xref: /openbmc/qemu/target/sparc/mmu_helper.c (revision 22a7c2f239229b2ee9fcbac03cb598d9aebb9196)
1 /*
2  *  Sparc MMU helpers
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/cputlb.h"
24 #include "accel/tcg/cpu-mmu-index.h"
25 #include "exec/page-protection.h"
26 #include "exec/tlb-flags.h"
27 #include "system/memory.h"
28 #include "qemu/qemu-print.h"
29 #include "trace.h"
30 
31 /* Sparc MMU emulation */
32 
33 #ifndef TARGET_SPARC64
34 /*
35  * Sparc V8 Reference MMU (SRMMU)
36  */
37 static const int access_table[8][8] = {
38     { 0, 0, 0, 0, 8, 0, 12, 12 },
39     { 0, 0, 0, 0, 8, 0, 0, 0 },
40     { 8, 8, 0, 0, 0, 8, 12, 12 },
41     { 8, 8, 0, 0, 0, 8, 0, 0 },
42     { 8, 0, 8, 0, 8, 8, 12, 12 },
43     { 8, 0, 8, 0, 8, 0, 8, 0 },
44     { 8, 8, 8, 0, 8, 8, 12, 12 },
45     { 8, 8, 8, 0, 8, 8, 8, 0 }
46 };
47 
48 static const int perm_table[2][8] = {
49     {
50         PAGE_READ,
51         PAGE_READ | PAGE_WRITE,
52         PAGE_READ | PAGE_EXEC,
53         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
54         PAGE_EXEC,
55         PAGE_READ | PAGE_WRITE,
56         PAGE_READ | PAGE_EXEC,
57         PAGE_READ | PAGE_WRITE | PAGE_EXEC
58     },
59     {
60         PAGE_READ,
61         PAGE_READ | PAGE_WRITE,
62         PAGE_READ | PAGE_EXEC,
63         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
64         PAGE_EXEC,
65         PAGE_READ,
66         0,
67         0,
68     }
69 };
70 
71 static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
72                                 int *access_index, target_ulong address,
73                                 int rw, int mmu_idx)
74 {
75     int access_perms = 0;
76     hwaddr pde_ptr;
77     uint32_t pde;
78     int error_code = 0, is_dirty, is_user;
79     unsigned long page_offset;
80     CPUState *cs = env_cpu(env);
81     MemTxResult result;
82 
83     is_user = mmu_idx == MMU_USER_IDX;
84 
85     if (mmu_idx == MMU_PHYS_IDX) {
86         full->lg_page_size = TARGET_PAGE_BITS;
87         /* Boot mode: instruction fetches are taken from PROM */
88         if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
89             full->phys_addr = env->prom_addr | (address & 0x7ffffULL);
90             full->prot = PAGE_READ | PAGE_EXEC;
91             return 0;
92         }
93         full->phys_addr = address;
94         full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
95         return 0;
96     }
97 
98     *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
99     full->phys_addr = 0xffffffffffff0000ULL;
100 
101     /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
102     /* Context base + context number */
103     pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
104     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
105     if (result != MEMTX_OK) {
106         return 4 << 2; /* Translation fault, L = 0 */
107     }
108 
109     /* Ctx pde */
110     switch (pde & PTE_ENTRYTYPE_MASK) {
111     default:
112     case 0: /* Invalid */
113         return 1 << 2;
114     case 2: /* L0 PTE, maybe should not happen? */
115     case 3: /* Reserved */
116         return 4 << 2;
117     case 1: /* L0 PDE */
118         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
119         pde = address_space_ldl(cs->as, pde_ptr,
120                                 MEMTXATTRS_UNSPECIFIED, &result);
121         if (result != MEMTX_OK) {
122             return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
123         }
124 
125         switch (pde & PTE_ENTRYTYPE_MASK) {
126         default:
127         case 0: /* Invalid */
128             return (1 << 8) | (1 << 2);
129         case 3: /* Reserved */
130             return (1 << 8) | (4 << 2);
131         case 1: /* L1 PDE */
132             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
133             pde = address_space_ldl(cs->as, pde_ptr,
134                                     MEMTXATTRS_UNSPECIFIED, &result);
135             if (result != MEMTX_OK) {
136                 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
137             }
138 
139             switch (pde & PTE_ENTRYTYPE_MASK) {
140             default:
141             case 0: /* Invalid */
142                 return (2 << 8) | (1 << 2);
143             case 3: /* Reserved */
144                 return (2 << 8) | (4 << 2);
145             case 1: /* L2 PDE */
146                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
147                 pde = address_space_ldl(cs->as, pde_ptr,
148                                         MEMTXATTRS_UNSPECIFIED, &result);
149                 if (result != MEMTX_OK) {
150                     return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
