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
198 {
199     if (xtensa_option_enabled(env->config,
200                 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
201         return vector - env->config->vecbase + env->sregs[VECBASE];
202     } else {
203         return vector;
204     }
205 }
206 
207 /*!
208  * Handle penging IRQ.
209  * For the high priority interrupt jump to the corresponding interrupt vector.
210  * For the level-1 interrupt convert it to either user, kernel or double
211  * exception with the 'level-1 interrupt' exception cause.
212  */
213 static void handle_interrupt(CPUXtensaState *env)
214 {
215     int level = env->pending_irq_level;
216 
217     if (level > xtensa_get_cintlevel(env) &&
218             level <= env->config->nlevel &&
219             (env->config->level_mask[level] &
220              env->sregs[INTSET] &
221              env->sregs[INTENABLE])) {
222         CPUState *cs = CPU(xtensa_env_get_cpu(env));
223 
224         if (level > 1) {
225             env->sregs[EPC1 + level - 1] = env->pc;
226             env->sregs[EPS2 + level - 2] = env->sregs[PS];
227             env->sregs[PS] =
228                 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
229             env->pc = relocated_vector(env,
230                     env->config->interrupt_vector[level]);
231         } else {
232             env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
233 
234             if (env->sregs[PS] & PS_EXCM) {
235                 if (env->config->ndepc) {
236                     env->sregs[DEPC] = env->pc;
237                 } else {
238                     env->sregs[EPC1] = env->pc;
239                 }
240                 cs->exception_index = EXC_DOUBLE;
241             } else {
242                 env->sregs[EPC1] = env->pc;
243                 cs->exception_index =
244                     (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
245             }
246             env->sregs[PS] |= PS_EXCM;
247         }
248         env->exception_taken = 1;
249     }
250 }
251 
252 /* Called from cpu_handle_interrupt with BQL held */
253 void xtensa_cpu_do_interrupt(CPUState *cs)
254 {
255     XtensaCPU *cpu = XTENSA_CPU(cs);
256     CPUXtensaState *env = &cpu->env;
257 
258     if (cs->exception_index == EXC_IRQ) {
259         qemu_log_mask(CPU_LOG_INT,
260                 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
261                 "pc = %08x, a0 = %08x, ps = %08x, "
262                 "intset = %08x, intenable = %08x, "
263                 "ccount = %08x\n",
264                 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
265                 env->pc, env->regs[0], env->sregs[PS],
266                 env->sregs[INTSET], env->sregs[INTENABLE],
267                 env->sregs[CCOUNT]);
268         handle_interrupt(env);
269     }
270 
271     switch (cs->exception_index) {
272     case EXC_WINDOW_OVERFLOW4:
273     case EXC_WINDOW_UNDERFLOW4:
274     case EXC_WINDOW_OVERFLOW8:
275     case EXC_WINDOW_UNDERFLOW8:
276     case EXC_WINDOW_OVERFLOW12:
277     case EXC_WINDOW_UNDERFLOW12:
278     case EXC_KERNEL:
279     case EXC_USER:
280     case EXC_DOUBLE:
281     case EXC_DEBUG:
282         qemu_log_mask(CPU_LOG_INT, "%s(%d) "
283                 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
284                 __func__, cs->exception_index,
285                 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
286         if (env->config->exception_vector[cs->exception_index]) {
287             env->pc = relocated_vector(env,
288                     env->config->exception_vector[cs->exception_index]);
289             env->exception_taken = 1;
290         } else {
291             qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
292                           __func__, env->pc, cs->exception_index);
293         }
294         break;
295 
296     case EXC_IRQ:
297         break;
298 
299     default:
300         qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
301                 __func__, env->pc, cs->exception_index);
302         break;
303     }
304     check_interrupts(env);
305 }
306 #else
307 void xtensa_cpu_do_interrupt(CPUState *cs)
308 {
309 }
310 #endif
311 
312 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
313 {
314     if (interrupt_request & CPU_INTERRUPT_HARD) {
315         cs->exception_index = EXC_IRQ;
316         xtensa_cpu_do_interrupt(cs);
317         return true;
318     }
319     return false;
320 }
321 
322 #ifdef CONFIG_USER_ONLY
323 
324 int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
325                                 int mmu_idx)
326 {
327     XtensaCPU *cpu = XTENSA_CPU(cs);
328     CPUXtensaState *env = &cpu->env;
329 
330     qemu_log_mask(CPU_LOG_INT,
331                   "%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
332                   __func__, rw, address, size);
