xref: /openbmc/qemu/target/xtensa/helper.c (revision 8779fccb)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/exec-all.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #if !defined(CONFIG_USER_ONLY)
34 #include "hw/loader.h"
35 #endif
36 
37 static struct XtensaConfigList *xtensa_cores;
38 
39 static void xtensa_core_class_init(ObjectClass *oc, void *data)
40 {
41     CPUClass *cc = CPU_CLASS(oc);
42     XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
43     const XtensaConfig *config = data;
44 
45     xcc->config = config;
46 
47     /* Use num_core_regs to see only non-privileged registers in an unmodified
48      * gdb. Use num_regs to see all registers. gdb modification is required
49      * for that: reset bit 0 in the 'flags' field of the registers definitions
50      * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
51      */
52     cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
53 }
54 
55 void xtensa_finalize_config(XtensaConfig *config)
56 {
57     unsigned i, n = 0;
58 
59     if (config->gdb_regmap.num_regs) {
60         return;
61     }
62 
63     for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
64         n += (config->gdb_regmap.reg[i].type != 6);
65     }
66     config->gdb_regmap.num_regs = n;
67 }
68 
69 void xtensa_register_core(XtensaConfigList *node)
70 {
71     TypeInfo type = {
72         .parent = TYPE_XTENSA_CPU,
73         .class_init = xtensa_core_class_init,
74         .class_data = (void *)node->config,
75     };
76 
77     node->next = xtensa_cores;
78     xtensa_cores = node;
79     type.name = g_strdup_printf("%s-" TYPE_XTENSA_CPU, node->config->name);
80     type_register(&type);
81     g_free((gpointer)type.name);
82 }
83 
84 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
85 {
86     unsigned i;
87 
88     for (i = 0; i < env->config->ndbreak; ++i) {
89         if (env->cpu_watchpoint[i] &&
90                 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
91             return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
92         }
93     }
94     return 0;
95 }
96 
97 void xtensa_breakpoint_handler(CPUState *cs)
98 {
99     XtensaCPU *cpu = XTENSA_CPU(cs);
100     CPUXtensaState *env = &cpu->env;
101 
102     if (cs->watchpoint_hit) {
103         if (cs->watchpoint_hit->flags & BP_CPU) {
104             uint32_t cause;
105 
106             cs->watchpoint_hit = NULL;
107             cause = check_hw_breakpoints(env);
108             if (cause) {
109                 debug_exception_env(env, cause);
110             }
111             cpu_loop_exit_noexc(cs);
112         }
113     }
114 }
115 
116 XtensaCPU *cpu_xtensa_init(const char *cpu_model)
117 {
118     ObjectClass *oc;
119     XtensaCPU *cpu;
120     CPUXtensaState *env;
121 
122     oc = cpu_class_by_name(TYPE_XTENSA_CPU, cpu_model);
123     if (oc == NULL) {
124         return NULL;
125     }
126 
127     cpu = XTENSA_CPU(object_new(object_class_get_name(oc)));
128     env = &cpu->env;
129 
130     xtensa_irq_init(env);
131 
132     object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
133 
134     return cpu;
135 }
136 
137 
138 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
139 {
140     XtensaConfigList *core = xtensa_cores;
141     cpu_fprintf(f, "Available CPUs:\n");
142     for (; core; core = core->next) {
143         cpu_fprintf(f, "  %s\n", core->config->name);
144     }
145 }
146 
147 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
148 {
149     XtensaCPU *cpu = XTENSA_CPU(cs);
150     uint32_t paddr;
151     uint32_t page_size;
152     unsigned access;
153 
154     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
155                 &paddr, &page_size, &access) == 0) {
156         return paddr;
157     }
158     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
159                 &paddr, &page_size, &access) == 0) {
160         return paddr;
161     }
162     return ~0;
163 }
164 
165 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
166 {
167     if (xtensa_option_enabled(env->config,
168                 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
169         return vector - env->config->vecbase + env->sregs[VECBASE];
170     } else {
171         return vector;
172     }
173 }
174 
175 /*!