151                 }
152 
153                 switch (pde & PTE_ENTRYTYPE_MASK) {
154                 default:
155                 case 0: /* Invalid */
156                     return (3 << 8) | (1 << 2);
157                 case 1: /* PDE, should not happen */
158                 case 3: /* Reserved */
159                     return (3 << 8) | (4 << 2);
160                 case 2: /* L3 PTE */
161                     page_offset = 0;
162                 }
163                 full->lg_page_size = TARGET_PAGE_BITS;
164                 break;
165             case 2: /* L2 PTE */
166                 page_offset = address & 0x3f000;
167                 full->lg_page_size = 18;
168             }
169             break;
170         case 2: /* L1 PTE */
171             page_offset = address & 0xfff000;
172             full->lg_page_size = 24;
173             break;
174         }
175     }
176 
177     /* check access */
178     access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
179     error_code = access_table[*access_index][access_perms];
180     if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
181         return error_code;
182     }
183 
184     /* update page modified and dirty bits */
185     is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
186     if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
187         pde |= PG_ACCESSED_MASK;
188         if (is_dirty) {
189             pde |= PG_MODIFIED_MASK;
190         }
191         stl_phys_notdirty(cs->as, pde_ptr, pde);
192     }
193 
194     /* the page can be put in the TLB */
195     full->prot = perm_table[is_user][access_perms];
196     if (!(pde & PG_MODIFIED_MASK)) {
197         /* only set write access if already dirty... otherwise wait
198            for dirty access */
199         full->prot &= ~PAGE_WRITE;
200     }
201 
202     /* Even if large ptes, we map only one 4KB page in the cache to
203        avoid filling it too fast */
204     full->phys_addr = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
205     return error_code;
206 }
207 
208 /* Perform address translation */
209 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
210                         MMUAccessType access_type, int mmu_idx,
211                         bool probe, uintptr_t retaddr)
212 {
213     CPUSPARCState *env = cpu_env(cs);
214     CPUTLBEntryFull full = {};
215     target_ulong vaddr;
216     int error_code = 0, access_index;
217 
218     /*
219      * TODO: If we ever need tlb_vaddr_to_host for this target,
220      * then we must figure out how to manipulate FSR and FAR
221      * when both MMU_NF and probe are set.  In the meantime,
222      * do not support this use case.
223      */
224     assert(!probe);
225 
226     address &= TARGET_PAGE_MASK;
227     error_code = get_physical_address(env, &full, &access_index,
228                                       address, access_type, mmu_idx);
229     vaddr = address;
230     if (likely(error_code == 0)) {
231         qemu_log_mask(CPU_LOG_MMU,
232                       "Translate at %" VADDR_PRIx " -> "
233                       HWADDR_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
234                       address, full.phys_addr, vaddr);
235         tlb_set_page_full(cs, mmu_idx, vaddr, &full);
236         return true;
237     }
238 
239     if (env->mmuregs[3]) { /* Fault status register */
240         env->mmuregs[3] = 1; /* overflow (not read before another fault) */
241     }
242     env->mmuregs[3] |= (access_index << 5) | error_code | 2;
243     env->mmuregs[4] = address; /* Fault address register */
244 
245     if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
246         /* No fault mode: if a mapping is available, just override
247            permissions. If no mapping is available, redirect accesses to
248            neverland. Fake/overridden mappings will be flushed when
249            switching to normal mode. */
250         full.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
251         tlb_set_page_full(cs, mmu_idx, vaddr, &full);
252         return true;
253     } else {
254         if (access_type == MMU_INST_FETCH) {
255             cs->exception_index = TT_TFAULT;
256         } else {
257             cs->exception_index = TT_DFAULT;
258         }
259         cpu_loop_exit_restore(cs, retaddr);
260     }
261 }
262 
263 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
264 {
265     CPUState *cs = env_cpu(env);
266     hwaddr pde_ptr;
267     uint32_t pde;
268     MemTxResult result;
269 
270     /*
271      * TODO: MMU probe operations are supposed to set the fault
272      * status registers, but we don't do this.