333     env->sregs[EXCVADDR] = address;
334     env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
335     cs->exception_index = EXC_USER;
336     return 1;
337 }
338 
339 #else
340 
341 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
342         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
343 {
344     unsigned wi, ei;
345 
346     for (wi = 0; wi < tlb->nways; ++wi) {
347         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
348             entry[wi][ei].asid = 0;
349             entry[wi][ei].variable = true;
350         }
351     }
352 }
353 
354 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
355         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
356 {
357     if (!tlb->varway56) {
358         static const xtensa_tlb_entry way5[] = {
359             {
360                 .vaddr = 0xd0000000,
361                 .paddr = 0,
362                 .asid = 1,
363                 .attr = 7,
364                 .variable = false,
365             }, {
366                 .vaddr = 0xd8000000,
367                 .paddr = 0,
368                 .asid = 1,
369                 .attr = 3,
370                 .variable = false,
371             }
372         };
373         static const xtensa_tlb_entry way6[] = {
374             {
375                 .vaddr = 0xe0000000,
376                 .paddr = 0xf0000000,
377                 .asid = 1,
378                 .attr = 7,
379                 .variable = false,
380             }, {
381                 .vaddr = 0xf0000000,
382                 .paddr = 0xf0000000,
383                 .asid = 1,
384                 .attr = 3,
385                 .variable = false,
386             }
387         };
388         memcpy(entry[5], way5, sizeof(way5));
389         memcpy(entry[6], way6, sizeof(way6));
390     } else {
391         uint32_t ei;
392         for (ei = 0; ei < 8; ++ei) {
393             entry[6][ei].vaddr = ei << 29;
394             entry[6][ei].paddr = ei << 29;
395             entry[6][ei].asid = 1;
396             entry[6][ei].attr = 3;
397         }
398     }
399 }
400 
401 static void reset_tlb_region_way0(CPUXtensaState *env,
402         xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
403 {
404     unsigned ei;
405 
406     for (ei = 0; ei < 8; ++ei) {
407         entry[0][ei].vaddr = ei << 29;
408         entry[0][ei].paddr = ei << 29;
409         entry[0][ei].asid = 1;
410         entry[0][ei].attr = 2;
411         entry[0][ei].variable = true;
412     }
413 }
414 
415 void reset_mmu(CPUXtensaState *env)
416 {
417     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
418         env->sregs[RASID] = 0x04030201;
419         env->sregs[ITLBCFG] = 0;
420         env->sregs[DTLBCFG] = 0;
421         env->autorefill_idx = 0;
422         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
423         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
424         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
425         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
426     } else {
427         reset_tlb_region_way0(env, env->itlb);
428         reset_tlb_region_way0(env, env->dtlb);
429     }
430 }
431 
432 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
433 {
434     unsigned i;
435     for (i = 0; i < 4; ++i) {
436         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
437             return i;
438         }
439     }
440     return 0xff;
441 }
442 
443 /*!
444  * Lookup xtensa TLB for the given virtual address.
445  * See ISA, 4.6.2.2
446  *
447  * \param pwi: [out] way index
448  * \param pei: [out] entry index
449  * \param pring: [out] access ring
450  * \return 0 if ok, exception cause code otherwise
451  */
452 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
453         uint32_t *pwi, uint32_t *pei, uint8_t *pring)
454 {
455     const xtensa_tlb *tlb = dtlb ?
456         &env->config->dtlb : &env->config->itlb;
457     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
458         env->dtlb : env->itlb;
459 
460     int nhits = 0;
461     unsigned wi;
462 
463     for (wi = 0; wi < tlb->nways; ++wi) {
464         uint32_t vpn;
465         uint32_t ei;
466         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
467         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
468             unsigned ring = get_ring(env, entry[wi][ei].asid);
469             if (ring < 4) {
470                 if (++nhits > 1) {
471                     return dtlb ?
472                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
473                         INST_TLB_MULTI_HIT_CAUSE;
474                 }
475                 *pwi = wi;
476                 *pei = ei;
477                 *pring = ring;
478             }
479         }
480     }
481     return nhits ? 0 :
482         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
483 }
484 
485 /*!
