xref: /openbmc/qemu/target/xtensa/helper.c (revision 3f53bc61)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/exec-all.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #if !defined(CONFIG_USER_ONLY)
34 #include "hw/loader.h"
35 #endif
36 
37 static struct XtensaConfigList *xtensa_cores;
38 
39 static void xtensa_core_class_init(ObjectClass *oc, void *data)
40 {
41     CPUClass *cc = CPU_CLASS(oc);
42     XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
43     const XtensaConfig *config = data;
44 
45     xcc->config = config;
46 
47     /* Use num_core_regs to see only non-privileged registers in an unmodified
48      * gdb. Use num_regs to see all registers. gdb modification is required
49      * for that: reset bit 0 in the 'flags' field of the registers definitions
50      * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
51      */
52     cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
53 }
54 
55 void xtensa_finalize_config(XtensaConfig *config)
56 {
57     unsigned i, n = 0;
58 
59     if (config->gdb_regmap.num_regs) {
60         return;
61     }
62 
63     for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
64         n += (config->gdb_regmap.reg[i].type != 6);
65     }
66     config->gdb_regmap.num_regs = n;
67 }
68 
69 void xtensa_register_core(XtensaConfigList *node)
70 {
71     TypeInfo type = {
72         .parent = TYPE_XTENSA_CPU,
73         .class_init = xtensa_core_class_init,
74         .class_data = (void *)node->config,
75     };
76 
77     node->next = xtensa_cores;
78     xtensa_cores = node;
79     type.name = g_strdup_printf("%s-" TYPE_XTENSA_CPU, node->config->name);
80     type_register(&type);
81     g_free((gpointer)type.name);
82 }
83 
84 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
85 {
86     unsigned i;
87 
88     for (i = 0; i < env->config->ndbreak; ++i) {
89         if (env->cpu_watchpoint[i] &&
90                 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
91             return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
92         }
93     }
94     return 0;
95 }
96 
97 void xtensa_breakpoint_handler(CPUState *cs)
98 {
99     XtensaCPU *cpu = XTENSA_CPU(cs);
100     CPUXtensaState *env = &cpu->env;
101 
102     if (cs->watchpoint_hit) {
103         if (cs->watchpoint_hit->flags & BP_CPU) {
104             uint32_t cause;
105 
106             cs->watchpoint_hit = NULL;
107             cause = check_hw_breakpoints(env);
108             if (cause) {
109                 debug_exception_env(env, cause);
110             }
111             cpu_loop_exit_noexc(cs);
112         }
113     }
114 }
115 
116 XtensaCPU *cpu_xtensa_init(const char *cpu_model)
117 {
118     ObjectClass *oc;
119     XtensaCPU *cpu;
120     CPUXtensaState *env;
121 
122     oc = cpu_class_by_name(TYPE_XTENSA_CPU, cpu_model);
123     if (oc == NULL) {
124         return NULL;
125     }
126 
127     cpu = XTENSA_CPU(object_new(object_class_get_name(oc)));
128     env = &cpu->env;
129 
130     xtensa_irq_init(env);
131 
132     object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
133 
134     return cpu;
135 }
136 
137 
138 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
139 {
140     XtensaConfigList *core = xtensa_cores;
141     cpu_fprintf(f, "Available CPUs:\n");
142     for (; core; core = core->next) {
143         cpu_fprintf(f, "  %s\n", core->config->name);
144     }
145 }
146 
147 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
148 {
149     XtensaCPU *cpu = XTENSA_CPU(cs);
150     uint32_t paddr;
151     uint32_t page_size;
152     unsigned access;
153 
154     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
155                 &paddr, &page_size, &access) == 0) {
156         return paddr;
157     }
158     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
159                 &paddr, &page_size, &access) == 0) {
160         return paddr;
161     }
162     return ~0;
163 }
164 
165 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
166 {
167     if (xtensa_option_enabled(env->config,
168                 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
169         return vector - env->config->vecbase + env->sregs[VECBASE];
170     } else {
171         return vector;
172     }
173 }
174 
175 /*!