273      */
274 
275     /* Context base + context number */
276     pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
277         (env->mmuregs[2] << 2);
278     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
279     if (result != MEMTX_OK) {
280         return 0;
281     }
282 
283     switch (pde & PTE_ENTRYTYPE_MASK) {
284     default:
285     case 0: /* Invalid */
286     case 2: /* PTE, maybe should not happen? */
287     case 3: /* Reserved */
288         return 0;
289     case 1: /* L1 PDE */
290         if (mmulev == 3) {
291             return pde;
292         }
293         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
294         pde = address_space_ldl(cs->as, pde_ptr,
295                                 MEMTXATTRS_UNSPECIFIED, &result);
296         if (result != MEMTX_OK) {
297             return 0;
298         }
299 
300         switch (pde & PTE_ENTRYTYPE_MASK) {
301         default:
302         case 0: /* Invalid */
303         case 3: /* Reserved */
304             return 0;
305         case 2: /* L1 PTE */
306             return pde;
307         case 1: /* L2 PDE */
308             if (mmulev == 2) {
309                 return pde;
310             }
311             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
312             pde = address_space_ldl(cs->as, pde_ptr,
313                                     MEMTXATTRS_UNSPECIFIED, &result);
314             if (result != MEMTX_OK) {
315                 return 0;
316             }
317 
318             switch (pde & PTE_ENTRYTYPE_MASK) {
319             default:
320             case 0: /* Invalid */
321             case 3: /* Reserved */
322                 return 0;
323             case 2: /* L2 PTE */
324                 return pde;
325             case 1: /* L3 PDE */
326                 if (mmulev == 1) {
327                     return pde;
328                 }
329                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
330                 pde = address_space_ldl(cs->as, pde_ptr,
331                                         MEMTXATTRS_UNSPECIFIED, &result);
332                 if (result != MEMTX_OK) {
333                     return 0;
334                 }
335 
336                 switch (pde & PTE_ENTRYTYPE_MASK) {
337                 default:
338                 case 0: /* Invalid */
339                 case 1: /* PDE, should not happen */
340                 case 3: /* Reserved */
341                     return 0;
342                 case 2: /* L3 PTE */
343                     return pde;
344                 }
345             }
346         }
347     }
348     return 0;
349 }
350 
351 void dump_mmu(CPUSPARCState *env)
352 {
353     CPUState *cs = env_cpu(env);
354     target_ulong va, va1, va2;
355     unsigned int n, m, o;
356     hwaddr pa;
357     uint32_t pde;
358 
359     qemu_printf("Root ptr: " HWADDR_FMT_plx ", ctx: %d\n",
360                 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
361     for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
362         pde = mmu_probe(env, va, 2);
363         if (pde) {
364             pa = cpu_get_phys_page_debug(cs, va);
365             qemu_printf("VA: " TARGET_FMT_lx ", PA: " HWADDR_FMT_plx
366                         " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
367             for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
368                 pde = mmu_probe(env, va1, 1);
369                 if (pde) {
370                     pa = cpu_get_phys_page_debug(cs, va1);
371                     qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
372                                 HWADDR_FMT_plx " PDE: " TARGET_FMT_lx "\n",
373                                 va1, pa, pde);
374                     for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
375                         pde = mmu_probe(env, va2, 0);
376                         if (pde) {
377                             pa = cpu_get_phys_page_debug(cs, va2);
378                             qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
379                                         HWADDR_FMT_plx " PTE: "
380                                         TARGET_FMT_lx "\n",
381                                         va2, pa, pde);
382                         }
383                     }
384                 }
385             }
386         }
387     }
388 }
389 
390 /* Gdb expects all registers windows to be flushed in ram. This function handles
391  * reads (and only reads) in stack frames as if windows were flushed. We assume
392  * that the sparc ABI is followed.
