xref: /openbmc/qemu/target/xtensa/helper.c (revision 5540cb97f711d191bae6cde89a03a8a9c306b638)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "cpu.h"
31 #include "exec/exec-all.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #if !defined(CONFIG_USER_ONLY)
35 #include "hw/loader.h"
36 #endif
37 
38 static struct XtensaConfigList *xtensa_cores;
39 
40 static void xtensa_core_class_init(ObjectClass *oc, void *data)
41 {
42     CPUClass *cc = CPU_CLASS(oc);
43     XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
44     const XtensaConfig *config = data;
45 
46     xcc->config = config;
47 
48     /* Use num_core_regs to see only non-privileged registers in an unmodified
49      * gdb. Use num_regs to see all registers. gdb modification is required
50      * for that: reset bit 0 in the 'flags' field of the registers definitions
51      * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
52      */
53     cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
54 }
55 
56 static void init_libisa(XtensaConfig *config)
57 {
58     unsigned i, j;
59     unsigned opcodes;
60 
61     config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
62     assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
63     opcodes = xtensa_isa_num_opcodes(config->isa);
64     config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
65 
66     for (i = 0; i < opcodes; ++i) {
67         const char *opc_name = xtensa_opcode_name(config->isa, i);
68         XtensaOpcodeOps *ops = NULL;
69 
70         assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
71         if (!config->opcode_translators) {
72             ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
73         } else {
74             for (j = 0; !ops && config->opcode_translators[j]; ++j) {
75                 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
76                                              opc_name);
77             }
78         }
79 #ifdef DEBUG
80         if (ops == NULL) {
81             fprintf(stderr,
82                     "opcode translator not found for %s's opcode '%s'\n",
83                     config->name, opc_name);
84         }
85 #endif
86         config->opcode_ops[i] = ops;
87     }
88 }
89 
90 void xtensa_finalize_config(XtensaConfig *config)
91 {
92     if (config->isa_internal) {
93         init_libisa(config);
94     }
95 
96     if (config->gdb_regmap.num_regs == 0 ||
97         config->gdb_regmap.num_core_regs == 0) {
98         unsigned n_regs = 0;
99         unsigned n_core_regs = 0;
100 
101         xtensa_count_regs(config, &n_regs, &n_core_regs);
102         if (config->gdb_regmap.num_regs == 0) {
103             config->gdb_regmap.num_regs = n_regs;
104         }
105         if (config->gdb_regmap.num_core_regs == 0) {
106             config->gdb_regmap.num_core_regs = n_core_regs;
107         }
108     }
109 }
110 
111 void xtensa_register_core(XtensaConfigList *node)
112 {
113     TypeInfo type = {
114         .parent = TYPE_XTENSA_CPU,
115         .class_init = xtensa_core_class_init,
116         .class_data = (void *)node->config,
117     };
118 
119     node->next = xtensa_cores;
120     xtensa_cores = node;
121     type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
122     type_register(&type);
123     g_free((gpointer)type.name);
124 }
125 
126 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
127 {
128     unsigned i;
129 
130     for (i = 0; i < env->config->ndbreak; ++i) {
131         if (env->cpu_watchpoint[i] &&
132                 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
133             return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
134         }
135     }
136     return 0;
137 }
138 
139 void xtensa_breakpoint_handler(CPUState *cs)
140 {
141     XtensaCPU *cpu = XTENSA_CPU(cs);
142     CPUXtensaState *env = &cpu->env;
143 
144     if (cs->watchpoint_hit) {
145         if (cs->watchpoint_hit->flags & BP_CPU) {
146             uint32_t cause;
147 
148             cs->watchpoint_hit = NULL;
149             cause = check_hw_breakpoints(env);
150             if (cause) {
151                 debug_exception_env(env, cause);
152             }
153             cpu_loop_exit_noexc(cs);
154         }
155     }
156 }
157 
158 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
159 {
160     XtensaConfigList *core = xtensa_cores;
161     cpu_fprintf(f, "Available CPUs:\n");
162     for (; core; core = core->next) {
163         cpu_fprintf(f, "  %s\n", core->config->name);
164     }
165 }
166 
167 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
168 {
169 #ifndef CONFIG_USER_ONLY
170     XtensaCPU *cpu = XTENSA_CPU(cs);
171     uint32_t paddr;
172     uint32_t page_size;
173     unsigned access;
174 
175     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
176                 &paddr, &page_size, &access) == 0) {
177         return paddr;
178     }
179     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
180                 &paddr, &page_size, &access) == 0) {
181         return paddr;
182     }
183     return ~0;
184 #else
185     return addr;
186 #endif
187 }
188 
189 #ifndef CONFIG_USER_ONLY
190 
191 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
192 {
193     if (xtensa_option_enabled(env->config,
194                 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
195         return vector - env->config->vecbase + env->sregs[VECBASE];
196     } else {
197         return vector;
198     }
199 }
200 
201 /*!
