1 /* 2 * Helpers for loads and stores 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "tcg/tcg.h" 24 #include "exec/helper-proto.h" 25 #include "exec/exec-all.h" 26 #include "exec/cpu_ldst.h" 27 #include "asi.h" 28 29 //#define DEBUG_MMU 30 //#define DEBUG_MXCC 31 //#define DEBUG_UNASSIGNED 32 //#define DEBUG_ASI 33 //#define DEBUG_CACHE_CONTROL 34 35 #ifdef DEBUG_MMU 36 #define DPRINTF_MMU(fmt, ...) \ 37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) 38 #else 39 #define DPRINTF_MMU(fmt, ...) do {} while (0) 40 #endif 41 42 #ifdef DEBUG_MXCC 43 #define DPRINTF_MXCC(fmt, ...) \ 44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) 45 #else 46 #define DPRINTF_MXCC(fmt, ...) do {} while (0) 47 #endif 48 49 #ifdef DEBUG_ASI 50 #define DPRINTF_ASI(fmt, ...) \ 51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) 52 #endif 53 54 #ifdef DEBUG_CACHE_CONTROL 55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \ 56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) 57 #else 58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) 59 #endif 60 61 #ifdef TARGET_SPARC64 62 #ifndef TARGET_ABI32 63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM) 64 #else 65 #define AM_CHECK(env1) (1) 66 #endif 67 #endif 68 69 #define QT0 (env->qt0) 70 #define QT1 (env->qt1) 71 72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) 73 /* Calculates TSB pointer value for fault page size 74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers 75 * UA2005 holds the page size configuration in mmu_ctx registers */ 76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env, 77 const SparcV9MMU *mmu, const int idx) 78 { 79 uint64_t tsb_register; 80 int page_size; 81 if (cpu_has_hypervisor(env)) { 82 int tsb_index = 0; 83 int ctx = mmu->tag_access & 0x1fffULL; 84 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0]; 85 tsb_index = idx; 86 tsb_index |= ctx ? 2 : 0; 87 page_size = idx ? ctx_register >> 8 : ctx_register; 88 page_size &= 7; 89 tsb_register = mmu->sun4v_tsb_pointers[tsb_index]; 90 } else { 91 page_size = idx; 92 tsb_register = mmu->tsb; 93 } 94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; 95 int tsb_size = tsb_register & 0xf; 96 97 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size; 98 99 /* move va bits to correct position, 100 * the context bits will be masked out later */ 101 uint64_t va = mmu->tag_access >> (3 * page_size + 9); 102 103 /* calculate tsb_base mask and adjust va if split is in use */ 104 if (tsb_split) { 105 if (idx == 0) { 106 va &= ~(1ULL << (13 + tsb_size)); 107 } else { 108 va |= (1ULL << (13 + tsb_size)); 109 } 110 tsb_base_mask <<= 1; 111 } 112 113 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; 114 } 115 116 /* Calculates tag target register value by reordering bits 117 in tag access register */ 118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) 119 { 120 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); 121 } 122 123 static void replace_tlb_entry(SparcTLBEntry *tlb, 124 uint64_t tlb_tag, uint64_t tlb_tte, 125 CPUSPARCState *env) 126 { 127 target_ulong mask, size, va, offset; 128 129 /* flush page range if translation is valid */ 130 if (TTE_IS_VALID(tlb->tte)) { 131 CPUState *cs = env_cpu(env); 132 133 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte); 134 mask = 1ULL + ~size; 135 136 va = tlb->tag & mask; 137 138 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { 139 tlb_flush_page(cs, va + offset); 140 } 141 } 142 143 tlb->tag = tlb_tag; 144 tlb->tte = tlb_tte; 145 } 146 147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, 148 const char *strmmu, CPUSPARCState *env1) 149 { 150 unsigned int i; 151 target_ulong mask; 152 uint64_t context; 153 154 int is_demap_context = (demap_addr >> 6) & 1; 155 156 /* demap context */ 157 switch ((demap_addr >> 4) & 3) { 158 case 0: /* primary */ 159 context = env1->dmmu.mmu_primary_context; 160 break; 161 case 1: /* secondary */ 162 context = env1->dmmu.mmu_secondary_context; 163 break; 164 case 2: /* nucleus */ 165 context = 0; 166 break; 167 case 3: /* reserved */ 168 default: 169 return; 170 } 171 172 for (i = 0; i < 64; i++) { 173 if (TTE_IS_VALID(tlb[i].tte)) { 174 175 if (is_demap_context) { 176 /* will remove non-global entries matching context value */ 177 if (TTE_IS_GLOBAL(tlb[i].tte) || 178 !tlb_compare_context(&tlb[i], context)) { 179 continue; 180 } 181 } else { 182 /* demap page 183 will remove any entry matching VA */ 184 mask = 0xffffffffffffe000ULL; 185 mask <<= 3 * ((tlb[i].tte >> 61) & 3); 186 187 if (!compare_masked(demap_addr, tlb[i].tag, mask)) { 188 continue; 189 } 190 191 /* entry should be global or matching context value */ 192 if (!TTE_IS_GLOBAL(tlb[i].tte) && 193 !tlb_compare_context(&tlb[i], context)) { 194 continue; 195 } 196 } 197 198 replace_tlb_entry(&tlb[i], 0, 0, env1); 199 #ifdef DEBUG_MMU 200 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); 201 dump_mmu(env1); 202 #endif 203 } 204 } 205 } 206 207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag, 208 uint64_t sun4v_tte) 209 { 210 uint64_t sun4u_tte; 211 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) { 212 /* is already in the sun4u format */ 213 return sun4v_tte; 214 } 215 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT); 216 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */ 217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT); 218 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT); 219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT); 220 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005, 221 TTE_SIDEEFFECT_BIT); 222 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT); 223 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT); 224 return sun4u_tte; 225 } 226 227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, 228 uint64_t tlb_tag, uint64_t tlb_tte, 229 const char *strmmu, CPUSPARCState *env1, 230 uint64_t addr) 231 { 232 unsigned int i, replace_used; 233 234 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte); 235 if (cpu_has_hypervisor(env1)) { 236 uint64_t new_vaddr = tlb_tag & ~0x1fffULL; 237 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte); 238 uint32_t new_ctx = tlb_tag & 0x1fffU; 239 for (i = 0; i < 64; i++) { 240 uint32_t ctx = tlb[i].tag & 0x1fffU; 241 /* check if new mapping overlaps an existing one */ 242 if (new_ctx == ctx) { 243 uint64_t vaddr = tlb[i].tag & ~0x1fffULL; 