176  * Handle penging IRQ.
177  * For the high priority interrupt jump to the corresponding interrupt vector.
178  * For the level-1 interrupt convert it to either user, kernel or double
179  * exception with the 'level-1 interrupt' exception cause.
180  */
181 static void handle_interrupt(CPUXtensaState *env)
182 {
183     int level = env->pending_irq_level;
184 
185     if (level > xtensa_get_cintlevel(env) &&
186             level <= env->config->nlevel &&
187             (env->config->level_mask[level] &
188              env->sregs[INTSET] &
189              env->sregs[INTENABLE])) {
190         CPUState *cs = CPU(xtensa_env_get_cpu(env));
191 
192         if (level > 1) {
193             env->sregs[EPC1 + level - 1] = env->pc;
194             env->sregs[EPS2 + level - 2] = env->sregs[PS];
195             env->sregs[PS] =
196                 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
197             env->pc = relocated_vector(env,
198                     env->config->interrupt_vector[level]);
199         } else {
200             env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
201 
202             if (env->sregs[PS] & PS_EXCM) {
203                 if (env->config->ndepc) {
204                     env->sregs[DEPC] = env->pc;
205                 } else {
206                     env->sregs[EPC1] = env->pc;
207                 }
208                 cs->exception_index = EXC_DOUBLE;
209             } else {
210                 env->sregs[EPC1] = env->pc;
211                 cs->exception_index =
212                     (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
213             }
214             env->sregs[PS] |= PS_EXCM;
215         }
216         env->exception_taken = 1;
217     }
218 }
219 
220 void xtensa_cpu_do_interrupt(CPUState *cs)
221 {
222     XtensaCPU *cpu = XTENSA_CPU(cs);
223     CPUXtensaState *env = &cpu->env;
224 
225     if (cs->exception_index == EXC_IRQ) {
226         qemu_log_mask(CPU_LOG_INT,
227                 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
228                 "pc = %08x, a0 = %08x, ps = %08x, "
229                 "intset = %08x, intenable = %08x, "
230                 "ccount = %08x\n",
231                 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
232                 env->pc, env->regs[0], env->sregs[PS],
233                 env->sregs[INTSET], env->sregs[INTENABLE],
234                 env->sregs[CCOUNT]);
235         handle_interrupt(env);
236     }
237 
238     switch (cs->exception_index) {
239     case EXC_WINDOW_OVERFLOW4:
240     case EXC_WINDOW_UNDERFLOW4:
241     case EXC_WINDOW_OVERFLOW8:
242     case EXC_WINDOW_UNDERFLOW8:
243     case EXC_WINDOW_OVERFLOW12:
244     case EXC_WINDOW_UNDERFLOW12:
245     case EXC_KERNEL:
246     case EXC_USER:
247     case EXC_DOUBLE:
248     case EXC_DEBUG:
249         qemu_log_mask(CPU_LOG_INT, "%s(%d) "
250                 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
251                 __func__, cs->exception_index,
252                 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
253         if (env->config->exception_vector[cs->exception_index]) {
254             env->pc = relocated_vector(env,
255                     env->config->exception_vector[cs->exception_index]);
256             env->exception_taken = 1;
257         } else {
258             qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
259                           __func__, env->pc, cs->exception_index);
260         }
261         break;
262 
263     case EXC_IRQ:
264         break;
265 
266     default:
267         qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
268                 __func__, env->pc, cs->exception_index);
269         break;
270     }
271     check_interrupts(env);
272 }
273 
274 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
275 {
276     if (interrupt_request & CPU_INTERRUPT_HARD) {
277         cs->exception_index = EXC_IRQ;
278         xtensa_cpu_do_interrupt(cs);
279         return true;
280     }
281     return false;
282 }
283 
284 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
285         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
286 {
287     unsigned wi, ei;
288 
289     for (wi = 0; wi < tlb->nways; ++wi) {
290         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
291             entry[wi][ei].asid = 0;
