xref: /openbmc/qemu/target/sparc/mmu_helper.c (revision 500eb6db)
1 /*
2  *  Sparc MMU helpers
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
24 #include "trace.h"
25 
26 /* Sparc MMU emulation */
27 
28 #if defined(CONFIG_USER_ONLY)
29 
30 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
31                         MMUAccessType access_type, int mmu_idx,
32                         bool probe, uintptr_t retaddr)
33 {
34     SPARCCPU *cpu = SPARC_CPU(cs);
35     CPUSPARCState *env = &cpu->env;
36 
37     if (access_type == MMU_INST_FETCH) {
38         cs->exception_index = TT_TFAULT;
39     } else {
40         cs->exception_index = TT_DFAULT;
41 #ifdef TARGET_SPARC64
42         env->dmmu.mmuregs[4] = address;
43 #else
44         env->mmuregs[4] = address;
45 #endif
46     }
47     cpu_loop_exit_restore(cs, retaddr);
48 }
49 
50 #else
51 
52 #ifndef TARGET_SPARC64
53 /*
54  * Sparc V8 Reference MMU (SRMMU)
55  */
56 static const int access_table[8][8] = {
57     { 0, 0, 0, 0, 8, 0, 12, 12 },
58     { 0, 0, 0, 0, 8, 0, 0, 0 },
59     { 8, 8, 0, 0, 0, 8, 12, 12 },
60     { 8, 8, 0, 0, 0, 8, 0, 0 },
61     { 8, 0, 8, 0, 8, 8, 12, 12 },
62     { 8, 0, 8, 0, 8, 0, 8, 0 },
63     { 8, 8, 8, 0, 8, 8, 12, 12 },
64     { 8, 8, 8, 0, 8, 8, 8, 0 }
65 };
66 
67 static const int perm_table[2][8] = {
68     {
69         PAGE_READ,
70         PAGE_READ | PAGE_WRITE,
71         PAGE_READ | PAGE_EXEC,
72         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
73         PAGE_EXEC,
74         PAGE_READ | PAGE_WRITE,
75         PAGE_READ | PAGE_EXEC,
76         PAGE_READ | PAGE_WRITE | PAGE_EXEC
77     },
78     {
79         PAGE_READ,
80         PAGE_READ | PAGE_WRITE,
81         PAGE_READ | PAGE_EXEC,
82         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
83         PAGE_EXEC,
84         PAGE_READ,
85         0,
86         0,
87     }
88 };
89 
90 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
91                                 int *prot, int *access_index,
92                                 target_ulong address, int rw, int mmu_idx,
93                                 target_ulong *page_size)
94 {
95     int access_perms = 0;
96     hwaddr pde_ptr;
97     uint32_t pde;
98     int error_code = 0, is_dirty, is_user;
99     unsigned long page_offset;
100     CPUState *cs = env_cpu(env);
101 
102     is_user = mmu_idx == MMU_USER_IDX;
103 
104     if (mmu_idx == MMU_PHYS_IDX) {
105         *page_size = TARGET_PAGE_SIZE;
106         /* Boot mode: instruction fetches are taken from PROM */
107         if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
108             *physical = env->prom_addr | (address & 0x7ffffULL);
109             *prot = PAGE_READ | PAGE_EXEC;
110             return 0;
111         }
112         *physical = address;
113         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
114         return 0;
115     }
116 
117     *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
118     *physical = 0xffffffffffff0000ULL;
119 
120     /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
121     /* Context base + context number */
122     pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
123     pde = ldl_phys(cs->as, pde_ptr);
124 
125     /* Ctx pde */
126     switch (pde & PTE_ENTRYTYPE_MASK) {
127     default:
128     case 0: /* Invalid */
129         return 1 << 2;
130     case 2: /* L0 PTE, maybe should not happen? */
131     case 3: /* Reserved */
132         return 4 << 2;
133     case 1: /* L0 PDE */
134         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
135         pde = ldl_phys(cs->as, pde_ptr);
136 
137         switch (pde & PTE_ENTRYTYPE_MASK) {
138         default:
139         case 0: /* Invalid */
140             return (1 << 8) | (1 << 2);
141         case 3: /* Reserved */
142             return (1 << 8) | (4 << 2);
143         case 1: /* L1 PDE */
144             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
145             pde = ldl_phys(cs->as, pde_ptr);
146 
147             switch (pde & PTE_ENTRYTYPE_MASK) {
148             default:
149             case 0: /* Invalid */
150                 return (2 << 8) | (1 << 2);
151             case 3: /* Reserved */
152                 return (2 << 8) | (4 << 2);
153             case 1: /* L2 PDE */
154                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
155                 pde = ldl_phys(cs->as, pde_ptr);
156 
157                 switch (pde & PTE_ENTRYTYPE_MASK) {
158                 default:
159                 case 0: /* Invalid */
160                     return (3 << 8) | (1 << 2);
161                 case 1: /* PDE, should not happen */
162                 case 3: /* Reserved */
163                     return (3 << 8) | (4 << 2);
164                 case 2: /* L3 PTE */
165                     page_offset = 0;
166                 }
167                 *page_size = TARGET_PAGE_SIZE;