244 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte); 245 if (new_vaddr == vaddr 246 || (new_vaddr < vaddr + size 247 && vaddr < new_vaddr + new_size)) { 248 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr, 249 new_vaddr); 250 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 251 return; 252 } 253 } 254 255 } 256 } 257 /* Try replacing invalid entry */ 258 for (i = 0; i < 64; i++) { 259 if (!TTE_IS_VALID(tlb[i].tte)) { 260 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 261 #ifdef DEBUG_MMU 262 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); 263 dump_mmu(env1); 264 #endif 265 return; 266 } 267 } 268 269 /* All entries are valid, try replacing unlocked entry */ 270 271 for (replace_used = 0; replace_used < 2; ++replace_used) { 272 273 /* Used entries are not replaced on first pass */ 274 275 for (i = 0; i < 64; i++) { 276 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { 277 278 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 279 #ifdef DEBUG_MMU 280 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", 281 strmmu, (replace_used ? "used" : "unused"), i); 282 dump_mmu(env1); 283 #endif 284 return; 285 } 286 } 287 288 /* Now reset used bit and search for unused entries again */ 289 290 for (i = 0; i < 64; i++) { 291 TTE_SET_UNUSED(tlb[i].tte); 292 } 293 } 294 295 #ifdef DEBUG_MMU 296 DPRINTF_MMU("%s lru replacement: no free entries available, " 297 "replacing the last one\n", strmmu); 298 #endif 299 /* corner case: the last entry is replaced anyway */ 300 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1); 301 } 302 303 #endif 304 305 #ifdef TARGET_SPARC64 306 /* returns true if access using this ASI is to have address translated by MMU 307 otherwise access is to raw physical address */ 308 /* TODO: check sparc32 bits */ 309 static inline int is_translating_asi(int asi) 310 { 311 /* Ultrasparc IIi translating asi 312 - note this list is defined by cpu implementation 313 */ 314 switch (asi) { 315 case 0x04 ... 0x11: 316 case 0x16 ... 0x19: 317 case 0x1E ... 0x1F: 318 case 0x24 ... 0x2C: 319 case 0x70 ... 0x73: 320 case 0x78 ... 0x79: 321 case 0x80 ... 0xFF: 322 return 1; 323 324 default: 325 return 0; 326 } 327 } 328 329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr) 330 { 331 if (AM_CHECK(env1)) { 332 addr &= 0xffffffffULL; 333 } 334 return addr; 335 } 336 337 static inline target_ulong asi_address_mask(CPUSPARCState *env, 338 int asi, target_ulong addr) 339 { 340 if (is_translating_asi(asi)) { 341 addr = address_mask(env, addr); 342 } 343 return addr; 344 } 345 346 #ifndef CONFIG_USER_ONLY 347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra) 348 { 349 /* ASIs >= 0x80 are user mode. 350 * ASIs >= 0x30 are hyper mode (or super if hyper is not available). 351 * ASIs <= 0x2f are super mode. 352 */ 353 if (asi < 0x80 354 && !cpu_hypervisor_mode(env) 355 && (!cpu_supervisor_mode(env) 356 || (asi >= 0x30 && cpu_has_hypervisor(env)))) { 357 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra); 358 } 359 } 360 #endif /* !CONFIG_USER_ONLY */ 361 #endif 362 363 static void do_check_align(CPUSPARCState *env, target_ulong addr, 364 uint32_t align, uintptr_t ra) 365 { 366 if (addr & align) { 367 cpu_raise_exception_ra(env, TT_UNALIGNED, ra); 368 } 369 } 370 371 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align) 372 { 373 do_check_align(env, addr, align, GETPC()); 374 } 375 376 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ 377 defined(DEBUG_MXCC) 378 static void dump_mxcc(CPUSPARCState *env) 379 { 380 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 381 "\n", 382 env->mxccdata[0], env->mxccdata[1], 383 env->mxccdata[2], env->mxccdata[3]); 384 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 385 "\n" 386 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 387 "\n", 388 env->mxccregs[0], env->mxccregs[1], 389 env->mxccregs[2], env->mxccregs[3], 390 env->mxccregs[4], env->mxccregs[5], 391 env->mxccregs[6], env->mxccregs[7]); 392 } 393 #endif 394 395 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ 396 && defined(DEBUG_ASI) 397 static void dump_asi(const char *txt, target_ulong addr, int asi, int size, 398 uint64_t r1) 399 { 400 switch (size) { 401 case 1: 402 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, 403 addr, asi, r1 & 0xff); 404 break; 405 case 2: 406 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, 407 addr, asi, r1 & 0xffff); 408 break; 409 case 4: 410 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, 411 addr, asi, r1 & 0xffffffff); 412 break; 413 case 8: 414 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, 415 addr, asi, r1); 416 break; 417 } 418 } 419 #endif 420 421 #ifndef CONFIG_USER_ONLY 422 #ifndef TARGET_SPARC64 423 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr, 424 bool is_write, bool is_exec, int is_asi, 425 unsigned size, uintptr_t retaddr) 426 { 427 SPARCCPU *cpu = SPARC_CPU(cs); 428 CPUSPARCState *env = &cpu->env; 429 int fault_type; 430 431 #ifdef DEBUG_UNASSIGNED 432 if (is_asi) { 433 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx 434 " asi 0x%02x from " TARGET_FMT_lx "\n", 435 is_exec ? "exec" : is_write ? "write" : "read", size, 436 size == 1 ? "" : "s", addr, is_asi, env->pc); 437 } else { 438 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx 439 " from " TARGET_FMT_lx "\n", 440 is_exec ? "exec" : is_write ? "write" : "read", size, 441 size == 1 ? "" : "s", addr, env->pc); 442 } 443 #endif 444 /* Don't overwrite translation and access faults */ 445 fault_type = (env->mmuregs[3] & 0x1c) >> 2; 446 if ((fault_type > 4) || (fault_type == 0)) { 447 env->mmuregs[3] = 0; /* Fault status register */ 448 if (is_asi) { 449 env->mmuregs[3] |= 1 << 16; 450 } 451 if (env->psrs) { 452 env->mmuregs[3] |= 1 << 5; 453 } 454 if (is_exec) { 455 env->mmuregs[3] |= 1 << 6; 456 } 457 if (is_write) { 458 env->mmuregs[3] |= 1 << 7; 459 } 460 env->mmuregs[3] |= (5 << 2) | 2; 461 /* SuperSPARC will never place instruction fault addresses in the FAR */ 462 if (!is_exec) { 463 env->mmuregs[4] = addr; /* Fault address register */ 464 } 465 } 466 /* overflow (same type fault was not read before another fault) */ 467 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { 468 env->mmuregs[3] |= 1; 469 } 470 471 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { 472 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS; 473 