393  */
394 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
395                               uint8_t *buf, size_t len, bool is_write)
396 {
397     CPUSPARCState *env = cpu_env(cs);
398     target_ulong addr = address;
399     int i;
400     int len1;
401     int cwp = env->cwp;
402 
403     if (!is_write) {
404         for (i = 0; i < env->nwindows; i++) {
405             int off;
406             target_ulong fp = env->regbase[cwp * 16 + 22];
407 
408             /* Assume fp == 0 means end of frame.  */
409             if (fp == 0) {
410                 break;
411             }
412 
413             cwp = cpu_cwp_inc(env, cwp + 1);
414 
415             /* Invalid window ? */
416             if (env->wim & (1 << cwp)) {
417                 break;
418             }
419 
420             /* According to the ABI, the stack is growing downward.  */
421             if (addr + len < fp) {
422                 break;
423             }
424 
425             /* Not in this frame.  */
426             if (addr > fp + 64) {
427                 continue;
428             }
429 
430             /* Handle access before this window.  */
431             if (addr < fp) {
432                 len1 = fp - addr;
433                 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
434                     return -1;
435                 }
436                 addr += len1;
437                 len -= len1;
438                 buf += len1;
439             }
440 
441             /* Access byte per byte to registers. Not very efficient but speed
442              * is not critical.
443              */
444             off = addr - fp;
445             len1 = 64 - off;
446 
447             if (len1 > len) {
448                 len1 = len;
449             }
450 
451             for (; len1; len1--) {
452                 int reg = cwp * 16 + 8 + (off >> 2);
453                 union {
454                     uint32_t v;
455                     uint8_t c[4];
456                 } u;
457                 u.v = cpu_to_be32(env->regbase[reg]);
458                 *buf++ = u.c[off & 3];
459                 addr++;
460                 len--;
461                 off++;
462             }
463 
464             if (len == 0) {
465                 return 0;
466             }
467         }
468     }
469     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
470 }
471 
472 #else /* !TARGET_SPARC64 */
473 
474 /* 41 bit physical address space */
475 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
476 {
477     return x & 0x1ffffffffffULL;
478 }
479 
480 /*
481  * UltraSparc IIi I/DMMUs
482  */
483 
484 /* Returns true if TTE tag is valid and matches virtual address value
485    in context requires virtual address mask value calculated from TTE
486    entry size */
487 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
488                                        uint64_t address, uint64_t context,
489                                        hwaddr *physical)
490 {
491     uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
492 
493     /* valid, context match, virtual address match? */
494     if (TTE_IS_VALID(tlb->tte) &&
495         (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
496         && compare_masked(address, tlb->tag, mask)) {
497         /* decode physical address */
498         *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
499         return 1;
500     }
501 
502     return 0;
503 }
504 
505 static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
506 {
507     uint64_t sfsr = SFSR_VALID_BIT;
508 
509     switch (mmu_idx) {
510     case MMU_PHYS_IDX:
511         sfsr |= SFSR_CT_NOTRANS;
512         break;
513     case MMU_USER_IDX:
514     case MMU_KERNEL_IDX:
515         sfsr |= SFSR_CT_PRIMARY;
516         break;
517     case MMU_USER_SECONDARY_IDX:
518     case MMU_KERNEL_SECONDARY_IDX:
519         sfsr |= SFSR_CT_SECONDARY;
520         break;
521     case MMU_NUCLEUS_IDX:
522         sfsr |= SFSR_CT_NUCLEUS;
523         break;
524     default:
525         g_assert_not_reached();
526     }
527 
528     if (rw == 1) {
529         sfsr |= SFSR_WRITE_BIT;
530     } else if (rw == 4) {
531         sfsr |= SFSR_NF_BIT;
532     }
533 
534     if (env->pstate & PS_PRIV) {
535         sfsr |= SFSR_PR_BIT;
536     }
537 
538     if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
539         sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
540     }
541 
542     /* FIXME: ASI field in SFSR must be set */
543 
544     return sfsr;
545 }
546 
547 static int get_physical_address_data(CPUSPARCState *env, CPUTLBEntryFull *full,
548                                      target_ulong address, int rw, int mmu_idx)
549 {
550     CPUState *cs = env_cpu(env);
551     unsigned int i;
552     uint64_t sfsr;
553     uint64_t context;
554     bool is_user = false;
555 