168                 break;
169             case 2: /* L2 PTE */
170                 page_offset = address & 0x3f000;
171                 *page_size = 0x40000;
172             }
173             break;
174         case 2: /* L1 PTE */
175             page_offset = address & 0xfff000;
176             *page_size = 0x1000000;
177         }
178     }
179 
180     /* check access */
181     access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
182     error_code = access_table[*access_index][access_perms];
183     if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
184         return error_code;
185     }
186 
187     /* update page modified and dirty bits */
188     is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
189     if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
190         pde |= PG_ACCESSED_MASK;
191         if (is_dirty) {
192             pde |= PG_MODIFIED_MASK;
193         }
194         stl_phys_notdirty(cs->as, pde_ptr, pde);
195     }
196 
197     /* the page can be put in the TLB */
198     *prot = perm_table[is_user][access_perms];
199     if (!(pde & PG_MODIFIED_MASK)) {
200         /* only set write access if already dirty... otherwise wait
201            for dirty access */
202         *prot &= ~PAGE_WRITE;
203     }
204 
205     /* Even if large ptes, we map only one 4KB page in the cache to
206        avoid filling it too fast */
207     *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
208     return error_code;
209 }
210 
211 /* Perform address translation */
212 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
213                         MMUAccessType access_type, int mmu_idx,
214                         bool probe, uintptr_t retaddr)
215 {
216     SPARCCPU *cpu = SPARC_CPU(cs);
217     CPUSPARCState *env = &cpu->env;
218     hwaddr paddr;
219     target_ulong vaddr;
220     target_ulong page_size;
221     int error_code = 0, prot, access_index;
222 
223     /*
224      * TODO: If we ever need tlb_vaddr_to_host for this target,
225      * then we must figure out how to manipulate FSR and FAR
226      * when both MMU_NF and probe are set.  In the meantime,
227      * do not support this use case.
228      */
229     assert(!probe);
230 
231     address &= TARGET_PAGE_MASK;
232     error_code = get_physical_address(env, &paddr, &prot, &access_index,
233                                       address, access_type,
234                                       mmu_idx, &page_size);
235     vaddr = address;
236     if (likely(error_code == 0)) {
237         qemu_log_mask(CPU_LOG_MMU,
238                       "Translate at %" VADDR_PRIx " -> "
239                       TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
240                       address, paddr, vaddr);
241         tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
242         return true;
243     }
244 
245     if (env->mmuregs[3]) { /* Fault status register */
246         env->mmuregs[3] = 1; /* overflow (not read before another fault) */
247     }
248     env->mmuregs[3] |= (access_index << 5) | error_code | 2;
249     env->mmuregs[4] = address; /* Fault address register */
250 
251     if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
252         /* No fault mode: if a mapping is available, just override
253            permissions. If no mapping is available, redirect accesses to
254            neverland. Fake/overridden mappings will be flushed when
255            switching to normal mode. */
256         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
257         tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
258         return true;
259     } else {
260         if (access_type == MMU_INST_FETCH) {
261             cs->exception_index = TT_TFAULT;
262         } else {
263             cs->exception_index = TT_DFAULT;
264         }
265         cpu_loop_exit_restore(cs, retaddr);
266     }
267 }
268 
269 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
270 {
271     CPUState *cs = env_cpu(env);
272     hwaddr pde_ptr;
273     uint32_t pde;
274 
275     /* Context base + context number */
276     pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
277         (env->mmuregs[2] << 2);
278     pde = ldl_phys(cs->as, pde_ptr);
279 
280     switch (pde & PTE_ENTRYTYPE_MASK) {
281     default:
282     case 0: /* Invalid */
283     case 2: /* PTE, maybe should not happen? */
284     case 3: /* Reserved */
285         return 0;
286     case 1: /* L1 PDE */
287         if (mmulev == 3) {
288             return pde;
289         }
290         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
291         pde = ldl_phys(cs->as, pde_ptr);
292 
293         switch (pde & PTE_ENTRYTYPE_MASK) {
294         default:
295         case 0: /* Invalid */
296         case 3: /* Reserved */
297             return 0;
298         case 2: /* L1 PTE */
299             return pde;