202  * Handle penging IRQ.
203  * For the high priority interrupt jump to the corresponding interrupt vector.
204  * For the level-1 interrupt convert it to either user, kernel or double
205  * exception with the 'level-1 interrupt' exception cause.
206  */
207 static void handle_interrupt(CPUXtensaState *env)
208 {
209     int level = env->pending_irq_level;
210 
211     if (level > xtensa_get_cintlevel(env) &&
212             level <= env->config->nlevel &&
213             (env->config->level_mask[level] &
214              env->sregs[INTSET] &
215              env->sregs[INTENABLE])) {
216         CPUState *cs = CPU(xtensa_env_get_cpu(env));
217 
218         if (level > 1) {
219             env->sregs[EPC1 + level - 1] = env->pc;
220             env->sregs[EPS2 + level - 2] = env->sregs[PS];
221             env->sregs[PS] =
222                 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
223             env->pc = relocated_vector(env,
224                     env->config->interrupt_vector[level]);
225         } else {
226             env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
227 
228             if (env->sregs[PS] & PS_EXCM) {
229                 if (env->config->ndepc) {
230                     env->sregs[DEPC] = env->pc;
231                 } else {
232                     env->sregs[EPC1] = env->pc;
233                 }
234                 cs->exception_index = EXC_DOUBLE;
235             } else {
236                 env->sregs[EPC1] = env->pc;
237                 cs->exception_index =
238                     (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
239             }
240             env->sregs[PS] |= PS_EXCM;
241         }
242         env->exception_taken = 1;
243     }
244 }
245 
246 /* Called from cpu_handle_interrupt with BQL held */
247 void xtensa_cpu_do_interrupt(CPUState *cs)
248 {
249     XtensaCPU *cpu = XTENSA_CPU(cs);
250     CPUXtensaState *env = &cpu->env;
251 
252     if (cs->exception_index == EXC_IRQ) {
253         qemu_log_mask(CPU_LOG_INT,
254                 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
255                 "pc = %08x, a0 = %08x, ps = %08x, "
256                 "intset = %08x, intenable = %08x, "
257                 "ccount = %08x\n",
258                 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
259                 env->pc, env->regs[0], env->sregs[PS],
260                 env->sregs[INTSET], env->sregs[INTENABLE],
261                 env->sregs[CCOUNT]);
262         handle_interrupt(env);
263     }
264 
265     switch (cs->exception_index) {
266     case EXC_WINDOW_OVERFLOW4:
267     case EXC_WINDOW_UNDERFLOW4:
268     case EXC_WINDOW_OVERFLOW8:
269     case EXC_WINDOW_UNDERFLOW8:
270     case EXC_WINDOW_OVERFLOW12:
271     case EXC_WINDOW_UNDERFLOW12:
272     case EXC_KERNEL:
273     case EXC_USER:
274     case EXC_DOUBLE:
275     case EXC_DEBUG:
276         qemu_log_mask(CPU_LOG_INT, "%s(%d) "
277                 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
278                 __func__, cs->exception_index,
279                 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
280         if (env->config->exception_vector[cs->exception_index]) {
281             env->pc = relocated_vector(env,
282                     env->config->exception_vector[cs->exception_index]);
283             env->exception_taken = 1;
284         } else {
285             qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
286                           __func__, env->pc, cs->exception_index);
287         }
288         break;
289 
290     case EXC_IRQ:
291         break;
292 
293     default:
294         qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
295                 __func__, env->pc, cs->exception_index);
296         break;
297     }
298     check_interrupts(env);
299 }
300 #else
301 void xtensa_cpu_do_interrupt(CPUState *cs)
302 {
303 }
304 #endif
305 
306 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
307 {
308     if (interrupt_request & CPU_INTERRUPT_HARD) {
309         cs->exception_index = EXC_IRQ;
310         xtensa_cpu_do_interrupt(cs);
311         return true;
312     }
313     return false;
314 }
315 
316 #ifdef CONFIG_USER_ONLY
317 
318 int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
319                                 int mmu_idx)
320 {
321     XtensaCPU *cpu = XTENSA_CPU(cs);
322     CPUXtensaState *env = &cpu->env;
323 
324     qemu_log_mask(CPU_LOG_INT,
325                   "%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
326                   __func__, rw, address, size);
327     env->sregs[EXCVADDR] = address;
328     env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
329     cs->exception_index = EXC_USER;