486  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
487  * See ISA, 4.6.5.10
488  */
489 static unsigned mmu_attr_to_access(uint32_t attr)
490 {
491     unsigned access = 0;
492 
493     if (attr < 12) {
494         access |= PAGE_READ;
495         if (attr & 0x1) {
496             access |= PAGE_EXEC;
497         }
498         if (attr & 0x2) {
499             access |= PAGE_WRITE;
500         }
501 
502         switch (attr & 0xc) {
503         case 0:
504             access |= PAGE_CACHE_BYPASS;
505             break;
506 
507         case 4:
508             access |= PAGE_CACHE_WB;
509             break;
510 
511         case 8:
512             access |= PAGE_CACHE_WT;
513             break;
514         }
515     } else if (attr == 13) {
516         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
517     }
518     return access;
519 }
520 
521 /*!
522  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
523  * See ISA, 4.6.3.3
524  */
525 static unsigned region_attr_to_access(uint32_t attr)
526 {
527     static const unsigned access[16] = {
528          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
529          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
530          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
531          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
532          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
533          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
534         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
535     };
536 
537     return access[attr & 0xf];
538 }
539 
540 /*!
541  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
542  * See ISA, A.2.14 The Cache Attribute Register
543  */
544 static unsigned cacheattr_attr_to_access(uint32_t attr)
545 {
546     static const unsigned access[16] = {
547          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
548          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
549          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
550          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
551          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
552         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
553     };
554 
555     return access[attr & 0xf];
556 }
557 
558 static bool is_access_granted(unsigned access, int is_write)
559 {
560     switch (is_write) {
561     case 0:
562         return access & PAGE_READ;
563 
564     case 1:
565         return access & PAGE_WRITE;
566 
567     case 2:
568         return access & PAGE_EXEC;
569 
570     default:
571         return 0;
572     }
573 }
574 
575 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
576 
577 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
578         uint32_t vaddr, int is_write, int mmu_idx,
579         uint32_t *paddr, uint32_t *page_size, unsigned *access,
580         bool may_lookup_pt)
581 {
582     bool dtlb = is_write != 2;
583     uint32_t wi;
584     uint32_t ei;
585     uint8_t ring;
586     uint32_t vpn;
587     uint32_t pte;
588     const xtensa_tlb_entry *entry = NULL;
589     xtensa_tlb_entry tmp_entry;
590     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
591 
592     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
593             may_lookup_pt && get_pte(env, vaddr, &pte)) {
594         ring = (pte >> 4) & 0x3;
595         wi = 0;
596         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
597 
598         if (update_tlb) {
599             wi = ++env->autorefill_idx & 0x3;
600             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
601             env->sregs[EXCVADDR] = vaddr;
602             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
603                           __func__, vaddr, vpn, pte);
604         } else {
605             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
606             entry = &tmp_entry;
607         }
608         ret = 0;
609     }
610     if (ret != 0) {
611         return ret;
612     }
613 
614     if (entry == NULL) {
615         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
616     }
617 
618     if (ring < mmu_idx) {
619         return dtlb ?
620             LOAD_STORE_PRIVILEGE_CAUSE :
621             INST_FETCH_PRIVILEGE_CAUSE;
622     }
623 
624     *access = mmu_attr_to_access(entry->attr) &
625         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
626     if (!is_access_granted(*access, is_write)) {
627         return dtlb ?
628             (is_write ?
629              STORE_PROHIBITED_CAUSE :
630              LOAD_PROHIBITED_CAUSE) :
631             INST_FETCH_PROHIBITED_CAUSE;
632     }
633 
634     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
635     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
636 
637     return 0;
638 }
639 
640 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
641 {
642     CPUState *cs = CPU(xtensa_env_get_cpu(env));
643     uint32_t paddr;
644     uint32_t page_size;
645     unsigned access;
646     uint32_t pt_vaddr =
647         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
648     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
649             &paddr, &page_size, &access, false);
650 
651     if (ret == 0) {
652         qemu_log_mask(CPU_LOG_MMU,
653                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
654                       __func__, vaddr, pt_vaddr, paddr);
655     } else {
656         qemu_log_mask(CPU_LOG_MMU,
657                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
658                       __func__, vaddr, pt_vaddr, ret);
659     }
660 
661     if (ret == 0) {
662         MemTxResult result;
663 
664         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
665                                  &result);
666         if (result != MEMTX_OK) {
667             qemu_log_mask(CPU_LOG_MMU,
668                           "%s: couldn't load PTE: transaction failed (%u)\n",
669                           __func__, (unsigned)result);
670             ret = 1;
671         }
672     }
673     return ret == 0;
674 }
675 
676 static int get_physical_addr_region(CPUXtensaState *env,
677         uint32_t vaddr, int is_write, int mmu_idx,
678         uint32_t *paddr, uint32_t *page_size, unsigned *access)
679 {
680     bool dtlb = is_write != 2;
681     uint32_t wi = 0;
682     uint32_t ei = (vaddr >> 29) & 0x7;
683     const xtensa_tlb_entry *entry =
684         xtensa_tlb_get_entry(env, dtlb, wi, ei);
685 
686     *access = region_attr_to_access(entry->attr);
687     if (!is_access_granted(*access, is_write)) {
688         return dtlb ?