300         case 1: /* L2 PDE */
301             if (mmulev == 2) {
302                 return pde;
303             }
304             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
305             pde = ldl_phys(cs->as, pde_ptr);
306 
307             switch (pde & PTE_ENTRYTYPE_MASK) {
308             default:
309             case 0: /* Invalid */
310             case 3: /* Reserved */
311                 return 0;
312             case 2: /* L2 PTE */
313                 return pde;
314             case 1: /* L3 PDE */
315                 if (mmulev == 1) {
316                     return pde;
317                 }
318                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
319                 pde = ldl_phys(cs->as, pde_ptr);
320 
321                 switch (pde & PTE_ENTRYTYPE_MASK) {
322                 default:
323                 case 0: /* Invalid */
324                 case 1: /* PDE, should not happen */
325                 case 3: /* Reserved */
326                     return 0;
327                 case 2: /* L3 PTE */
328                     return pde;
329                 }
330             }
331         }
332     }
333     return 0;
334 }
335 
336 void dump_mmu(CPUSPARCState *env)
337 {
338     CPUState *cs = env_cpu(env);
339     target_ulong va, va1, va2;
340     unsigned int n, m, o;
341     hwaddr pde_ptr, pa;
342     uint32_t pde;
343 
344     pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
345     pde = ldl_phys(cs->as, pde_ptr);
346     qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
347                 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
348     for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
349         pde = mmu_probe(env, va, 2);
350         if (pde) {
351             pa = cpu_get_phys_page_debug(cs, va);
352             qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
353                         " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
354             for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
355                 pde = mmu_probe(env, va1, 1);
356                 if (pde) {
357                     pa = cpu_get_phys_page_debug(cs, va1);
358                     qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
359                                 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
360                                 va1, pa, pde);
361                     for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
362                         pde = mmu_probe(env, va2, 0);
363                         if (pde) {
364                             pa = cpu_get_phys_page_debug(cs, va2);
365                             qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
366                                         TARGET_FMT_plx " PTE: "
367                                         TARGET_FMT_lx "\n",
368                                         va2, pa, pde);
369                         }
370                     }
371                 }
372             }
373         }
374     }
375 }
376 
377 /* Gdb expects all registers windows to be flushed in ram. This function handles
378  * reads (and only reads) in stack frames as if windows were flushed. We assume
379  * that the sparc ABI is followed.
380  */
381 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
382                               uint8_t *buf, int len, bool is_write)
383 {
384     SPARCCPU *cpu = SPARC_CPU(cs);
385     CPUSPARCState *env = &cpu->env;
386     target_ulong addr = address;
387     int i;
388     int len1;
389     int cwp = env->cwp;
390 
391     if (!is_write) {
392         for (i = 0; i < env->nwindows; i++) {
393             int off;
394             target_ulong fp = env->regbase[cwp * 16 + 22];
395 
396             /* Assume fp == 0 means end of frame.  */
397             if (fp == 0) {
398                 break;
399             }
400 
401             cwp = cpu_cwp_inc(env, cwp + 1);
402 
403             /* Invalid window ? */
404             if (env->wim & (1 << cwp)) {
405                 break;
406             }
407 
408             /* According to the ABI, the stack is growing downward.  */
409             if (addr + len < fp) {
410                 break;
411             }
412 
413             /* Not in this frame.  */
414             if (addr > fp + 64) {
415                 continue;
416             }
417 
418             /* Handle access before this window.  */
419             if (addr < fp) {
420                 len1 = fp - addr;
421                 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
422                     return -1;
423                 }
424                 addr += len1;
425                 len -= len1;
426                 buf += len1;
427             }
428 
429             /* Access byte per byte to registers. Not very efficient but speed
430              * is not critical.