292             entry[wi][ei].variable = true;
293         }
294     }
295 }
296 
297 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
298         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
299 {
300     if (!tlb->varway56) {
301         static const xtensa_tlb_entry way5[] = {
302             {
303                 .vaddr = 0xd0000000,
304                 .paddr = 0,
305                 .asid = 1,
306                 .attr = 7,
307                 .variable = false,
308             }, {
309                 .vaddr = 0xd8000000,
310                 .paddr = 0,
311                 .asid = 1,
312                 .attr = 3,
313                 .variable = false,
314             }
315         };
316         static const xtensa_tlb_entry way6[] = {
317             {
318                 .vaddr = 0xe0000000,
319                 .paddr = 0xf0000000,
320                 .asid = 1,
321                 .attr = 7,
322                 .variable = false,
323             }, {
324                 .vaddr = 0xf0000000,
325                 .paddr = 0xf0000000,
326                 .asid = 1,
327                 .attr = 3,
328                 .variable = false,
329             }
330         };
331         memcpy(entry[5], way5, sizeof(way5));
332         memcpy(entry[6], way6, sizeof(way6));
333     } else {
334         uint32_t ei;
335         for (ei = 0; ei < 8; ++ei) {
336             entry[6][ei].vaddr = ei << 29;
337             entry[6][ei].paddr = ei << 29;
338             entry[6][ei].asid = 1;
339             entry[6][ei].attr = 3;
340         }
341     }
342 }
343 
344 static void reset_tlb_region_way0(CPUXtensaState *env,
345         xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
346 {
347     unsigned ei;
348 
349     for (ei = 0; ei < 8; ++ei) {
350         entry[0][ei].vaddr = ei << 29;
351         entry[0][ei].paddr = ei << 29;
352         entry[0][ei].asid = 1;
353         entry[0][ei].attr = 2;
354         entry[0][ei].variable = true;
355     }
356 }
357 
358 void reset_mmu(CPUXtensaState *env)
359 {
360     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
361         env->sregs[RASID] = 0x04030201;
362         env->sregs[ITLBCFG] = 0;
363         env->sregs[DTLBCFG] = 0;
364         env->autorefill_idx = 0;
365         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
366         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
367         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
368         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
369     } else {
370         reset_tlb_region_way0(env, env->itlb);
371         reset_tlb_region_way0(env, env->dtlb);
372     }
373 }
374 
375 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
376 {
377     unsigned i;
378     for (i = 0; i < 4; ++i) {
379         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
380             return i;
381         }
382     }
383     return 0xff;
384 }
385 
386 /*!
387  * Lookup xtensa TLB for the given virtual address.
388  * See ISA, 4.6.2.2
389  *
390  * \param pwi: [out] way index
391  * \param pei: [out] entry index
392  * \param pring: [out] access ring
393  * \return 0 if ok, exception cause code otherwise
394  */
395 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
396         uint32_t *pwi, uint32_t *pei, uint8_t *pring)
397 {
398     const xtensa_tlb *tlb = dtlb ?
399         &env->config->dtlb : &env->config->itlb;
400     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
401         env->dtlb : env->itlb;
402 
403     int nhits = 0;
404     unsigned wi;
405 
406     for (wi = 0; wi < tlb->nways; ++wi) {
407         uint32_t vpn;
408         uint32_t ei;
409         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
410         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
411             unsigned ring = get_ring(env, entry[wi][ei].asid);
412             if (ring < 4) {
413                 if (++nhits > 1) {
414                     return dtlb ?
415                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
416                         INST_TLB_MULTI_HIT_CAUSE;
417                 }
418                 *pwi = wi;
419                 *pei = ei;
420                 *pring = ring;
421             }
422         }
423     }
424     return nhits ? 0 :
425         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
426 }
427 
428 /*!