176  * Handle penging IRQ.
177  * For the high priority interrupt jump to the corresponding interrupt vector.
178  * For the level-1 interrupt convert it to either user, kernel or double
179  * exception with the 'level-1 interrupt' exception cause.
180  */
181 static void handle_interrupt(CPUXtensaState *env)
182 {
183     int level = env->pending_irq_level;
184 
185     if (level > xtensa_get_cintlevel(env) &&
186             level <= env->config->nlevel &&
187             (env->config->level_mask[level] &
188              env->sregs[INTSET] &
189              env->sregs[INTENABLE])) {
190         CPUState *cs = CPU(xtensa_env_get_cpu(env));
191 
192         if (level > 1) {
193             env->sregs[EPC1 + level - 1] = env->pc;
194             env->sregs[EPS2 + level - 2] = env->sregs[PS];
195             env->sregs[PS] =
196                 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
197             env->pc = relocated_vector(env,
198                     env->config->interrupt_vector[level]);
199         } else {
200             env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
201 
202             if (env->sregs[PS] & PS_EXCM) {
203                 if (env->config->ndepc) {
204                     env->sregs[DEPC] = env->pc;
205                 } else {
206                     env->sregs[EPC1] = env->pc;
207                 }
208                 cs->exception_index = EXC_DOUBLE;
209             } else {
210                 env->sregs[EPC1] = env->pc;
211                 cs->exception_index =
212                     (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
213             }
214             env->sregs[PS] |= PS_EXCM;
215         }
216         env->exception_taken = 1;
217     }
218 }
219 
220 /* Called from cpu_handle_interrupt with BQL held */
221 void xtensa_cpu_do_interrupt(CPUState *cs)
222 {
223     XtensaCPU *cpu = XTENSA_CPU(cs);
224     CPUXtensaState *env = &cpu->env;
225 
226     if (cs->exception_index == EXC_IRQ) {
227         qemu_log_mask(CPU_LOG_INT,
228                 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
229                 "pc = %08x, a0 = %08x, ps = %08x, "
230                 "intset = %08x, intenable = %08x, "
231                 "ccount = %08x\n",
232                 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
233                 env->pc, env->regs[0], env->sregs[PS],
234                 env->sregs[INTSET], env->sregs[INTENABLE],
235                 env->sregs[CCOUNT]);
236         handle_interrupt(env);
237     }
238 
239     switch (cs->exception_index) {
240     case EXC_WINDOW_OVERFLOW4:
241     case EXC_WINDOW_UNDERFLOW4:
242     case EXC_WINDOW_OVERFLOW8:
243     case EXC_WINDOW_UNDERFLOW8:
244     case EXC_WINDOW_OVERFLOW12:
245     case EXC_WINDOW_UNDERFLOW12:
246     case EXC_KERNEL:
247     case EXC_USER:
248     case EXC_DOUBLE:
249     case EXC_DEBUG:
250         qemu_log_mask(CPU_LOG_INT, "%s(%d) "
251                 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
252                 __func__, cs->exception_index,
253                 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
254         if (env->config->exception_vector[cs->exception_index]) {
255             env->pc = relocated_vector(env,
256                     env->config->exception_vector[cs->exception_index]);
257             env->exception_taken = 1;
258         } else {
259             qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
260                           __func__, env->pc, cs->exception_index);
261         }
262         break;
263 
264     case EXC_IRQ:
265         break;
266 
267     default:
268         qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
269                 __func__, env->pc, cs->exception_index);
270         break;
271     }
272     check_interrupts(env);
273 }
274 
275 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
276 {
277     if (interrupt_request & CPU_INTERRUPT_HARD) {
278         cs->exception_index = EXC_IRQ;
279         xtensa_cpu_do_interrupt(cs);
280         return true;
281     }
282     return false;
283 }
284 
285 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
286         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
287 {
288     unsigned wi, ei;
289 
290     for (wi = 0; wi < tlb->nways; ++wi) {
291         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