431              */
432             off = addr - fp;
433             len1 = 64 - off;
434 
435             if (len1 > len) {
436                 len1 = len;
437             }
438 
439             for (; len1; len1--) {
440                 int reg = cwp * 16 + 8 + (off >> 2);
441                 union {
442                     uint32_t v;
443                     uint8_t c[4];
444                 } u;
445                 u.v = cpu_to_be32(env->regbase[reg]);
446                 *buf++ = u.c[off & 3];
447                 addr++;
448                 len--;
449                 off++;
450             }
451 
452             if (len == 0) {
453                 return 0;
454             }
455         }
456     }
457     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
458 }
459 
460 #else /* !TARGET_SPARC64 */
461 
462 /* 41 bit physical address space */
463 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
464 {
465     return x & 0x1ffffffffffULL;
466 }
467 
468 /*
469  * UltraSparc IIi I/DMMUs
470  */
471 
472 /* Returns true if TTE tag is valid and matches virtual address value
473    in context requires virtual address mask value calculated from TTE
474    entry size */
475 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
476                                        uint64_t address, uint64_t context,
477                                        hwaddr *physical)
478 {
479     uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
480 
481     /* valid, context match, virtual address match? */
482     if (TTE_IS_VALID(tlb->tte) &&
483         (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
484         && compare_masked(address, tlb->tag, mask)) {
485         /* decode physical address */
486         *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
487         return 1;
488     }
489 
490     return 0;
491 }
492 
493 static int get_physical_address_data(CPUSPARCState *env,
494                                      hwaddr *physical, int *prot,
495                                      target_ulong address, int rw, int mmu_idx)
496 {
497     CPUState *cs = env_cpu(env);
498     unsigned int i;
499     uint64_t context;
500     uint64_t sfsr = 0;
501     bool is_user = false;
502 
503     switch (mmu_idx) {
504     case MMU_PHYS_IDX:
505         g_assert_not_reached();
506     case MMU_USER_IDX:
507         is_user = true;
508         /* fallthru */
509     case MMU_KERNEL_IDX:
510         context = env->dmmu.mmu_primary_context & 0x1fff;
511         sfsr |= SFSR_CT_PRIMARY;
512         break;
513     case MMU_USER_SECONDARY_IDX:
514         is_user = true;
515         /* fallthru */
516     case MMU_KERNEL_SECONDARY_IDX:
517         context = env->dmmu.mmu_secondary_context & 0x1fff;
518         sfsr |= SFSR_CT_SECONDARY;
519         break;
520     case MMU_NUCLEUS_IDX:
521         sfsr |= SFSR_CT_NUCLEUS;
522         /* FALLTHRU */
523     default:
524         context = 0;
525         break;
526     }
527 
528     if (rw == 1) {
529         sfsr |= SFSR_WRITE_BIT;
530     } else if (rw == 4) {
531         sfsr |= SFSR_NF_BIT;
532     }
533 
534     for (i = 0; i < 64; i++) {
535         /* ctx match, vaddr match, valid? */
536         if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
537             int do_fault = 0;
538 
539             /* access ok? */
540             /* multiple bits in SFSR.FT may be set on TT_DFAULT */
541             if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
542                 do_fault = 1;
543                 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
544                 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
545             }
546             if (rw == 4) {
547                 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
548                     do_fault = 1;
549                     sfsr |= SFSR_FT_NF_E_BIT;
550                 }
551             } else {
552                 if (TTE_IS_NFO(env->dtlb[i].tte)) {
553                     do_fault = 1;
554                     sfsr |= SFSR_FT_NFO_BIT;
555                 }
556             }
557 
558             if (do_fault) {
559                 /* faults above are reported with TT_DFAULT. */
560                 cs->exception_index = TT_DFAULT;
561             } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
562                 do_fault = 1;
563                 cs->exception_index = TT_DPROT;
564 
565                 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
566             }
567 
568             if (!do_fault) {
569                 *prot = PAGE_READ;
570                 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
571                     *prot |= PAGE_WRITE;
572                 }
573 
574                 TTE_SET_USED(env->dtlb[i].tte);
575 
576                 return 0;
577             }
578 
579             if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
580                 sfsr |= SFSR_OW_BIT; /* overflow (not read before
581                                         another fault) */
582             }
583 
584             if (env->pstate & PS_PRIV) {
585                 sfsr |= SFSR_PR_BIT;
586             }
587 
588             /* FIXME: ASI field in SFSR must be set */
589             env->dmmu.sfsr = sfsr | SFSR_VALID_BIT;
590 
591             env->dmmu.sfar = address; /* Fault address register */
592 