cpu_raise_exception_ra(env, tt, retaddr); 474 } 475 476 /* 477 * flush neverland mappings created during no-fault mode, 478 * so the sequential MMU faults report proper fault types 479 */ 480 if (env->mmuregs[0] & MMU_NF) { 481 tlb_flush(cs); 482 } 483 } 484 #else 485 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr, 486 bool is_write, bool is_exec, int is_asi, 487 unsigned size, uintptr_t retaddr) 488 { 489 SPARCCPU *cpu = SPARC_CPU(cs); 490 CPUSPARCState *env = &cpu->env; 491 492 #ifdef DEBUG_UNASSIGNED 493 printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx 494 "\n", addr, env->pc); 495 #endif 496 497 if (is_exec) { /* XXX has_hypervisor */ 498 if (env->lsu & (IMMU_E)) { 499 cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr); 500 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { 501 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr); 502 } 503 } else { 504 if (env->lsu & (DMMU_E)) { 505 cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr); 506 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { 507 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr); 508 } 509 } 510 } 511 #endif 512 #endif 513 514 #ifndef TARGET_SPARC64 515 #ifndef CONFIG_USER_ONLY 516 517 518 /* Leon3 cache control */ 519 520 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr, 521 uint64_t val, int size) 522 { 523 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", 524 addr, val, size); 525 526 if (size != 4) { 527 DPRINTF_CACHE_CONTROL("32bits only\n"); 528 return; 529 } 530 531 switch (addr) { 532 case 0x00: /* Cache control */ 533 534 /* These values must always be read as zeros */ 535 val &= ~CACHE_CTRL_FD; 536 val &= ~CACHE_CTRL_FI; 537 val &= ~CACHE_CTRL_IB; 538 val &= ~CACHE_CTRL_IP; 539 val &= ~CACHE_CTRL_DP; 540 541 env->cache_control = val; 542 break; 543 case 0x04: /* Instruction cache configuration */ 544 case 0x08: /* Data cache configuration */ 545 /* Read Only */ 546 break; 547 default: 548 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); 549 break; 550 }; 551 } 552 553 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr, 554 int size) 555 { 556 uint64_t ret = 0; 557 558 if (size != 4) { 559 DPRINTF_CACHE_CONTROL("32bits only\n"); 560 return 0; 561 } 562 563 switch (addr) { 564 case 0x00: /* Cache control */ 565 ret = env->cache_control; 566 break; 567 568 /* Configuration registers are read and only always keep those 569 predefined values */ 570 571 case 0x04: /* Instruction cache configuration */ 572 ret = 0x10220000; 573 break; 574 case 0x08: /* Data cache configuration */ 575 ret = 0x18220000; 576 break; 577 default: 578 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); 579 break; 580 }; 581 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", 582 addr, ret, size); 583 return ret; 584 } 585 586 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 587 int asi, uint32_t memop) 588 { 589 int size = 1 << (memop & MO_SIZE); 590 int sign = memop & MO_SIGN; 591 CPUState *cs = env_cpu(env); 592 uint64_t ret = 0; 593 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) 594 uint32_t last_addr = addr; 595 #endif 596 597 do_check_align(env, addr, size - 1, GETPC()); 598 switch (asi) { 599 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ 600 /* case ASI_LEON_CACHEREGS: Leon3 cache control */ 601 switch (addr) { 602 case 0x00: /* Leon3 Cache Control */ 603 case 0x08: /* Leon3 Instruction Cache config */ 604 case 0x0C: /* Leon3 Date Cache config */ 605 if (env->def.features & CPU_FEATURE_CACHE_CTRL) { 606 ret = leon3_cache_control_ld(env, addr, size); 607 } 608 break; 609 case 0x01c00a00: /* MXCC control register */ 610 if (size == 8) { 611 ret = env->mxccregs[3]; 612 } else { 613 qemu_log_mask(LOG_UNIMP, 614 "%08x: unimplemented access size: %d\n", addr, 615 size); 616 } 617 break; 618 case 0x01c00a04: /* MXCC control register */ 619 if (size == 4) { 620 ret = env->mxccregs[3]; 621 } else { 622 qemu_log_mask(LOG_UNIMP, 623 "%08x: unimplemented access size: %d\n", addr, 624 size); 625 } 626 break; 627 case 0x01c00c00: /* Module reset register */ 628 if (size == 8) { 629 ret = env->mxccregs[5]; 630 /* should we do something here? */ 631 } else { 632 qemu_log_mask(LOG_UNIMP, 633 "%08x: unimplemented access size: %d\n", addr, 634 size); 635 } 636 break; 637 case 0x01c00f00: /* MBus port address register */ 638 if (size == 8) { 639 ret = env->mxccregs[7]; 640 } else { 641 qemu_log_mask(LOG_UNIMP, 642 "%08x: unimplemented access size: %d\n", addr, 643 size); 644 } 645 break; 646 default: 647 qemu_log_mask(LOG_UNIMP, 648 "%08x: unimplemented address, size: %d\n", addr, 649 size); 650 break; 651 } 652 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " 653 "addr = %08x -> ret = %" PRIx64 "," 654 "addr = %08x\n", asi, size, sign, last_addr, ret, addr); 655 #ifdef DEBUG_MXCC 656 dump_mxcc(env); 657 #endif 658 break; 659 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */ 660 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */ 661 { 662 int mmulev; 663 664 mmulev = (addr >> 8) & 15; 665 if (mmulev > 4) { 666 ret = 0; 667 } else { 668 ret = mmu_probe(env, addr, mmulev); 669 } 670 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", 671 addr, mmulev, ret); 672 } 673 break; 674 case ASI_M_MMUREGS: /* SuperSparc MMU regs */ 675 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */ 676 { 677 int reg = (addr >> 8) & 0x1f; 678 679 ret = env->mmuregs[reg]; 680 if (reg == 3) { /* Fault status cleared on read */ 681 env->mmuregs[3] = 0; 682 } else if (reg == 0x13) { /* Fault status read */ 683 ret = env->mmuregs[3]; 684 } else if (reg == 0x14) { /* Fault address read */ 685 ret = env->mmuregs[4]; 686 } 687 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); 688 } 689 break; 690 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ 691 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ 692 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ 693 break; 694 case ASI_KERNELTXT: /* Supervisor code access */ 695 switch (size) { 696 case 1: 697 ret = cpu_ldub_code(env, addr); 698 break; 699 case 2: 700 ret = cpu_lduw_code(env, addr); 701 break; 702 default: 703 case 4: 704 ret = cpu_ldl_code(env, addr); 705 break; 706 case 8: 707 ret = cpu_ldq_code(env, addr); 708 break; 709 } 710 break; 711 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */ 712 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */ 713 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */ 714 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */ 715 break; 716 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ 717 { 718 MemTxResult result; 719 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32); 720 721 switch (size) { 722 case 1: 723 ret = address_space_ldub(cs->as, access_addr, 724 MEMTXATTRS_UNSPECIFIED, &result); 725 break; 726 case 2: 727 ret = address_space_lduw(cs->as, access_addr, 728 MEMTXATTRS_UNSPECIFIED, &result); 729 break; 730 default: 731 case 4: 732 ret = address_space_ldl(cs->as, access_addr, 733 MEMTXATTRS_UNSPECIFIED, &result); 734 break; 735 case 8: 736 ret = address_space_ldq(cs->as, access_addr, 737 MEMTXATTRS_UNSPECIFIED, &result); 738 break; 739 } 740 741 if (result != MEMTX_OK) { 742 sparc_raise_mmu_fault(cs, access_addr, false, false, false, 743 size, GETPC()); 744 } 745 break; 746 } 747 case 0x30: /* Turbosparc secondary cache diagnostic */ 748 case 0x31: /* Turbosparc RAM snoop */ 749 case 0x32: /* Turbosparc page table descriptor diagnostic */ 750 case 0x39: /* data cache diagnostic register */ 751 ret = 0; 752 break; 753 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ 754 { 755 int reg = (addr >> 8) & 3; 756 757 switch (reg) { 758 case 0: /* Breakpoint Value (Addr) */ 759 ret = env->mmubpregs[reg]; 760 break; 761 case 1: /* Breakpoint Mask */ 762 ret = env->mmubpregs[reg]; 763 break; 764 case 2: /* Breakpoint Control */ 765 ret = env->mmubpregs[reg]; 766 break; 767 case 3: /* Breakpoint Status */ 768 ret = env->mmubpregs[reg]; 769 env->mmubpregs[reg] = 0ULL; 770 break; 771 } 772 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, 773 ret); 774 } 775 break; 776 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ 777 ret = env->mmubpctrv; 778 break; 779 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ 780 ret = env->mmubpctrc; 781 break; 782 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ 783 ret = env->mmubpctrs; 784 break; 785 case 0x4c: /* SuperSPARC MMU Breakpoint Action */ 786 ret = env->mmubpaction; 787 break; 788 case ASI_USERTXT: /* User code access, XXX */ 789 default: 790 sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC()); 791 ret = 0; 792 break; 793 794 case ASI_USERDATA: /* User data access */ 795 case ASI_KERNELDATA: /* Supervisor data access */ 796 case ASI_P: /* Implicit primary context data access (v9 only?) */ 797 case ASI_M_BYPASS: /* MMU passthrough */ 798 case ASI_LEON_BYPASS: /* LEON MMU passthrough */ 799 /* These are always handled inline. */ 800 g_assert_not_reached(); 801 } 802 if (sign) { 803 switch (size) { 804 case 1: 805 ret = (int8_t) ret; 806 break; 807 case 2: 808 ret = (int16_t) ret; 809 break; 810 case 4: 811 ret = (int32_t) ret; 812 break; 813 default: 814 break; 815 } 816 } 817 #ifdef DEBUG_ASI 818 dump_asi("read ", last_addr, asi, size, ret); 819 #endif 820 return ret; 821 } 822 823 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, 824 int asi, uint32_t memop) 825 { 826 int size = 1 << (memop & MO_SIZE); 827 CPUState *cs = env_cpu(env); 828 829 do_check_align(env, addr, size - 1, GETPC()); 830 switch (asi) { 831 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ 832 /* case ASI_LEON_CACHEREGS: Leon3 cache control */ 833 switch (addr) { 834 case 0x00: /* Leon3 Cache Control */ 835 case 0x08: /* Leon3 Instruction Cache config */ 836 case 0x0C: /* Leon3 Date Cache config */ 837 if (env->def.features & CPU_FEATURE_CACHE_CTRL) { 838 leon3_cache_control_st(env, addr, val, size); 839 } 840 break; 841 842 case 0x01c00000: /* MXCC stream data register 0 */ 843 if (size == 8) { 844 env->mxccdata[0] = val; 845 } else { 846 qemu_log_mask(LOG_UNIMP, 847 "%08x: unimplemented access size: %d\n", addr, 848 size); 849 } 850 break; 851 case 0x01c00008: /* MXCC stream data register 1 */ 852 if (size == 8) { 853 env->mxccdata[1] = val; 854 } else { 855 qemu_log_mask(LOG_UNIMP, 856 "%08x: unimplemented access size: %d\n", addr, 857 size); 858 } 859 break; 860 case 0x01c00010: /* MXCC stream data register 2 */ 861 if (size == 8) { 862 env->mxccdata[2] = val; 863 } else { 864 qemu_log_mask(LOG_UNIMP, 865 "%08x: unimplemented access size: %d\n", addr, 866 size); 867 } 868 break; 869 case 0x01c00018: /* MXCC stream data register 3 */ 870 if (size == 8) { 871 env->mxccdata[3] = val; 872 } else { 873 qemu_log_mask(LOG_UNIMP, 874 "%08x: unimplemented access size: %d\n", addr, 875 size); 876 } 877 break; 878 case 0x01c00100: /* MXCC stream source */ 879 { 880 int i; 881 882 if (size == 8) { 883 env->mxccregs[0] = val; 884 } else { 885 qemu_log_mask(LOG_UNIMP, 886 "%08x: unimplemented access size: %d\n", addr, 887 size); 888 } 889 890 for (i = 0; i < 4; i++) { 891 MemTxResult result; 892 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i; 893 894 env->mxccdata[i] = address_space_ldq(cs->as, 895 access_addr, 896 MEMTXATTRS_UNSPECIFIED, 897 &result); 898 if (result != MEMTX_OK) { 899 /* TODO: investigate whether this is the right behaviour */ 900 sparc_raise_mmu_fault(cs, access_addr, false, false, 901 false, size, GETPC()); 902 } 903 } 904 break; 905 } 906 case 0x01c00200: /* MXCC stream destination */ 907 { 908 int i; 909 910 if (size == 8) { 911 env->mxccregs[1] = val; 912 } else { 913 qemu_log_mask(LOG_UNIMP, 914 "%08x: unimplemented access size: %d\n", addr, 915 size); 916 } 917 918 for (i = 0; i < 4; i++) { 919 MemTxResult result; 920 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i; 921 922 address_space_stq(cs->as, access_addr, env->mxccdata[i], 923 MEMTXATTRS_UNSPECIFIED, &result); 924 925 if (result != MEMTX_OK) { 926 /* TODO: investigate whether this is the right behaviour */ 927 sparc_raise_mmu_fault(cs, access_addr, true, false, 928 false, size, GETPC()); 929 } 930 } 931 break; 932 } 933 case 0x01c00a00: /* MXCC control register */ 934 if (size == 8) { 935 env->mxccregs[3] = val; 936 } else { 937 qemu_log_mask(LOG_UNIMP, 938 "%08x: unimplemented access size: %d\n", addr, 939 size); 940 } 941 break; 942 case 0x01c00a04: /* MXCC control register */ 943 if (size == 4) { 944 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) 945 | val; 946 } else { 947 qemu_log_mask(LOG_UNIMP, 948 "%08x: unimplemented access size: %d\n", addr, 949 size); 950 } 951 break; 952 case 0x01c00e00: /* MXCC error register */ 953 /* writing a 1 bit clears the error */ 954 if (size == 8) { 955 env->mxccregs[6] &= ~val; 956 } else { 957 qemu_log_mask(LOG_UNIMP, 