556     sfsr = build_sfsr(env, mmu_idx, rw);
557 
558     switch (mmu_idx) {
559     case MMU_PHYS_IDX:
560         g_assert_not_reached();
561     case MMU_USER_IDX:
562         is_user = true;
563         /* fallthru */
564     case MMU_KERNEL_IDX:
565         context = env->dmmu.mmu_primary_context & 0x1fff;
566         break;
567     case MMU_USER_SECONDARY_IDX:
568         is_user = true;
569         /* fallthru */
570     case MMU_KERNEL_SECONDARY_IDX:
571         context = env->dmmu.mmu_secondary_context & 0x1fff;
572         break;
573     default:
574         context = 0;
575         break;
576     }
577 
578     for (i = 0; i < 64; i++) {
579         /* ctx match, vaddr match, valid? */
580         if (ultrasparc_tag_match(&env->dtlb[i], address, context,
581                                  &full->phys_addr)) {
582             int do_fault = 0;
583 
584             if (TTE_IS_IE(env->dtlb[i].tte)) {
585                 full->tlb_fill_flags |= TLB_BSWAP;
586             }
587 
588             /* access ok? */
589             /* multiple bits in SFSR.FT may be set on TT_DFAULT */
590             if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
591                 do_fault = 1;
592                 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
593                 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
594             }
595             if (rw == 4) {
596                 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
597                     do_fault = 1;
598                     sfsr |= SFSR_FT_NF_E_BIT;
599                 }
600             } else {
601                 if (TTE_IS_NFO(env->dtlb[i].tte)) {
602                     do_fault = 1;
603                     sfsr |= SFSR_FT_NFO_BIT;
604                 }
605             }
606 
607             if (do_fault) {
608                 /* faults above are reported with TT_DFAULT. */
609                 cs->exception_index = TT_DFAULT;
610             } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
611                 do_fault = 1;
612                 cs->exception_index = TT_DPROT;
613 
614                 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
615             }
616 
617             if (!do_fault) {
618                 full->prot = PAGE_READ;
619                 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
620                     full->prot |= PAGE_WRITE;
621                 }
622 
623                 TTE_SET_USED(env->dtlb[i].tte);
624 
625                 return 0;
626             }
627 
628             env->dmmu.sfsr = sfsr;
629             env->dmmu.sfar = address; /* Fault address register */
630             env->dmmu.tag_access = (address & ~0x1fffULL) | context;
631             return 1;
632         }
633     }
634 
635     trace_mmu_helper_dmiss(address, context);
636 
637     /*
638      * On MMU misses:
639      * - UltraSPARC IIi: SFSR and SFAR unmodified
640      * - JPS1: SFAR updated and some fields of SFSR updated
641      */
642     env->dmmu.tag_access = (address & ~0x1fffULL) | context;
643     cs->exception_index = TT_DMISS;
644     return 1;
645 }
646 
647 static int get_physical_address_code(CPUSPARCState *env, CPUTLBEntryFull *full,
648                                      target_ulong address, int mmu_idx)
649 {
650     CPUState *cs = env_cpu(env);
651     unsigned int i;
652     uint64_t context;
653     bool is_user = false;
654 
655     switch (mmu_idx) {
656     case MMU_PHYS_IDX:
657     case MMU_USER_SECONDARY_IDX:
658     case MMU_KERNEL_SECONDARY_IDX:
659         g_assert_not_reached();
660     case MMU_USER_IDX:
661         is_user = true;
662         /* fallthru */
663     case MMU_KERNEL_IDX:
664         context = env->dmmu.mmu_primary_context & 0x1fff;
665         break;
666     default:
667         context = 0;
668         break;
669     }
670 
671     if (env->tl == 0) {
672         /* PRIMARY context */
673         context = env->dmmu.mmu_primary_context & 0x1fff;
674     } else {
675         /* NUCLEUS context */
676         context = 0;
677     }
678 
679     for (i = 0; i < 64; i++) {
680         /* ctx match, vaddr match, valid? */
681         if (ultrasparc_tag_match(&env->itlb[i],
682                                  address, context, &full->phys_addr)) {
683             /* access ok? */
684             if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
685                 /* Fault status register */
686                 if (env->immu.sfsr & SFSR_VALID_BIT) {
687                     env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
688                                                      another fault) */
689                 } else {
690                     env->immu.sfsr = 0;
691                 }
692                 if (env->pstate & PS_PRIV) {
693                     env->immu.sfsr |= SFSR_PR_BIT;