593             env->dmmu.tag_access = (address & ~0x1fffULL) | context;
594 
595             return 1;
596         }
597     }
598 
599     trace_mmu_helper_dmiss(address, context);
600 
601     /*
602      * On MMU misses:
603      * - UltraSPARC IIi: SFSR and SFAR unmodified
604      * - JPS1: SFAR updated and some fields of SFSR updated
605      */
606     env->dmmu.tag_access = (address & ~0x1fffULL) | context;
607     cs->exception_index = TT_DMISS;
608     return 1;
609 }
610 
611 static int get_physical_address_code(CPUSPARCState *env,
612                                      hwaddr *physical, int *prot,
613                                      target_ulong address, int mmu_idx)
614 {
615     CPUState *cs = env_cpu(env);
616     unsigned int i;
617     uint64_t context;
618     bool is_user = false;
619 
620     switch (mmu_idx) {
621     case MMU_PHYS_IDX:
622     case MMU_USER_SECONDARY_IDX:
623     case MMU_KERNEL_SECONDARY_IDX:
624         g_assert_not_reached();
625     case MMU_USER_IDX:
626         is_user = true;
627         /* fallthru */
628     case MMU_KERNEL_IDX:
629         context = env->dmmu.mmu_primary_context & 0x1fff;
630         break;
631     default:
632         context = 0;
633         break;
634     }
635 
636     if (env->tl == 0) {
637         /* PRIMARY context */
638         context = env->dmmu.mmu_primary_context & 0x1fff;
639     } else {
640         /* NUCLEUS context */
641         context = 0;
642     }
643 
644     for (i = 0; i < 64; i++) {
645         /* ctx match, vaddr match, valid? */
646         if (ultrasparc_tag_match(&env->itlb[i],
647                                  address, context, physical)) {
648             /* access ok? */
649             if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
650                 /* Fault status register */
651                 if (env->immu.sfsr & SFSR_VALID_BIT) {
652                     env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
653                                                      another fault) */
654                 } else {
655                     env->immu.sfsr = 0;
656                 }
657                 if (env->pstate & PS_PRIV) {
658                     env->immu.sfsr |= SFSR_PR_BIT;
659                 }
660                 if (env->tl > 0) {
661                     env->immu.sfsr |= SFSR_CT_NUCLEUS;
662                 }
663 
664                 /* FIXME: ASI field in SFSR must be set */
665                 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
666                 cs->exception_index = TT_TFAULT;
667 
668                 env->immu.tag_access = (address & ~0x1fffULL) | context;
669 
670                 trace_mmu_helper_tfault(address, context);
671 
672                 return 1;
673             }
674             *prot = PAGE_EXEC;
675             TTE_SET_USED(env->itlb[i].tte);
676             return 0;
677         }
678     }
679 
680     trace_mmu_helper_tmiss(address, context);
681 
682     /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
683     env->immu.tag_access = (address & ~0x1fffULL) | context;
684     cs->exception_index = TT_TMISS;
685     return 1;
686 }
687 
688 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
689                                 int *prot, int *access_index,
690                                 target_ulong address, int rw, int mmu_idx,
691                                 target_ulong *page_size)
692 {
693     /* ??? We treat everything as a small page, then explicitly flush
694        everything when an entry is evicted.  */
695     *page_size = TARGET_PAGE_SIZE;
696 
697     /* safety net to catch wrong softmmu index use from dynamic code */
698     if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
699         if (rw == 2) {
700             trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
701                                                 env->dmmu.mmu_primary_context,
702                                                 env->dmmu.mmu_secondary_context,
703                                                 address);
704         } else {
705             trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
706                                                 env->dmmu.mmu_primary_context,
707                                                 env->dmmu.mmu_secondary_context,
708                                                 address);
709         }
710     }
711 
712     if (mmu_idx == MMU_PHYS_IDX) {
713         *physical = ultrasparc_truncate_physical(address);
714         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
715         return 0;
716     }
717 
718     if (rw == 2) {
719         return get_physical_address_code(env, physical, prot, address,
720                                          mmu_idx);
721     } else {
722         return get_physical_address_data(env, physical, prot, address, rw,
723                                          mmu_idx);
724     }
725 }
726 
727 /* Perform address translation */
728 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
729                         MMUAccessType access_type, int mmu_idx,
730                         bool probe, uintptr_t retaddr)
731 {
732     SPARCCPU *cpu = SPARC_CPU(cs);
733     CPUSPARCState *env = &cpu->env;
734     target_ulong vaddr;
735     hwaddr paddr;
736     target_ulong page_size;
737     int error_code = 0, prot, access_index;
738 