429  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
430  * See ISA, 4.6.5.10
431  */
432 static unsigned mmu_attr_to_access(uint32_t attr)
433 {
434     unsigned access = 0;
435 
436     if (attr < 12) {
437         access |= PAGE_READ;
438         if (attr & 0x1) {
439             access |= PAGE_EXEC;
440         }
441         if (attr & 0x2) {
442             access |= PAGE_WRITE;
443         }
444 
445         switch (attr & 0xc) {
446         case 0:
447             access |= PAGE_CACHE_BYPASS;
448             break;
449 
450         case 4:
451             access |= PAGE_CACHE_WB;
452             break;
453 
454         case 8:
455             access |= PAGE_CACHE_WT;
456             break;
457         }
458     } else if (attr == 13) {
459         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
460     }
461     return access;
462 }
463 
464 /*!
465  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
466  * See ISA, 4.6.3.3
467  */
468 static unsigned region_attr_to_access(uint32_t attr)
469 {
470     static const unsigned access[16] = {
471          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
472          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
473          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
474          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
475          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
476          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
477         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
478     };
479 
480     return access[attr & 0xf];
481 }
482 
483 /*!
484  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
485  * See ISA, A.2.14 The Cache Attribute Register
486  */
487 static unsigned cacheattr_attr_to_access(uint32_t attr)
488 {
489     static const unsigned access[16] = {
490          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
491          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
492          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
493          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
494          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
495         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
496     };
497 
498     return access[attr & 0xf];
499 }
500 
501 static bool is_access_granted(unsigned access, int is_write)
502 {
503     switch (is_write) {
504     case 0:
505         return access & PAGE_READ;
506 
507     case 1:
508         return access & PAGE_WRITE;
509 
510     case 2:
511         return access & PAGE_EXEC;
512 
513     default:
514         return 0;
515     }
516 }
517 
518 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
519 
520 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
521         uint32_t vaddr, int is_write, int mmu_idx,
522         uint32_t *paddr, uint32_t *page_size, unsigned *access,
523         bool may_lookup_pt)
524 {
525     bool dtlb = is_write != 2;
526     uint32_t wi;
527     uint32_t ei;
528     uint8_t ring;
529     uint32_t vpn;
530     uint32_t pte;
531     const xtensa_tlb_entry *entry = NULL;
532     xtensa_tlb_entry tmp_entry;
533     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
534 
535     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
536             may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
537         ring = (pte >> 4) & 0x3;
538         wi = 0;
539         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
540 
541         if (update_tlb) {
542             wi = ++env->autorefill_idx & 0x3;
543             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
544             env->sregs[EXCVADDR] = vaddr;
545             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
546                           __func__, vaddr, vpn, pte);
547         } else {
548             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
549             entry = &tmp_entry;
550         }
551         ret = 0;
552     }
553     if (ret != 0) {
554         return ret;
555     }
556 
557     if (entry == NULL) {
558         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
559     }
560 
561     if (ring < mmu_idx) {
562         return dtlb ?
563             LOAD_STORE_PRIVILEGE_CAUSE :
564             INST_FETCH_PRIVILEGE_CAUSE;
565     }
566 
567     *access = mmu_attr_to_access(entry->attr) &
568         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
569     if (!is_access_granted(*access, is_write)) {
570         return dtlb ?
571             (is_write ?
572              STORE_PROHIBITED_CAUSE :
573              LOAD_PROHIBITED_CAUSE) :
574             INST_FETCH_PROHIBITED_CAUSE;
575     }
576 
577     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
578     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
579 
580     return 0;
581 }
582 
583 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
584 {
585     CPUState *cs = CPU(xtensa_env_get_cpu(env));
586     uint32_t paddr;
587     uint32_t page_size;
588     unsigned access;
589     uint32_t pt_vaddr =
590         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
591     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
592             &paddr, &page_size, &access, false);
593 
594     qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
595                   __func__, vaddr, ret ? ~0 : paddr);
596 
597     if (ret == 0) {
598         *pte = ldl_phys(cs->as, paddr);
599     }
600     return ret;
601 }
602 
603 static int get_physical_addr_region(CPUXtensaState *env,
604         uint32_t vaddr, int is_write, int mmu_idx,
605         uint32_t *paddr, uint32_t *page_size, unsigned *access)
606 {
607     bool dtlb = is_write != 2;
608     uint32_t wi = 0;
609     uint32_t ei = (vaddr >> 29) & 0x7;
610     const xtensa_tlb_entry *entry =
611         xtensa_tlb_get_entry(env, dtlb, wi, ei);
612 
613     *access = region_attr_to_access(entry->attr);
614     if (!is_access_granted(*access, is_write)) {
615         return dtlb ?