694                 }
695                 if (env->tl > 0) {
696                     env->immu.sfsr |= SFSR_CT_NUCLEUS;
697                 }
698 
699                 /* FIXME: ASI field in SFSR must be set */
700                 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
701                 cs->exception_index = TT_TFAULT;
702 
703                 env->immu.tag_access = (address & ~0x1fffULL) | context;
704 
705                 trace_mmu_helper_tfault(address, context);
706 
707                 return 1;
708             }
709             full->prot = PAGE_EXEC;
710             TTE_SET_USED(env->itlb[i].tte);
711             return 0;
712         }
713     }
714 
715     trace_mmu_helper_tmiss(address, context);
716 
717     /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
718     env->immu.tag_access = (address & ~0x1fffULL) | context;
719     cs->exception_index = TT_TMISS;
720     return 1;
721 }
722 
723 static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
724                                 int *access_index, target_ulong address,
725                                 int rw, int mmu_idx)
726 {
727     /* ??? We treat everything as a small page, then explicitly flush
728        everything when an entry is evicted.  */
729     full->lg_page_size = TARGET_PAGE_BITS;
730 
731     /* safety net to catch wrong softmmu index use from dynamic code */
732     if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
733         if (rw == 2) {
734             trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
735                                                 env->dmmu.mmu_primary_context,
736                                                 env->dmmu.mmu_secondary_context,
737                                                 address);
738         } else {
739             trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
740                                                 env->dmmu.mmu_primary_context,
741                                                 env->dmmu.mmu_secondary_context,
742                                                 address);
743         }
744     }
745 
746     if (mmu_idx == MMU_PHYS_IDX) {
747         full->phys_addr = ultrasparc_truncate_physical(address);
748         full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
749         return 0;
750     }
751 
752     if (rw == 2) {
753         return get_physical_address_code(env, full, address, mmu_idx);
754     } else {
755         return get_physical_address_data(env, full, address, rw, mmu_idx);
756     }
757 }
758 
759 /* Perform address translation */
760 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
761                         MMUAccessType access_type, int mmu_idx,
762                         bool probe, uintptr_t retaddr)
763 {
764     CPUSPARCState *env = cpu_env(cs);
765     CPUTLBEntryFull full = {};
766     int error_code = 0, access_index;
767 
768     address &= TARGET_PAGE_MASK;
769     error_code = get_physical_address(env, &full, &access_index,
770                                       address, access_type, mmu_idx);
771     if (likely(error_code == 0)) {
772         trace_mmu_helper_mmu_fault(address, full.phys_addr, mmu_idx, env->tl,
773                                    env->dmmu.mmu_primary_context,
774                                    env->dmmu.mmu_secondary_context);
775         tlb_set_page_full(cs, mmu_idx, address, &full);
776         return true;
777     }
778     if (probe) {
779         return false;
780     }
781     cpu_loop_exit_restore(cs, retaddr);
782 }
783 
784 void dump_mmu(CPUSPARCState *env)
785 {
786     unsigned int i;
787     const char *mask;
788 
789     qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
790                 PRId64 "\n",
791                 env->dmmu.mmu_primary_context,
792                 env->dmmu.mmu_secondary_context);
793     qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
794                 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
795     if ((env->lsu & DMMU_E) == 0) {
796         qemu_printf("DMMU disabled\n");
797     } else {
798         qemu_printf("DMMU dump\n");
799         for (i = 0; i < 64; i++) {
800             switch (TTE_PGSIZE(env->dtlb[i].tte)) {
801             default:
802             case 0x0:
803                 mask = "  8k";
804                 break;
805             case 0x1:
806                 mask = " 64k";
807                 break;
808             case 0x2:
809                 mask = "512k";
810                 break;
811             case 0x3:
812                 mask = "  4M";
813                 break;
814             }
815             if (TTE_IS_VALID(env->dtlb[i].tte)) {
816                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
817                             ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