739     address &= TARGET_PAGE_MASK;
740     error_code = get_physical_address(env, &paddr, &prot, &access_index,
741                                       address, access_type,
742                                       mmu_idx, &page_size);
743     if (likely(error_code == 0)) {
744         vaddr = address;
745 
746         trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
747                                    env->dmmu.mmu_primary_context,
748                                    env->dmmu.mmu_secondary_context);
749 
750         tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
751         return true;
752     }
753     if (probe) {
754         return false;
755     }
756     cpu_loop_exit_restore(cs, retaddr);
757 }
758 
759 void dump_mmu(CPUSPARCState *env)
760 {
761     unsigned int i;
762     const char *mask;
763 
764     qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
765                 PRId64 "\n",
766                 env->dmmu.mmu_primary_context,
767                 env->dmmu.mmu_secondary_context);
768     qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
769                 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
770     if ((env->lsu & DMMU_E) == 0) {
771         qemu_printf("DMMU disabled\n");
772     } else {
773         qemu_printf("DMMU dump\n");
774         for (i = 0; i < 64; i++) {
775             switch (TTE_PGSIZE(env->dtlb[i].tte)) {
776             default:
777             case 0x0:
778                 mask = "  8k";
779                 break;
780             case 0x1:
781                 mask = " 64k";
782                 break;
783             case 0x2:
784                 mask = "512k";
785                 break;
786             case 0x3:
787                 mask = "  4M";
788                 break;
789             }
790             if (TTE_IS_VALID(env->dtlb[i].tte)) {
791                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
792                             ", %s, %s, %s, %s, ctx %" PRId64 " %s\n",
793                             i,
794                             env->dtlb[i].tag & (uint64_t)~0x1fffULL,
795                             TTE_PA(env->dtlb[i].tte),
796                             mask,
797                             TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
798                             TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
799                             TTE_IS_LOCKED(env->dtlb[i].tte) ?
800                             "locked" : "unlocked",
801                             env->dtlb[i].tag & (uint64_t)0x1fffULL,
802                             TTE_IS_GLOBAL(env->dtlb[i].tte) ?
803                             "global" : "local");
804             }
805         }
806     }
807     if ((env->lsu & IMMU_E) == 0) {
808         qemu_printf("IMMU disabled\n");
809     } else {
810         qemu_printf("IMMU dump\n");
811         for (i = 0; i < 64; i++) {
812             switch (TTE_PGSIZE(env->itlb[i].tte)) {
813             default:
814             case 0x0:
815                 mask = "  8k";
816                 break;
817             case 0x1:
818                 mask = " 64k";
819                 break;
820             case 0x2:
821                 mask = "512k";
822                 break;
823             case 0x3:
824                 mask = "  4M";
825                 break;
826             }
827             if (TTE_IS_VALID(env->itlb[i].tte)) {
828                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
829                             ", %s, %s, %s, ctx %" PRId64 " %s\n",
830                             i,
831                             env->itlb[i].tag & (uint64_t)~0x1fffULL,
832                             TTE_PA(env->itlb[i].tte),
833                             mask,
834                             TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
835                             TTE_IS_LOCKED(env->itlb[i].tte) ?
836                             "locked" : "unlocked",
837                             env->itlb[i].tag & (uint64_t)0x1fffULL,
838                             TTE_IS_GLOBAL(env->itlb[i].tte) ?
839                             "global" : "local");
840             }
841         }
842     }
843 }
844 
845 #endif /* TARGET_SPARC64 */
846 
847 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
848                                    target_ulong addr, int rw, int mmu_idx)
849 {
850     target_ulong page_size;
851     int prot, access_index;
852 
853     return get_physical_address(env, phys, &prot, &access_index, addr, rw,
854                                 mmu_idx, &page_size);
855 }
856 
857 #if defined(TARGET_SPARC64)
858 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
859                                            int mmu_idx)
860 {
861     hwaddr phys_addr;
862 
863     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
864         return -1;
865     }
866     return phys_addr;
867 }
868 #endif
869 
870 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
871 {
872     SPARCCPU *cpu = SPARC_CPU(cs);
873     CPUSPARCState *env = &cpu->env;
874     hwaddr phys_addr;
875     int mmu_idx = cpu_mmu_index(env, false);
876 
877     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
878         if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
879             return -1;
880         }
881     }
882     return phys_addr;
883 }
884 #endif
885