616             (is_write ?
617              STORE_PROHIBITED_CAUSE :
618              LOAD_PROHIBITED_CAUSE) :
619             INST_FETCH_PROHIBITED_CAUSE;
620     }
621 
622     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
623     *page_size = ~REGION_PAGE_MASK + 1;
624 
625     return 0;
626 }
627 
628 /*!
629  * Convert virtual address to physical addr.
630  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
631  *
632  * \return 0 if ok, exception cause code otherwise
633  */
634 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
635         uint32_t vaddr, int is_write, int mmu_idx,
636         uint32_t *paddr, uint32_t *page_size, unsigned *access)
637 {
638     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
639         return get_physical_addr_mmu(env, update_tlb,
640                 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
641     } else if (xtensa_option_bits_enabled(env->config,
642                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
643                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
644         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
645                 paddr, page_size, access);
646     } else {
647         *paddr = vaddr;
648         *page_size = TARGET_PAGE_SIZE;
649         *access = cacheattr_attr_to_access(
650                 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
651         return 0;
652     }
653 }
654 
655 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
656         CPUXtensaState *env, bool dtlb)
657 {
658     unsigned wi, ei;
659     const xtensa_tlb *conf =
660         dtlb ? &env->config->dtlb : &env->config->itlb;
661     unsigned (*attr_to_access)(uint32_t) =
662         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
663         mmu_attr_to_access : region_attr_to_access;
664 
665     for (wi = 0; wi < conf->nways; ++wi) {
666         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
667         const char *sz_text;
668         bool print_header = true;
669 
670         if (sz >= 0x100000) {
671             sz >>= 20;
672             sz_text = "MB";
673         } else {
674             sz >>= 10;
675             sz_text = "KB";
676         }
677 
678         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
679             const xtensa_tlb_entry *entry =
680                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
681 
682             if (entry->asid) {
683                 static const char * const cache_text[8] = {
684                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
685                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
686                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
687                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
688                 };
689                 unsigned access = attr_to_access(entry->attr);
690                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
691                     PAGE_CACHE_SHIFT;
692 
693                 if (print_header) {
694                     print_header = false;
695                     cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
696                     cpu_fprintf(f,
697                             "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
698                             "\t----------  ----------  ----  ---- --- -------\n");
699                 }
700                 cpu_fprintf(f,
701                         "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
702                         entry->vaddr,
703                         entry->paddr,
704                         entry->asid,
705                         entry->attr,
706                         (access & PAGE_READ) ? 'R' : '-',
707                         (access & PAGE_WRITE) ? 'W' : '-',
708                         (access & PAGE_EXEC) ? 'X' : '-',
709                         cache_text[cache_idx] ? cache_text[cache_idx] :
710                             "Invalid");
711             }
712         }
713     }
714 }
715 
716 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
717 {
718     if (xtensa_option_bits_enabled(env->config,
719                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
720                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
721                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
722 
723         cpu_fprintf(f, "ITLB:\n");
724         dump_tlb(f, cpu_fprintf, env, false);
725         cpu_fprintf(f, "\nDTLB:\n");
726         dump_tlb(f, cpu_fprintf, env, true);
727     } else {
728         cpu_fprintf(f, "No TLB for this CPU core\n");
729     }
730 }
731 
732 void xtensa_runstall(CPUXtensaState *env, bool runstall)
733 {
734     CPUState *cpu = CPU(xtensa_env_get_cpu(env));
735 
736     env->runstall = runstall;
737     cpu->halted = runstall;
738     if (runstall) {
739         cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
740     } else {
741         cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
742     }
743 }
744