xref: /openbmc/qemu/target/tricore/fpu_helper.c (revision a56de056)
1 /*
2  *  TriCore emulation for qemu: fpu helper.
3  *
4  *  Copyright (c) 2016 Bastian Koppelmann University of Paderborn
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "fpu/softfloat.h"
24 
25 #define QUIET_NAN 0x7fc00000
26 #define ADD_NAN   0x7fc00001
27 #define DIV_NAN   0x7fc00008
28 #define MUL_NAN   0x7fc00002
29 #define FPU_FS PSW_USB_C
30 #define FPU_FI PSW_USB_V
31 #define FPU_FV PSW_USB_SV
32 #define FPU_FZ PSW_USB_AV
33 #define FPU_FU PSW_USB_SAV
34 
35 /* we don't care about input_denormal */
36 static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
37 {
38     return get_float_exception_flags(&env->fp_status)
39            & (float_flag_invalid
40               | float_flag_overflow
41               | float_flag_underflow
42               | float_flag_output_denormal
43               | float_flag_divbyzero
44               | float_flag_inexact);
45 }
46 
47 static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
48                                            float32 arg3, float32 result,
49                                            uint32_t muladd_negate_c)
50 {
51     uint32_t aSign, bSign, cSign;
52     uint32_t aExp, bExp, cExp;
53 
54     if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
55         float32_is_any_nan(arg3)) {
56         return QUIET_NAN;
57     } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
58         return MUL_NAN;
59     } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
60         return MUL_NAN;
61     } else {
62         aSign = arg1 >> 31;
63         bSign = arg2 >> 31;
64         cSign = arg3 >> 31;
65 
66         aExp = (arg1 >> 23) & 0xff;
67         bExp = (arg2 >> 23) & 0xff;
68         cExp = (arg3 >> 23) & 0xff;
69 
70         if (muladd_negate_c) {
71             cSign ^= 1;
72         }
73         if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
74             if (aSign ^ bSign ^ cSign) {
75                 return ADD_NAN;
76             }
77         }
78     }
79 
80     return result;
81 }
82 
83 static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
84 {
85     uint8_t some_excp = 0;
86     set_float_exception_flags(0, &env->fp_status);
87 
88     if (flags & float_flag_invalid) {
89         env->FPU_FI = 1 << 31;
90         some_excp = 1;
91     }
92 
93     if (flags & float_flag_overflow) {
94         env->FPU_FV = 1 << 31;
95         some_excp = 1;
96     }
97 
98     if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
99         env->FPU_FU = 1 << 31;
100         some_excp = 1;
101     }
102 
103     if (flags & float_flag_divbyzero) {
104         env->FPU_FZ = 1 << 31;
105         some_excp = 1;
106     }
107 
108     if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
109         env->PSW |= 1 << 26;
110         some_excp = 1;
111     }
112 
113     env->FPU_FS = some_excp;
114 }
115 
116 #define FADD_SUB(op)                                                           \
117 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2)          \
118 {                                                                              \
119     float32 arg1 = make_float32(r1);                                           \
120     float32 arg2 = make_float32(r2);                                           \
121     uint32_t flags;                                                            \
122     float32 f_result;                                                          \
123                                                                                \
124     f_result = float32_##op(arg2, arg1, &env->fp_status);                      \
125     flags = f_get_excp_flags(env);                                             \
126     if (flags) {                                                               \
127         /* If the output is a NaN, but the inputs aren't,                      \
128            we return a unique value.  */                                       \
129         if ((flags & float_flag_invalid)                                       \
130             && !float32_is_any_nan(arg1)                                       \
131             && !float32_is_any_nan(arg2)) {                                    \
132             f_result = ADD_NAN;                                                \
133         }                                                                      \
134         f_update_psw_flags(env, flags);                                        \
135     } else {                                                                   \
136         env->FPU_FS = 0;                                                       \
137     }                                                                          \
138     return (uint32_t)f_result;                                                 \
139 }
140 FADD_SUB(add)
141 FADD_SUB(sub)
142 
143 uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
144 {
145     uint32_t flags;
146     float32 arg1 = make_float32(r1);
147     float32 arg2 = make_float32(r2);
148     float32 f_result;
149 
150     f_result = float32_mul(arg1, arg2, &env->fp_status);
151 
152     flags = f_get_excp_flags(env);
153     if (flags) {
154         /* If the output is a NaN, but the inputs aren't,
155            we return a unique value.  */
156         if ((flags & float_flag_invalid)
157             && !float32_is_any_nan(arg1)
158             && !float32_is_any_nan(arg2)) {
159                 f_result = MUL_NAN;
160         }
161         f_update_psw_flags(env, flags);
162     } else {
163         env->FPU_FS = 0;