330     return 1;
331 }
332 
333 #else
334 
335 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
336         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
337 {
338     unsigned wi, ei;
339 
340     for (wi = 0; wi < tlb->nways; ++wi) {
341         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
342             entry[wi][ei].asid = 0;
343             entry[wi][ei].variable = true;
344         }
345     }
346 }
347 
348 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
349         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
350 {
351     if (!tlb->varway56) {
352         static const xtensa_tlb_entry way5[] = {
353             {
354                 .vaddr = 0xd0000000,
355                 .paddr = 0,
356                 .asid = 1,
357                 .attr = 7,
358                 .variable = false,
359             }, {
360                 .vaddr = 0xd8000000,
361                 .paddr = 0,
362                 .asid = 1,
363                 .attr = 3,
364                 .variable = false,
365             }
366         };
367         static const xtensa_tlb_entry way6[] = {
368             {
369                 .vaddr = 0xe0000000,
370                 .paddr = 0xf0000000,
371                 .asid = 1,
372                 .attr = 7,
373                 .variable = false,
374             }, {
375                 .vaddr = 0xf0000000,
376                 .paddr = 0xf0000000,
377                 .asid = 1,
378                 .attr = 3,
379                 .variable = false,
380             }
381         };
382         memcpy(entry[5], way5, sizeof(way5));
383         memcpy(entry[6], way6, sizeof(way6));
384     } else {
385         uint32_t ei;
386         for (ei = 0; ei < 8; ++ei) {
387             entry[6][ei].vaddr = ei << 29;
388             entry[6][ei].paddr = ei << 29;
389             entry[6][ei].asid = 1;
390             entry[6][ei].attr = 3;
391         }
392     }
393 }
394 
395 static void reset_tlb_region_way0(CPUXtensaState *env,
396         xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
397 {
398     unsigned ei;
399 
400     for (ei = 0; ei < 8; ++ei) {
401         entry[0][ei].vaddr = ei << 29;
402         entry[0][ei].paddr = ei << 29;
403         entry[0][ei].asid = 1;
404         entry[0][ei].attr = 2;
405         entry[0][ei].variable = true;
406     }
407 }
408 
409 void reset_mmu(CPUXtensaState *env)
410 {
411     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
412         env->sregs[RASID] = 0x04030201;
413         env->sregs[ITLBCFG] = 0;
414         env->sregs[DTLBCFG] = 0;
415         env->autorefill_idx = 0;
416         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
417         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
418         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
419         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
420     } else {
421         reset_tlb_region_way0(env, env->itlb);
422         reset_tlb_region_way0(env, env->dtlb);
423     }
424 }
425 
426 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
427 {
428     unsigned i;
429     for (i = 0; i < 4; ++i) {
430         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
431             return i;
432         }
433     }
434     return 0xff;
435 }
436 
437 /*!
438  * Lookup xtensa TLB for the given virtual address.
439  * See ISA, 4.6.2.2
440  *
441  * \param pwi: [out] way index
442  * \param pei: [out] entry index
443  * \param pring: [out] access ring
444  * \return 0 if ok, exception cause code otherwise
445  */
446 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
447         uint32_t *pwi, uint32_t *pei, uint8_t *pring)
448 {
449     const xtensa_tlb *tlb = dtlb ?
450         &env->config->dtlb : &env->config->itlb;
451     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
452         env->dtlb : env->itlb;
453 
454     int nhits = 0;
455     unsigned wi;
456 
457     for (wi = 0; wi < tlb->nways; ++wi) {
458         uint32_t vpn;
459         uint32_t ei;
460         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
461         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
462             unsigned ring = get_ring(env, entry[wi][ei].asid);
463             if (ring < 4) {
464                 if (++nhits > 1) {
465                     return dtlb ?
466                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
467                         INST_TLB_MULTI_HIT_CAUSE;
468                 }
469                 *pwi = wi;
470                 *pei = ei;
471                 *pring = ring;
472             }
473         }
474     }
475     return nhits ? 0 :
476         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
477 }
478 
479 /*!