818                             i,
819                             env->dtlb[i].tag & (uint64_t)~0x1fffULL,
820                             TTE_PA(env->dtlb[i].tte),
821                             mask,
822                             TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
823                             TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
824                             TTE_IS_LOCKED(env->dtlb[i].tte) ?
825                             "locked" : "unlocked",
826                             TTE_IS_IE(env->dtlb[i].tte) ?
827                             "yes" : "no",
828                             env->dtlb[i].tag & (uint64_t)0x1fffULL,
829                             TTE_IS_GLOBAL(env->dtlb[i].tte) ?
830                             "global" : "local");
831             }
832         }
833     }
834     if ((env->lsu & IMMU_E) == 0) {
835         qemu_printf("IMMU disabled\n");
836     } else {
837         qemu_printf("IMMU dump\n");
838         for (i = 0; i < 64; i++) {
839             switch (TTE_PGSIZE(env->itlb[i].tte)) {
840             default:
841             case 0x0:
842                 mask = "  8k";
843                 break;
844             case 0x1:
845                 mask = " 64k";
846                 break;
847             case 0x2:
848                 mask = "512k";
849                 break;
850             case 0x3:
851                 mask = "  4M";
852                 break;
853             }
854             if (TTE_IS_VALID(env->itlb[i].tte)) {
855                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
856                             ", %s, %s, %s, ctx %" PRId64 " %s\n",
857                             i,
858                             env->itlb[i].tag & (uint64_t)~0x1fffULL,
859                             TTE_PA(env->itlb[i].tte),
860                             mask,
861                             TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
862                             TTE_IS_LOCKED(env->itlb[i].tte) ?
863                             "locked" : "unlocked",
864                             env->itlb[i].tag & (uint64_t)0x1fffULL,
865                             TTE_IS_GLOBAL(env->itlb[i].tte) ?
866                             "global" : "local");
867             }
868         }
869     }
870 }
871 
872 #endif /* TARGET_SPARC64 */
873 
874 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
875                                    target_ulong addr, int rw, int mmu_idx)
876 {
877     CPUTLBEntryFull full = {};
878     int access_index, ret;
879 
880     ret = get_physical_address(env, &full, &access_index, addr, rw, mmu_idx);
881     if (ret == 0) {
882         *phys = full.phys_addr;
883     }
884     return ret;
885 }
886 
887 #if defined(TARGET_SPARC64)
888 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
889                                            int mmu_idx)
890 {
891     hwaddr phys_addr;
892 
893     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
894         return -1;
895     }
896     return phys_addr;
897 }
898 #endif
899 
900 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
901 {
902     CPUSPARCState *env = cpu_env(cs);
903     hwaddr phys_addr;
904     int mmu_idx = cpu_mmu_index(cs, false);
905 
906     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
907         if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
908             return -1;
909         }
910     }
911     return phys_addr;
912 }
913 
914 G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
915                                               MMUAccessType access_type,
916                                               int mmu_idx,
917                                               uintptr_t retaddr)
918 {
919     CPUSPARCState *env = cpu_env(cs);
920 
921 #ifdef TARGET_SPARC64
922     env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
923     env->dmmu.sfar = addr;
924 #else
925     env->mmuregs[4] = addr;
926 #endif
927 
928     cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
929 }
930