292             entry[wi][ei].asid = 0;
293             entry[wi][ei].variable = true;
294         }
295     }
296 }
297 
298 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
299         const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
300 {
301     if (!tlb->varway56) {
302         static const xtensa_tlb_entry way5[] = {
303             {
304                 .vaddr = 0xd0000000,
305                 .paddr = 0,
306                 .asid = 1,
307                 .attr = 7,
308                 .variable = false,
309             }, {
310                 .vaddr = 0xd8000000,
311                 .paddr = 0,
312                 .asid = 1,
313                 .attr = 3,
314                 .variable = false,
315             }
316         };
317         static const xtensa_tlb_entry way6[] = {
318             {
319                 .vaddr = 0xe0000000,
320                 .paddr = 0xf0000000,
321                 .asid = 1,
322                 .attr = 7,
323                 .variable = false,
324             }, {
325                 .vaddr = 0xf0000000,
326                 .paddr = 0xf0000000,
327                 .asid = 1,
328                 .attr = 3,
329                 .variable = false,
330             }
331         };
332         memcpy(entry[5], way5, sizeof(way5));
333         memcpy(entry[6], way6, sizeof(way6));
334     } else {
335         uint32_t ei;
336         for (ei = 0; ei < 8; ++ei) {
337             entry[6][ei].vaddr = ei << 29;
338             entry[6][ei].paddr = ei << 29;
339             entry[6][ei].asid = 1;
340             entry[6][ei].attr = 3;
341         }
342     }
343 }
344 
345 static void reset_tlb_region_way0(CPUXtensaState *env,
346         xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
347 {
348     unsigned ei;
349 
350     for (ei = 0; ei < 8; ++ei) {
351         entry[0][ei].vaddr = ei << 29;
352         entry[0][ei].paddr = ei << 29;
353         entry[0][ei].asid = 1;
354         entry[0][ei].attr = 2;
355         entry[0][ei].variable = true;
356     }
357 }
358 
359 void reset_mmu(CPUXtensaState *env)
360 {
361     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
362         env->sregs[RASID] = 0x04030201;
363         env->sregs[ITLBCFG] = 0;
364         env->sregs[DTLBCFG] = 0;
365         env->autorefill_idx = 0;
366         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
367         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
368         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
369         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
370     } else {
371         reset_tlb_region_way0(env, env->itlb);
372         reset_tlb_region_way0(env, env->dtlb);
373     }
374 }
375 
376 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
377 {
378     unsigned i;
379     for (i = 0; i < 4; ++i) {
380         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
381             return i;
382         }
383     }
384     return 0xff;
385 }
386 
387 /*!
388  * Lookup xtensa TLB for the given virtual address.
389  * See ISA, 4.6.2.2
390  *
391  * \param pwi: [out] way index
392  * \param pei: [out] entry index
393  * \param pring: [out] access ring
394  * \return 0 if ok, exception cause code otherwise
395  */
396 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
397         uint32_t *pwi, uint32_t *pei, uint8_t *pring)
398 {
399     const xtensa_tlb *tlb = dtlb ?
400         &env->config->dtlb : &env->config->itlb;
401     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
402         env->dtlb : env->itlb;
403 
404     int nhits = 0;
405     unsigned wi;
406 
407     for (wi = 0; wi < tlb->nways; ++wi) {
408         uint32_t vpn;
409         uint32_t ei;
410         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
411         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
412             unsigned ring = get_ring(env, entry[wi][ei].asid);
413             if (ring < 4) {
414                 if (++nhits > 1) {
415                     return dtlb ?
416                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
417                         INST_TLB_MULTI_HIT_CAUSE;
418                 }
419                 *pwi = wi;
420                 *pei = ei;
421                 *pring = ring;
422             }
423         }
424     }
425     return nhits ? 0 :
426         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
427 }
428 
429 /*!