480  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
481  * See ISA, 4.6.5.10
482  */
483 static unsigned mmu_attr_to_access(uint32_t attr)
484 {
485     unsigned access = 0;
486 
487     if (attr < 12) {
488         access |= PAGE_READ;
489         if (attr & 0x1) {
490             access |= PAGE_EXEC;
491         }
492         if (attr & 0x2) {
493             access |= PAGE_WRITE;
494         }
495 
496         switch (attr & 0xc) {
497         case 0:
498             access |= PAGE_CACHE_BYPASS;
499             break;
500 
501         case 4:
502             access |= PAGE_CACHE_WB;
503             break;
504 
505         case 8:
506             access |= PAGE_CACHE_WT;
507             break;
508         }
509     } else if (attr == 13) {
510         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
511     }
512     return access;
513 }
514 
515 /*!
516  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
517  * See ISA, 4.6.3.3
518  */
519 static unsigned region_attr_to_access(uint32_t attr)
520 {
521     static const unsigned access[16] = {
522          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
523          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
524          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
525          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
526          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
527          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
528         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
529     };
530 
531     return access[attr & 0xf];
532 }
533 
534 /*!
535  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
536  * See ISA, A.2.14 The Cache Attribute Register
537  */
538 static unsigned cacheattr_attr_to_access(uint32_t attr)
539 {
540     static const unsigned access[16] = {
541          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
542          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
543          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
544          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
545          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
546         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
547     };
548 
549     return access[attr & 0xf];
550 }
551 
552 static bool is_access_granted(unsigned access, int is_write)
553 {
554     switch (is_write) {
555     case 0:
556         return access & PAGE_READ;
557 
558     case 1:
559         return access & PAGE_WRITE;
560 
561     case 2:
562         return access & PAGE_EXEC;
563 
564     default:
565         return 0;
566     }
567 }
568 
569 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
570 
571 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
572         uint32_t vaddr, int is_write, int mmu_idx,
573         uint32_t *paddr, uint32_t *page_size, unsigned *access,
574         bool may_lookup_pt)
575 {
576     bool dtlb = is_write != 2;
577     uint32_t wi;
578     uint32_t ei;
579     uint8_t ring;
580     uint32_t vpn;
581     uint32_t pte;
582     const xtensa_tlb_entry *entry = NULL;
583     xtensa_tlb_entry tmp_entry;
584     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
585 
586     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
587             may_lookup_pt && get_pte(env, vaddr, &pte)) {
588         ring = (pte >> 4) & 0x3;
589         wi = 0;
590         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
591 
592         if (update_tlb) {
593             wi = ++env->autorefill_idx & 0x3;
594             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
595             env->sregs[EXCVADDR] = vaddr;
596             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
597                           __func__, vaddr, vpn, pte);
598         } else {
599             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
600             entry = &tmp_entry;
601         }
602         ret = 0;
603     }
604     if (ret != 0) {
605         return ret;
606     }
607 
608     if (entry == NULL) {
609         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
610     }
611 
612     if (ring < mmu_idx) {
613         return dtlb ?
614             LOAD_STORE_PRIVILEGE_CAUSE :
615             INST_FETCH_PRIVILEGE_CAUSE;
616     }
617 
618     *access = mmu_attr_to_access(entry->attr) &
619         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
620     if (!is_access_granted(*access, is_write)) {
621         return dtlb ?
622             (is_write ?
623              STORE_PROHIBITED_CAUSE :
624              LOAD_PROHIBITED_CAUSE) :
625             INST_FETCH_PROHIBITED_CAUSE;
626     }
627 
628     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
629     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
630 
631     return 0;
632 }
633 
634 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
635 {
636     CPUState *cs = CPU(xtensa_env_get_cpu(env));
637     uint32_t paddr;
638     uint32_t page_size;
639     unsigned access;
640     uint32_t pt_vaddr =
641         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
642     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
643             &paddr, &page_size, &access, false);
644 
645     if (ret == 0) {
646         qemu_log_mask(CPU_LOG_MMU,
647                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
648                       __func__, vaddr, pt_vaddr, paddr);
649     } else {
650         qemu_log_mask(CPU_LOG_MMU,
651                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
652                       __func__, vaddr, pt_vaddr, ret);
653     }
654 
655     if (ret == 0) {
656         MemTxResult result;
657 
658         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
659                                  &result);
660         if (result != MEMTX_OK) {
661             qemu_log_mask(CPU_LOG_MMU,
662                           "%s: couldn't load PTE: transaction failed (%u)\n",
663                           __func__, (unsigned)result);
664             ret = 1;
665         }
666     }
667     return ret == 0;
668 }
669 
670 static int get_physical_addr_region(CPUXtensaState *env,
671         uint32_t vaddr, int is_write, int mmu_idx,
672         uint32_t *paddr, uint32_t *page_size, unsigned *access)
673 {
674     bool dtlb = is_write != 2;
675     uint32_t wi = 0;
676     uint32_t ei = (vaddr >> 29) & 0x7;
677     const xtensa_tlb_entry *entry =
678         xtensa_tlb_get_entry(env, dtlb, wi, ei);
679 
680     *access = region_attr_to_access(entry->attr);
681     if (!is_access_granted(*access, is_write)) {
682         return dtlb ?