958 "%08x: unimplemented access size: %d\n", addr, 959 size); 960 } 961 break; 962 case 0x01c00f00: /* MBus port address register */ 963 if (size == 8) { 964 env->mxccregs[7] = val; 965 } else { 966 qemu_log_mask(LOG_UNIMP, 967 "%08x: unimplemented access size: %d\n", addr, 968 size); 969 } 970 break; 971 default: 972 qemu_log_mask(LOG_UNIMP, 973 "%08x: unimplemented address, size: %d\n", addr, 974 size); 975 break; 976 } 977 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", 978 asi, size, addr, val); 979 #ifdef DEBUG_MXCC 980 dump_mxcc(env); 981 #endif 982 break; 983 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */ 984 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */ 985 { 986 int mmulev; 987 988 mmulev = (addr >> 8) & 15; 989 DPRINTF_MMU("mmu flush level %d\n", mmulev); 990 switch (mmulev) { 991 case 0: /* flush page */ 992 tlb_flush_page(cs, addr & 0xfffff000); 993 break; 994 case 1: /* flush segment (256k) */ 995 case 2: /* flush region (16M) */ 996 case 3: /* flush context (4G) */ 997 case 4: /* flush entire */ 998 tlb_flush(cs); 999 break; 1000 default: 1001 break; 1002 } 1003 #ifdef DEBUG_MMU 1004 dump_mmu(env); 1005 #endif 1006 } 1007 break; 1008 case ASI_M_MMUREGS: /* write MMU regs */ 1009 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */ 1010 { 1011 int reg = (addr >> 8) & 0x1f; 1012 uint32_t oldreg; 1013 1014 oldreg = env->mmuregs[reg]; 1015 switch (reg) { 1016 case 0: /* Control Register */ 1017 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | 1018 (val & 0x00ffffff); 1019 /* Mappings generated during no-fault mode 1020 are invalid in normal mode. */ 1021 if ((oldreg ^ env->mmuregs[reg]) 1022 & (MMU_NF | env->def.mmu_bm)) { 1023 tlb_flush(cs); 1024 } 1025 break; 1026 case 1: /* Context Table Pointer Register */ 1027 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask; 1028 break; 1029 case 2: /* Context Register */ 1030 env->mmuregs[reg] = val & env->def.mmu_cxr_mask; 1031 if (oldreg != env->mmuregs[reg]) { 1032 /* we flush when the MMU context changes because 1033 QEMU has no MMU context support */ 1034 tlb_flush(cs); 1035 } 1036 break; 1037 case 3: /* Synchronous Fault Status Register with Clear */ 1038 case 4: /* Synchronous Fault Address Register */ 1039 break; 1040 case 0x10: /* TLB Replacement Control Register */ 1041 env->mmuregs[reg] = val & env->def.mmu_trcr_mask; 1042 break; 1043 case 0x13: /* Synchronous Fault Status Register with Read 1044 and Clear */ 1045 env->mmuregs[3] = val & env->def.mmu_sfsr_mask; 1046 break; 1047 case 0x14: /* Synchronous Fault Address Register */ 1048 env->mmuregs[4] = val; 1049 break; 1050 default: 1051 env->mmuregs[reg] = val; 1052 break; 1053 } 1054 if (oldreg != env->mmuregs[reg]) { 1055 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", 1056 reg, oldreg, env->mmuregs[reg]); 1057 } 1058 #ifdef DEBUG_MMU 1059 dump_mmu(env); 1060 #endif 1061 } 1062 break; 1063 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ 1064 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ 1065 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ 1066 break; 1067 case ASI_M_TXTC_TAG: /* I-cache tag */ 1068 case ASI_M_TXTC_DATA: /* I-cache data */ 1069 case ASI_M_DATAC_TAG: /* D-cache tag */ 1070 case ASI_M_DATAC_DATA: /* D-cache data */ 1071 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */ 1072 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */ 1073 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */ 1074 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */ 1075 case ASI_M_FLUSH_USER: /* I/D-cache flush user */ 1076 break; 1077 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ 1078 { 1079 MemTxResult result; 1080 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32); 1081 1082 switch (size) { 1083 case 1: 1084 address_space_stb(cs->as, access_addr, val, 1085 MEMTXATTRS_UNSPECIFIED, &result); 1086 break; 1087 case 2: 1088 address_space_stw(cs->as, access_addr, val, 1089 MEMTXATTRS_UNSPECIFIED, &result); 1090 break; 1091 case 4: 1092 default: 1093 address_space_stl(cs->as, access_addr, val, 1094 MEMTXATTRS_UNSPECIFIED, &result); 1095 break; 1096 case 8: 1097 address_space_stq(cs->as, access_addr, val, 1098 MEMTXATTRS_UNSPECIFIED, &result); 1099 break; 1100 } 1101 if (result != MEMTX_OK) { 1102 sparc_raise_mmu_fault(cs, access_addr, true, false, false, 1103 size, GETPC()); 1104 } 1105 } 1106 break; 1107 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */ 1108 case 0x31: /* store buffer data, Ross RT620 I-cache flush or 1109 Turbosparc snoop RAM */ 1110 case 0x32: /* store buffer control or Turbosparc page table 1111 descriptor diagnostic */ 1112 case 0x36: /* I-cache flash clear */ 1113 case 0x37: /* D-cache flash clear */ 1114 break; 1115 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ 1116 { 1117 int reg = (addr >> 8) & 3; 1118 1119 switch (reg) { 1120 case 0: /* Breakpoint Value (Addr) */ 1121 env->mmubpregs[reg] = (val & 0xfffffffffULL); 1122 break; 1123 case 1: /* Breakpoint Mask */ 1124 env->mmubpregs[reg] = (val & 0xfffffffffULL); 1125 break; 1126 case 2: /* Breakpoint Control */ 1127 env->mmubpregs[reg] = (val & 0x7fULL); 1128 break; 1129 case 3: /* Breakpoint Status */ 1130 env->mmubpregs[reg] = (val & 0xfULL); 1131 break; 1132 } 1133 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, 1134 env->mmuregs[reg]); 1135 } 1136 break; 1137 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ 1138 env->mmubpctrv = val & 0xffffffff; 1139 break; 1140 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ 1141 env->mmubpctrc = val & 0x3; 1142 break; 1143 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ 1144 env->mmubpctrs = val & 0x3; 1145 break; 1146 case 0x4c: /* SuperSPARC MMU Breakpoint Action */ 1147 env->mmubpaction = val & 0x1fff; 1148 break; 1149 case ASI_USERTXT: /* User code access, XXX */ 1150 case ASI_KERNELTXT: /* Supervisor code access, XXX */ 1151 default: 1152 sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC()); 1153 break; 1154 1155 case ASI_USERDATA: /* User data access */ 1156 case ASI_KERNELDATA: /* Supervisor data access */ 1157 case ASI_P: 1158 case ASI_M_BYPASS: /* MMU passthrough */ 1159 case ASI_LEON_BYPASS: /* LEON MMU passthrough */ 1160 case ASI_M_BCOPY: /* Block copy, sta access */ 1161 case ASI_M_BFILL: /* Block fill, stda access */ 1162 /* These are always handled inline. */ 1163 g_assert_not_reached(); 1164 } 