430  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
431  * See ISA, 4.6.5.10
432  */
433 static unsigned mmu_attr_to_access(uint32_t attr)
434 {
435     unsigned access = 0;
436 
437     if (attr < 12) {
438         access |= PAGE_READ;
439         if (attr & 0x1) {
440             access |= PAGE_EXEC;
441         }
442         if (attr & 0x2) {
443             access |= PAGE_WRITE;
444         }
445 
446         switch (attr & 0xc) {
447         case 0:
448             access |= PAGE_CACHE_BYPASS;
449             break;
450 
451         case 4:
452             access |= PAGE_CACHE_WB;
453             break;
454 
455         case 8:
456             access |= PAGE_CACHE_WT;
457             break;
458         }
459     } else if (attr == 13) {
460         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
461     }
462     return access;
463 }
464 
465 /*!
466  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
467  * See ISA, 4.6.3.3
468  */
469 static unsigned region_attr_to_access(uint32_t attr)
470 {
471     static const unsigned access[16] = {
472          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
473          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
474          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
475          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
476          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
477          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
478         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
479     };
480 
481     return access[attr & 0xf];
482 }
483 
484 /*!
485  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
486  * See ISA, A.2.14 The Cache Attribute Register
487  */
488 static unsigned cacheattr_attr_to_access(uint32_t attr)
489 {
490     static const unsigned access[16] = {
491          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
492          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
493          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
494          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
495          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
496         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
497     };
498 
499     return access[attr & 0xf];
500 }
501 
502 static bool is_access_granted(unsigned access, int is_write)
503 {
504     switch (is_write) {
505     case 0:
506         return access & PAGE_READ;
507 
508     case 1:
509         return access & PAGE_WRITE;
510 
511     case 2:
512         return access & PAGE_EXEC;
513 
514     default:
515         return 0;
516     }
517 }
518 
519 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
520 
521 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
522         uint32_t vaddr, int is_write, int mmu_idx,
523         uint32_t *paddr, uint32_t *page_size, unsigned *access,
524         bool may_lookup_pt)
525 {
526     bool dtlb = is_write != 2;
527     uint32_t wi;
528     uint32_t ei;
529     uint8_t ring;
530     uint32_t vpn;
531     uint32_t pte;
532     const xtensa_tlb_entry *entry = NULL;
533     xtensa_tlb_entry tmp_entry;
534     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
535 
536     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
537             may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
538         ring = (pte >> 4) & 0x3;
539         wi = 0;
540         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
541 
542         if (update_tlb) {
543             wi = ++env->autorefill_idx & 0x3;
544             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
545             env->sregs[EXCVADDR] = vaddr;
546             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
547                           __func__, vaddr, vpn, pte);
548         } else {
549             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
550             entry = &tmp_entry;
551         }
552         ret = 0;
553     }
554     if (ret != 0) {
555         return ret;
556     }
557 
558     if (entry == NULL) {
559         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
560     }
561 
562     if (ring < mmu_idx) {
563         return dtlb ?
564             LOAD_STORE_PRIVILEGE_CAUSE :
565             INST_FETCH_PRIVILEGE_CAUSE;
566     }
567 
568     *access = mmu_attr_to_access(entry->attr) &
569         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
570     if (!is_access_granted(*access, is_write)) {
571         return dtlb ?
572             (is_write ?
573              STORE_PROHIBITED_CAUSE :
574              LOAD_PROHIBITED_CAUSE) :
575             INST_FETCH_PROHIBITED_CAUSE;
576     }
577 
578     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
579     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
580 
581     return 0;
582 }
583 
584 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
585 {
586     CPUState *cs = CPU(xtensa_env_get_cpu(env));
587     uint32_t paddr;
588     uint32_t page_size;
589     unsigned access;
590     uint32_t pt_vaddr =
591         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
592     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
593             &paddr, &page_size, &access, false);
594 
595     qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
596                   __func__, vaddr, ret ? ~0 : paddr);
597 
598     if (ret == 0) {
599         *pte = ldl_phys(cs->as, paddr);
600     }
601     return ret;
602 }
603 
604 static int get_physical_addr_region(CPUXtensaState *env,
605         uint32_t vaddr, int is_write, int mmu_idx,
606         uint32_t *paddr, uint32_t *page_size, unsigned *access)
607 {
608     bool dtlb = is_write != 2;
609     uint32_t wi = 0;
610     uint32_t ei = (vaddr >> 29) & 0x7;
611     const xtensa_tlb_entry *entry =
612         xtensa_tlb_get_entry(env, dtlb, wi, ei);
613 
614     *access = region_attr_to_access(entry->attr);
615     if (!is_access_granted(*access, is_write)) {
616         return dtlb ?