683             (is_write ?
684              STORE_PROHIBITED_CAUSE :
685              LOAD_PROHIBITED_CAUSE) :
686             INST_FETCH_PROHIBITED_CAUSE;
687     }
688 
689     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
690     *page_size = ~REGION_PAGE_MASK + 1;
691 
692     return 0;
693 }
694 
695 /*!
696  * Convert virtual address to physical addr.
697  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
698  *
699  * \return 0 if ok, exception cause code otherwise
700  */
701 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
702         uint32_t vaddr, int is_write, int mmu_idx,
703         uint32_t *paddr, uint32_t *page_size, unsigned *access)
704 {
705     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
706         return get_physical_addr_mmu(env, update_tlb,
707                 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
708     } else if (xtensa_option_bits_enabled(env->config,
709                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
710                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
711         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
712                 paddr, page_size, access);
713     } else {
714         *paddr = vaddr;
715         *page_size = TARGET_PAGE_SIZE;
716         *access = cacheattr_attr_to_access(
717                 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
718         return 0;
719     }
720 }
721 
722 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
723         CPUXtensaState *env, bool dtlb)
724 {
725     unsigned wi, ei;
726     const xtensa_tlb *conf =
727         dtlb ? &env->config->dtlb : &env->config->itlb;
728     unsigned (*attr_to_access)(uint32_t) =
729         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
730         mmu_attr_to_access : region_attr_to_access;
731 
732     for (wi = 0; wi < conf->nways; ++wi) {
733         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
734         const char *sz_text;
735         bool print_header = true;
736 
737         if (sz >= 0x100000) {
738             sz /= MiB;
739             sz_text = "MB";
740         } else {
741             sz /= KiB;
742             sz_text = "KB";
743         }
744 
745         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
746             const xtensa_tlb_entry *entry =
747                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
748 
749             if (entry->asid) {
750                 static const char * const cache_text[8] = {
751                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
752                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
753                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
754                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
755                 };
756                 unsigned access = attr_to_access(entry->attr);
757                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
758                     PAGE_CACHE_SHIFT;
759 
760                 if (print_header) {
761                     print_header = false;
762                     cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
763                     cpu_fprintf(f,
764                             "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
765                             "\t----------  ----------  ----  ---- --- -------\n");
766                 }
767                 cpu_fprintf(f,
768                         "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
769                         entry->vaddr,
770                         entry->paddr,
771                         entry->asid,
772                         entry->attr,
773                         (access & PAGE_READ) ? 'R' : '-',
774                         (access & PAGE_WRITE) ? 'W' : '-',
775                         (access & PAGE_EXEC) ? 'X' : '-',
776                         cache_text[cache_idx] ? cache_text[cache_idx] :
777                             "Invalid");
778             }
779         }
780     }
781 }
782 
783 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
784 {
785     if (xtensa_option_bits_enabled(env->config,
786                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
787                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
788                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
789 
790         cpu_fprintf(f, "ITLB:\n");
791         dump_tlb(f, cpu_fprintf, env, false);
792         cpu_fprintf(f, "\nDTLB:\n");
793         dump_tlb(f, cpu_fprintf, env, true);
794     } else {
795         cpu_fprintf(f, "No TLB for this CPU core\n");
796     }
797 }
798 
799 void xtensa_runstall(CPUXtensaState *env, bool runstall)
800 {
801     CPUState *cpu = CPU(xtensa_env_get_cpu(env));
802 
803     env->runstall = runstall;
804     cpu->halted = runstall;
805     if (runstall) {
806         cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
807     } else {
808         cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
809     }
810 }
811 #endif
812