164     }
165     return (uint32_t)f_result;
166 
167 }
168 
169 uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
170 {
171     uint32_t flags;
172     float32 arg1 = make_float32(r1);
173     float32 arg2 = make_float32(r2);
174     float32 f_result;
175 
176     f_result = float32_div(arg1, arg2 , &env->fp_status);
177 
178     flags = f_get_excp_flags(env);
179     if (flags) {
180         /* If the output is a NaN, but the inputs aren't,
181            we return a unique value.  */
182         if ((flags & float_flag_invalid)
183             && !float32_is_any_nan(arg1)
184             && !float32_is_any_nan(arg2)) {
185                 f_result = DIV_NAN;
186         }
187         f_update_psw_flags(env, flags);
188     } else {
189         env->FPU_FS = 0;
190     }
191 
192     return (uint32_t)f_result;
193 }
194 
195 uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
196                       uint32_t r2, uint32_t r3)
197 {
198     uint32_t flags;
199     float32 arg1 = make_float32(r1);
200     float32 arg2 = make_float32(r2);
201     float32 arg3 = make_float32(r3);
202     float32 f_result;
203 
204     f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
205 
206     flags = f_get_excp_flags(env);
207     if (flags) {
208         if (flags & float_flag_invalid) {
209             arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
210             arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
211             arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
212             f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
213         }
214         f_update_psw_flags(env, flags);
215     } else {
216         env->FPU_FS = 0;
217     }
218     return (uint32_t)f_result;
219 }
220 
221 uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
222                       uint32_t r2, uint32_t r3)
223 {
224     uint32_t flags;
225     float32 arg1 = make_float32(r1);
226     float32 arg2 = make_float32(r2);
227     float32 arg3 = make_float32(r3);
228     float32 f_result;
229 
230     f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
231                               &env->fp_status);
232 
233     flags = f_get_excp_flags(env);
234     if (flags) {
235         if (flags & float_flag_invalid) {
236             arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
237             arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
238             arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
239 
240             f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
241         }
242         f_update_psw_flags(env, flags);
243     } else {
244         env->FPU_FS = 0;
245     }
246     return (uint32_t)f_result;
247 }
248 
249 uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
250 {
251     uint32_t result, flags;
252     float32 arg1 = make_float32(r1);
253     float32 arg2 = make_float32(r2);
254 
255     set_flush_inputs_to_zero(0, &env->fp_status);
256 
257     result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
258     result |= float32_is_denormal(arg1) << 4;
259     result |= float32_is_denormal(arg2) << 5;
260 
261     flags = f_get_excp_flags(env);
262     if (flags) {
263         f_update_psw_flags(env, flags);
264     } else {
265         env->FPU_FS = 0;
266     }
267 
268     set_flush_inputs_to_zero(1, &env->fp_status);
269     return result;
270 }
271 
272 uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
273 {
274     float32 f_arg = make_float32(arg);
275     int32_t result, flags;
276 
277     result = float32_to_int32(f_arg, &env->fp_status);
278 
279     flags = f_get_excp_flags(env);
280     if (flags) {
281         if (float32_is_any_nan(f_arg)) {
282             result = 0;
283         }
284         f_update_psw_flags(env, flags);
285     } else {
286         env->FPU_FS = 0;
287     }
288     return (uint32_t)result;
289 }
290 
291 uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
292 {
293     float32 f_result;
294     uint32_t flags;
295     f_result = int32_to_float32(arg, &env->fp_status);
296 
297     flags = f_get_excp_flags(env);
298     if (flags) {
299         f_update_psw_flags(env, flags);
300     } else {
301         env->FPU_FS = 0;
302     }
303     return (uint32_t)f_result;
304 }
305 
306 uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
307 {
308     float32 f_arg = make_float32(arg);
309     uint32_t result;
310     int32_t flags;
311 
312     result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
313 
314     flags = f_get_excp_flags(env);
315     if (flags & float_flag_invalid) {
316         flags &= ~float_flag_inexact;
317         if (float32_is_any_nan(f_arg)) {
318             result = 0;
319         }
320     } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
321         flags = float_flag_invalid;
322         result = 0;
323     }
324 
325     if (flags) {
326         f_update_psw_flags(env, flags);
327     } else {
328         env->FPU_FS = 0;
329     }
330     return result;
331 }
332 
333 void helper_updfl(CPUTriCoreState *env, uint32_t arg)
334 {
335     env->FPU_FS =  extract32(arg, 7, 1) & extract32(arg, 15, 1);
336     env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
337     env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
338     env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
339     env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
340     /* clear FX and RM */
341     env->PSW &= ~(extract32(arg, 10, 1) << 26);
342     env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;
343 
344     fpu_set_state(env);
345 }
346