617             (is_write ?
618              STORE_PROHIBITED_CAUSE :
619              LOAD_PROHIBITED_CAUSE) :
620             INST_FETCH_PROHIBITED_CAUSE;
621     }
622 
623     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
624     *page_size = ~REGION_PAGE_MASK + 1;
625 
626     return 0;
627 }
628 
629 /*!
630  * Convert virtual address to physical addr.
631  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
632  *
633  * \return 0 if ok, exception cause code otherwise
634  */
635 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
636         uint32_t vaddr, int is_write, int mmu_idx,
637         uint32_t *paddr, uint32_t *page_size, unsigned *access)
638 {
639     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
640         return get_physical_addr_mmu(env, update_tlb,
641                 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
642     } else if (xtensa_option_bits_enabled(env->config,
643                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
644                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
645         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
646                 paddr, page_size, access);
647     } else {
648         *paddr = vaddr;
649         *page_size = TARGET_PAGE_SIZE;
650         *access = cacheattr_attr_to_access(
651                 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
652         return 0;
653     }
654 }
655 
656 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
657         CPUXtensaState *env, bool dtlb)
658 {
659     unsigned wi, ei;
660     const xtensa_tlb *conf =
661         dtlb ? &env->config->dtlb : &env->config->itlb;
662     unsigned (*attr_to_access)(uint32_t) =
663         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
664         mmu_attr_to_access : region_attr_to_access;
665 
666     for (wi = 0; wi < conf->nways; ++wi) {
667         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
668         const char *sz_text;
669         bool print_header = true;
670 
671         if (sz >= 0x100000) {
672             sz >>= 20;
673             sz_text = "MB";
674         } else {
675             sz >>= 10;
676             sz_text = "KB";
677         }
678 
679         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
680             const xtensa_tlb_entry *entry =
681                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
682 
683             if (entry->asid) {
684                 static const char * const cache_text[8] = {
685                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
686                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
687                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
688                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
689                 };
690                 unsigned access = attr_to_access(entry->attr);
691                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
692                     PAGE_CACHE_SHIFT;
693 
694                 if (print_header) {
695                     print_header = false;
696                     cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
697                     cpu_fprintf(f,
698                             "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
699                             "\t----------  ----------  ----  ---- --- -------\n");
700                 }
701                 cpu_fprintf(f,
702                         "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
703                         entry->vaddr,
704                         entry->paddr,
705                         entry->asid,
706                         entry->attr,
707                         (access & PAGE_READ) ? 'R' : '-',
708                         (access & PAGE_WRITE) ? 'W' : '-',
709                         (access & PAGE_EXEC) ? 'X' : '-',
710                         cache_text[cache_idx] ? cache_text[cache_idx] :
711                             "Invalid");
712             }
713         }
714     }
715 }
716 
717 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
718 {
719     if (xtensa_option_bits_enabled(env->config,
720                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
721                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
722                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
723 
724         cpu_fprintf(f, "ITLB:\n");
725         dump_tlb(f, cpu_fprintf, env, false);
726         cpu_fprintf(f, "\nDTLB:\n");
727         dump_tlb(f, cpu_fprintf, env, true);
728     } else {
729         cpu_fprintf(f, "No TLB for this CPU core\n");
730     }
731 }
732 
733 void xtensa_runstall(CPUXtensaState *env, bool runstall)
734 {
735     CPUState *cpu = CPU(xtensa_env_get_cpu(env));
736 
737     env->runstall = runstall;
738     cpu->halted = runstall;
739     if (runstall) {
740         cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
741     } else {
742         cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
743     }
744 }
745