689             (is_write ?
690              STORE_PROHIBITED_CAUSE :
691              LOAD_PROHIBITED_CAUSE) :
692             INST_FETCH_PROHIBITED_CAUSE;
693     }
694 
695     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
696     *page_size = ~REGION_PAGE_MASK + 1;
697 
698     return 0;
699 }
700 
701 /*!
702  * Convert virtual address to physical addr.
703  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
704  *
705  * \return 0 if ok, exception cause code otherwise
706  */
707 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
708         uint32_t vaddr, int is_write, int mmu_idx,
709         uint32_t *paddr, uint32_t *page_size, unsigned *access)
710 {
711     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
712         return get_physical_addr_mmu(env, update_tlb,
713                 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
714     } else if (xtensa_option_bits_enabled(env->config,
715                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
716                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
717         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
718                 paddr, page_size, access);
719     } else {
720         *paddr = vaddr;
721         *page_size = TARGET_PAGE_SIZE;
722         *access = cacheattr_attr_to_access(
723                 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
724         return 0;
725     }
726 }
727 
728 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
729         CPUXtensaState *env, bool dtlb)
730 {
731     unsigned wi, ei;
732     const xtensa_tlb *conf =
733         dtlb ? &env->config->dtlb : &env->config->itlb;
734     unsigned (*attr_to_access)(uint32_t) =
735         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
736         mmu_attr_to_access : region_attr_to_access;
737 
738     for (wi = 0; wi < conf->nways; ++wi) {
739         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
740         const char *sz_text;
741         bool print_header = true;
742 
743         if (sz >= 0x100000) {
744             sz /= MiB;
745             sz_text = "MB";
746         } else {
747             sz /= KiB;
748             sz_text = "KB";
749         }
750 
751         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
752             const xtensa_tlb_entry *entry =
753                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
754 
755             if (entry->asid) {
756                 static const char * const cache_text[8] = {
757                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
758                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
759                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
760                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
761                 };
762                 unsigned access = attr_to_access(entry->attr);
763                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
764                     PAGE_CACHE_SHIFT;
765 
766                 if (print_header) {
767                     print_header = false;
768                     cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
769                     cpu_fprintf(f,
770                             "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
771                             "\t----------  ----------  ----  ---- --- -------\n");
772                 }
773                 cpu_fprintf(f,
774                         "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
775                         entry->vaddr,
776                         entry->paddr,
777                         entry->asid,
778                         entry->attr,
779                         (access & PAGE_READ) ? 'R' : '-',
780                         (access & PAGE_WRITE) ? 'W' : '-',
781                         (access & PAGE_EXEC) ? 'X' : '-',
782                         cache_text[cache_idx] ? cache_text[cache_idx] :
783                             "Invalid");
784             }
785         }
786     }
787 }
788 
789 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
790 {
791     if (xtensa_option_bits_enabled(env->config,
792                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
793                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
794                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
795 
796         cpu_fprintf(f, "ITLB:\n");
797         dump_tlb(f, cpu_fprintf, env, false);
798         cpu_fprintf(f, "\nDTLB:\n");
799         dump_tlb(f, cpu_fprintf, env, true);
800     } else {
801         cpu_fprintf(f, "No TLB for this CPU core\n");
802     }
803 }
804 
805 void xtensa_runstall(CPUXtensaState *env, bool runstall)
806 {
807     CPUState *cpu = CPU(xtensa_env_get_cpu(env));
808 
809     env->runstall = runstall;
810     cpu->halted = runstall;
811     if (runstall) {
812         cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
813     } else {
814         cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
815     }
816 }
817 #endif
818