1165 #ifdef DEBUG_ASI 1166 dump_asi("write", addr, asi, size, val); 1167 #endif 1168 } 1169 1170 #endif /* CONFIG_USER_ONLY */ 1171 #else /* TARGET_SPARC64 */ 1172 1173 #ifdef CONFIG_USER_ONLY 1174 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 1175 int asi, uint32_t memop) 1176 { 1177 int size = 1 << (memop & MO_SIZE); 1178 int sign = memop & MO_SIGN; 1179 uint64_t ret = 0; 1180 1181 if (asi < 0x80) { 1182 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); 1183 } 1184 do_check_align(env, addr, size - 1, GETPC()); 1185 addr = asi_address_mask(env, asi, addr); 1186 1187 switch (asi) { 1188 case ASI_PNF: /* Primary no-fault */ 1189 case ASI_PNFL: /* Primary no-fault LE */ 1190 case ASI_SNF: /* Secondary no-fault */ 1191 case ASI_SNFL: /* Secondary no-fault LE */ 1192 if (page_check_range(addr, size, PAGE_READ) == -1) { 1193 ret = 0; 1194 break; 1195 } 1196 switch (size) { 1197 case 1: 1198 ret = cpu_ldub_data(env, addr); 1199 break; 1200 case 2: 1201 ret = cpu_lduw_data(env, addr); 1202 break; 1203 case 4: 1204 ret = cpu_ldl_data(env, addr); 1205 break; 1206 case 8: 1207 ret = cpu_ldq_data(env, addr); 1208 break; 1209 default: 1210 g_assert_not_reached(); 1211 } 1212 break; 1213 break; 1214 1215 case ASI_P: /* Primary */ 1216 case ASI_PL: /* Primary LE */ 1217 case ASI_S: /* Secondary */ 1218 case ASI_SL: /* Secondary LE */ 1219 /* These are always handled inline. */ 1220 g_assert_not_reached(); 1221 1222 default: 1223 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); 1224 } 1225 1226 /* Convert from little endian */ 1227 switch (asi) { 1228 case ASI_PNFL: /* Primary no-fault LE */ 1229 case ASI_SNFL: /* Secondary no-fault LE */ 1230 switch (size) { 1231 case 2: 1232 ret = bswap16(ret); 1233 break; 1234 case 4: 1235 ret = bswap32(ret); 1236 break; 1237 case 8: 1238 ret = bswap64(ret); 1239 break; 1240 } 1241 } 1242 1243 /* Convert to signed number */ 1244 if (sign) { 1245 switch (size) { 1246 case 1: 1247 ret = (int8_t) ret; 1248 break; 1249 case 2: 1250 ret = (int16_t) ret; 1251 break; 1252 case 4: 1253 ret = (int32_t) ret; 1254 break; 1255 } 1256 } 1257 #ifdef DEBUG_ASI 1258 dump_asi("read", addr, asi, size, ret); 1259 #endif 1260 return ret; 1261 } 1262 1263 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, 1264 int asi, uint32_t memop) 1265 { 1266 int size = 1 << (memop & MO_SIZE); 1267 #ifdef DEBUG_ASI 1268 dump_asi("write", addr, asi, size, val); 1269 #endif 1270 if (asi < 0x80) { 1271 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); 1272 } 1273 do_check_align(env, addr, size - 1, GETPC()); 1274 1275 switch (asi) { 1276 case ASI_P: /* Primary */ 1277 case ASI_PL: /* Primary LE */ 1278 case ASI_S: /* Secondary */ 1279 case ASI_SL: /* Secondary LE */ 1280 /* These are always handled inline. */ 1281 g_assert_not_reached(); 1282 1283 case ASI_PNF: /* Primary no-fault, RO */ 1284 case ASI_SNF: /* Secondary no-fault, RO */ 1285 case ASI_PNFL: /* Primary no-fault LE, RO */ 1286 case ASI_SNFL: /* Secondary no-fault LE, RO */ 1287 default: 1288 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); 1289 } 1290 } 1291 1292 #else /* CONFIG_USER_ONLY */ 1293 1294 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 1295 int asi, uint32_t memop) 1296 { 1297 int size = 1 << (memop & MO_SIZE); 1298 int sign = memop & MO_SIGN; 1299 CPUState *cs = env_cpu(env); 1300 uint64_t ret = 0; 1301 #if defined(DEBUG_ASI) 1302 target_ulong last_addr = addr; 1303 #endif 1304 1305 asi &= 0xff; 1306 1307 do_check_asi(env, asi, GETPC()); 1308 do_check_align(env, addr, size - 1, GETPC()); 1309 addr = asi_address_mask(env, asi, addr); 1310 1311 switch (asi) { 1312 case ASI_PNF: 1313 case ASI_PNFL: 1314 case ASI_SNF: 1315 case ASI_SNFL: 1316 { 1317 MemOpIdx oi; 1318 int idx = (env->pstate & PS_PRIV 1319 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX) 1320 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX)); 1321 1322 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) { 1323 #ifdef DEBUG_ASI 1324 dump_asi("read ", last_addr, asi, size, ret); 1325 #endif 1326 /* exception_index is set in get_physical_address_data. */ 1327 cpu_raise_exception_ra(env, cs->exception_index, GETPC()); 1328 } 1329 oi = make_memop_idx(memop, idx); 1330 switch (size) { 1331 case 1: 1332 ret = cpu_ldb_mmu(env, addr, oi, GETPC()); 1333 break; 1334 case 2: 1335 if (asi & 8) { 1336 ret = cpu_ldw_le_mmu(env, addr, oi, GETPC()); 1337 } else { 1338 ret = cpu_ldw_be_mmu(env, addr, oi, GETPC()); 1339 } 1340 break; 1341 case 4: 1342 if (asi & 8) { 1343 ret = cpu_ldl_le_mmu(env, addr, oi, GETPC()); 1344 } else { 1345 ret = cpu_ldl_be_mmu(env, addr, oi, GETPC()); 1346 } 1347 break; 1348 case 8: 1349 if (asi & 8) { 1350 ret = cpu_ldq_le_mmu(env, addr, oi, GETPC()); 1351 } else { 1352 ret = cpu_ldq_be_mmu(env, addr, oi, GETPC()); 1353 } 1354 break; 1355 default: 1356 g_assert_not_reached(); 1357 } 1358 } 1359 break; 1360 1361 case ASI_AIUP: /* As if user primary */ 1362 case ASI_AIUS: /* As if user secondary */ 1363 case ASI_AIUPL: /* As if user primary LE */ 1364 case ASI_AIUSL: /* As if user secondary LE */ 1365 case ASI_P: /* Primary */ 1366 case ASI_S: /* Secondary */ 1367 case ASI_PL: /* Primary LE */ 1368 case ASI_SL: /* Secondary LE */ 1369 case ASI_REAL: /* Bypass */ 1370 case ASI_REAL_IO: /* Bypass, non-cacheable */ 1371 case ASI_REAL_L: /* Bypass LE */ 1372 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ 1373 case ASI_N: /* Nucleus */ 1374 case ASI_NL: /* Nucleus Little Endian (LE) */ 1375 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ 1376 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ 1377 case ASI_TWINX_AIUP: /* As if user primary, twinx */ 1378 case ASI_TWINX_AIUS: /* As if user secondary, twinx */ 1379 case ASI_TWINX_REAL: /* Real address, twinx */ 1380 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ 1381 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ 1382 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ 1383 case ASI_TWINX_N: /* Nucleus, twinx */ 1384 case ASI_TWINX_NL: /* Nucleus, twinx, LE */ 1385 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ 1386 case ASI_TWINX_P: /* Primary, twinx */ 1387 case ASI_TWINX_PL: /* Primary, twinx, LE */ 1388 case ASI_TWINX_S: /* Secondary, twinx */ 1389 case ASI_TWINX_SL: /* Secondary, twinx, LE */ 1390 /* These are always handled inline. */ 1391 g_assert_not_reached(); 1392 1393 case ASI_UPA_CONFIG: /* UPA config */ 1394 /* XXX */ 1395 break; 1396 case ASI_LSU_CONTROL: /* LSU */ 1397 ret = env->lsu; 1398 break; 1399 case ASI_IMMU: /* I-MMU regs */ 1400 { 1401 int reg = (addr >> 3) & 0xf; 1402 switch (reg) { 1403 case 0: 1404 /* 0x00 I-TSB Tag Target register */ 1405 ret = ultrasparc_tag_target(env->immu.tag_access); 1406 break; 1407 case 3: /* SFSR */ 1408 ret = env->immu.sfsr; 1409 break; 1410 case 5: /* TSB access */ 1411 ret = env->immu.tsb; 1412 break; 1413 case 6: 1414 /* 0x30 I-TSB Tag Access register */ 1415 ret = env->immu.tag_access; 1416 break; 1417 default: 1418 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1419 ret = 0; 1420 } 1421 break; 1422 } 1423 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */ 1424 { 1425 /* env->immuregs[5] holds I-MMU TSB register value 1426 env->immuregs[6] holds I-MMU Tag Access register value */ 1427 ret = ultrasparc_tsb_pointer(env, &env->immu, 0); 1428 break; 1429 } 1430 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */ 1431 { 1432 /* env->immuregs[5] holds I-MMU TSB register value 1433 env->immuregs[6] holds I-MMU Tag Access register value */ 1434 ret = ultrasparc_tsb_pointer(env, &env->immu, 1); 1435 break; 1436 } 1437 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ 1438 { 1439 int reg = (addr >> 3) & 0x3f; 1440 1441 ret = env->itlb[reg].tte; 1442 break; 1443 } 1444 case ASI_ITLB_TAG_READ: /* I-MMU tag read */ 1445 { 1446 int reg = (addr >> 3) & 0x3f; 1447 1448 ret = env->itlb[reg].tag; 1449 break; 1450 } 1451 case ASI_DMMU: /* D-MMU regs */ 1452 { 1453 int reg = (addr >> 3) & 0xf; 1454 switch (reg) { 1455 case 0: 1456 /* 0x00 D-TSB Tag Target register */ 1457 ret = ultrasparc_tag_target(env->dmmu.tag_access); 1458 break; 1459 case 1: /* 0x08 Primary Context */ 1460 ret = env->dmmu.mmu_primary_context; 1461 break; 1462 case 2: /* 0x10 Secondary Context */ 1463 ret = env->dmmu.mmu_secondary_context; 1464 break; 1465 case 3: /* SFSR */ 1466 ret = env->dmmu.sfsr; 1467 break; 1468 case 4: /* 0x20 SFAR */ 1469 ret = env->dmmu.sfar; 1470 break; 1471 case 5: /* 0x28 TSB access */ 1472 ret = env->dmmu.tsb; 1473 break; 1474 case 6: /* 0x30 D-TSB Tag Access register */ 1475 ret = env->dmmu.tag_access; 1476 break; 1477 case 7: 1478 ret = env->dmmu.virtual_watchpoint; 1479 break; 1480 case 8: 1481 ret = env->dmmu.physical_watchpoint; 1482 break; 1483 default: 1484 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1485 ret = 0; 1486 } 1487 break; 1488 } 1489 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */ 1490 { 1491 /* env->dmmuregs[5] holds D-MMU TSB register value 1492 env->dmmuregs[6] holds D-MMU Tag Access register value */ 1493 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0); 1494 break; 1495 } 1496 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */ 1497 { 1498 /* env->dmmuregs[5] holds D-MMU TSB register value 1499 env->dmmuregs[6] holds D-MMU Tag Access register value */ 1500 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1); 1501 break; 1502 } 1503 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ 1504 { 1505 int reg = (addr >> 3) & 0x3f; 1506 1507 ret = env->dtlb[reg].tte; 1508 break; 1509 } 1510 case ASI_DTLB_TAG_READ: /* D-MMU tag read */ 1511 { 1512 int reg = (addr >> 3) & 0x3f; 1513 1514 ret = env->dtlb[reg].tag; 1515 break; 1516 } 1517 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ 1518 break; 1519 case ASI_INTR_RECEIVE: /* Interrupt data receive */ 1520 ret = env->ivec_status; 1521 break; 1522 case ASI_INTR_R: /* Incoming interrupt vector, RO */ 1523 { 1524 int reg = (addr >> 4) & 0x3; 1525 if (reg < 3) { 1526 ret = env->ivec_data[reg]; 1527 } 1528 break; 1529 } 1530 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ 1531 if (unlikely((addr >= 0x20) && (addr < 0x30))) { 1532 /* Hyperprivileged access only */ 1533 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1534 } 1535 /* fall through */ 1536 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ 1537 { 1538 unsigned int i = (addr >> 3) & 0x7; 1539 ret = env->scratch[i]; 1540 break; 1541 } 1542 case ASI_MMU: /* UA2005 Context ID registers */ 1543 switch ((addr >> 3) & 0x3) { 1544 case 1: 1545 ret = env->dmmu.mmu_primary_context; 1546 break; 1547 case 2: 1548 ret = env->dmmu.mmu_secondary_context; 1549 break; 1550 default: 1551 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1552 } 1553 break; 1554 case ASI_DCACHE_DATA: /* D-cache data */ 1555 case ASI_DCACHE_TAG: /* D-cache tag access */ 1556 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ 1557 case ASI_AFSR: /* E-cache asynchronous fault status */ 1558 case ASI_AFAR: /* E-cache asynchronous fault address */ 1559 case ASI_EC_TAG_DATA: /* E-cache tag data */ 1560 case ASI_IC_INSTR: /* I-cache instruction access */ 1561 case ASI_IC_TAG: /* I-cache tag access */ 1562 case ASI_IC_PRE_DECODE: /* I-cache predecode */ 1563 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ 1564 case ASI_EC_W: /* E-cache tag */ 1565 case ASI_EC_R: /* E-cache tag */ 1566 break; 1567 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */ 1568 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */ 1569 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */ 1570 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */ 1571 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */ 1572 case ASI_INTR_W: /* Interrupt vector, WO */ 1573 default: 1574 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1575 ret = 0; 1576 break; 1577 } 1578 1579 /* Convert to signed number */ 1580 if (sign) { 1581 switch (size) { 1582 case 1: 1583 ret = (int8_t) ret; 1584 break; 1585 case 2: 1586 ret = (int16_t) ret; 1587 break; 1588 case 4: 1589 ret = (int32_t) ret; 1590 break; 1591 default: 1592 break; 1593 } 1594 } 1595 #ifdef DEBUG_ASI 1596 dump_asi("read ", last_addr, asi, size, ret); 1597 #endif 1598 return ret; 1599 } 1600 1601 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, 1602 int asi, uint32_t memop) 1603 { 1604 int size = 1 << (memop & MO_SIZE); 1605 CPUState *cs = env_cpu(env); 1606 1607 #ifdef DEBUG_ASI 1608 dump_asi("write", addr, asi, size, val); 1609 #endif 1610 1611 asi &= 0xff; 1612 1613 do_check_asi(env, asi, GETPC()); 1614 do_check_align(env, addr, size - 1, GETPC()); 1615 addr = asi_address_mask(env, asi, addr); 1616 1617 switch (asi) { 1618 case ASI_AIUP: /* As if user primary */ 1619 case ASI_AIUS: /* As if user secondary */ 1620 case ASI_AIUPL: /* As if user primary LE */ 1621 case ASI_AIUSL: /* As if user secondary LE */ 1622 case ASI_P: /* Primary */ 1623 case ASI_S: /* Secondary */ 1624 case ASI_PL: /* Primary LE */ 1625 case ASI_SL: /* Secondary LE */ 1626 case ASI_REAL: /* Bypass */ 1627 case ASI_REAL_IO: /* Bypass, non-cacheable */ 1628 case ASI_REAL_L: /* Bypass LE */ 1629 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ 1630 case ASI_N: /* Nucleus */ 1631 case ASI_NL: /* Nucleus Little Endian (LE) */ 1632 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ 1633 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ 1634 case ASI_TWINX_AIUP: /* As if user primary, twinx */ 1635 case ASI_TWINX_AIUS: /* As if user secondary, twinx */ 1636 case ASI_TWINX_REAL: /* Real address, twinx */ 1637 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ 1638 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ 1639 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ 1640 case ASI_TWINX_N: /* Nucleus, twinx */ 1641 case ASI_TWINX_NL: /* Nucleus, twinx, LE */ 1642 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ 1643 case ASI_TWINX_P: /* Primary, twinx */ 1644 case ASI_TWINX_PL: /* Primary, twinx, LE */ 1645 case ASI_TWINX_S: /* Secondary, twinx */ 1646 case ASI_TWINX_SL: /* Secondary, twinx, LE */ 1647 /* These are always handled inline. */ 1648 g_assert_not_reached(); 1649 /* these ASIs have different functions on UltraSPARC-IIIi 1650 * and UA2005 CPUs. Use the explicit numbers to avoid confusion 1651 */ 1652 case 0x31: 1653 case 0x32: 1654 case 0x39: 1655 case 0x3a: 1656 if (cpu_has_hypervisor(env)) { 1657 /* UA2005 1658 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0 1659 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1 1660 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0 1661 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1 1662 */ 1663 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); 1664 env->dmmu.sun4v_tsb_pointers[idx] = val; 1665 } else { 1666 helper_raise_exception(env, TT_ILL_INSN); 1667 } 1668 break; 1669 case 0x33: 1670 case 0x3b: 1671 if (cpu_has_hypervisor(env)) { 1672 /* UA2005 1673 * ASI_DMMU_CTX_ZERO_CONFIG 1674 * ASI_DMMU_CTX_NONZERO_CONFIG 1675 */ 1676 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val; 1677 } else { 1678 helper_raise_exception(env, TT_ILL_INSN); 1679 } 1680 break; 1681 case 0x35: 1682 case 0x36: 1683 case 0x3d: 1684 case 0x3e: 1685 if (cpu_has_hypervisor(env)) { 1686 /* UA2005 1687 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0 1688 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1 1689 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0 1690 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1 1691 */ 1692 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); 1693 env->immu.sun4v_tsb_pointers[idx] = val; 1694 } else { 1695 helper_raise_exception(env, TT_ILL_INSN); 1696 } 1697 break; 1698 case 0x37: 1699 case 0x3f: 1700 if (cpu_has_hypervisor(env)) { 1701 /* UA2005 1702 * ASI_IMMU_CTX_ZERO_CONFIG 1703 * ASI_IMMU_CTX_NONZERO_CONFIG 1704 */ 1705 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val; 1706 } else { 1707 helper_raise_exception(env, TT_ILL_INSN); 1708 } 1709 break; 1710 case ASI_UPA_CONFIG: /* UPA config */ 1711 /* XXX */ 1712 return; 1713 case ASI_LSU_CONTROL: /* LSU */ 1714 env->lsu = val & (DMMU_E | IMMU_E); 1715 return; 1716 case ASI_IMMU: /* I-MMU regs */ 1717 { 1718 int reg = (addr >> 3) & 0xf; 1719 uint64_t oldreg; 1720 1721 oldreg = env->immu.mmuregs[reg]; 1722 switch (reg) { 1723 case 0: /* RO */ 1724 return; 1725 case 1: /* Not in I-MMU */ 1726 case 2: 1727 return; 1728 case 3: /* SFSR */ 1729 if ((val & 1) == 0) { 1730 val = 0; /* Clear SFSR */ 1731 } 1732 env->immu.sfsr = val; 1733 break; 1734 case 4: /* RO */ 1735 return; 1736 case 5: /* TSB access */ 1737 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" 1738 PRIx64 "\n", env->immu.tsb, val); 1739 env->immu.tsb = val; 1740 break; 1741 case 6: /* Tag access */ 1742 env->immu.tag_access = val; 1743 break; 1744 case 7: 1745 case 8: 1746 return; 1747 default: 1748 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1749 break; 1750 } 1751 1752 if (oldreg != env->immu.mmuregs[reg]) { 1753 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" 1754 PRIx64 "\n", reg, oldreg, env->immuregs[reg]); 1755 } 1756 #ifdef DEBUG_MMU 1757 dump_mmu(env); 1758 #endif 1759 return; 1760 } 1761 case ASI_ITLB_DATA_IN: /* I-MMU data in */ 1762 /* ignore real translation entries */ 1763 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1764 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, 1765 val, "immu", env, addr); 1766 } 1767 return; 1768 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ 1769 { 1770 /* TODO: auto demap */ 1771 1772 unsigned int i = (addr >> 3) & 0x3f; 1773 1774 /* ignore real translation entries */ 1775 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1776 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, 1777 sun4v_tte_to_sun4u(env, addr, val), env); 1778 } 1779 #ifdef DEBUG_MMU 1780 DPRINTF_MMU("immu data access replaced entry [%i]\n", i); 1781 dump_mmu(env); 1782 #endif 1783 return; 1784 } 1785 case ASI_IMMU_DEMAP: /* I-MMU demap */ 1786 demap_tlb(env->itlb, addr, "immu", env); 1787 return; 1788 case ASI_DMMU: /* D-MMU regs */ 1789 { 1790 int reg = (addr >> 3) & 0xf; 1791 uint64_t oldreg; 1792 1793 oldreg = env->dmmu.mmuregs[reg]; 1794 switch (reg) { 1795 case 0: /* RO */ 1796 case 4: 1797 return; 1798 case 3: /* SFSR */ 1799 if ((val & 1) == 0) { 1800 val = 0; /* Clear SFSR, Fault address */ 1801 env->dmmu.sfar = 0; 1802 } 1803 env->dmmu.sfsr = val; 1804 break; 1805 case 1: /* Primary context */ 1806 env->dmmu.mmu_primary_context = val; 1807 /* can be optimized to only flush MMU_USER_IDX 1808 and MMU_KERNEL_IDX entries */ 1809 tlb_flush(cs); 1810 break; 1811 case 2: /* Secondary context */ 1812 env->dmmu.mmu_secondary_context = val; 1813 /* can be optimized to only flush MMU_USER_SECONDARY_IDX 1814 and MMU_KERNEL_SECONDARY_IDX entries */ 1815 tlb_flush(cs); 1816 break; 1817 case 5: /* TSB access */ 1818 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" 1819 PRIx64 "\n", env->dmmu.tsb, val); 1820 env->dmmu.tsb = val; 1821 break; 1822 case 6: /* Tag access */ 1823 env->dmmu.tag_access = val; 1824 break; 1825 case 7: /* Virtual Watchpoint */ 1826 env->dmmu.virtual_watchpoint = val; 1827 break; 1828 case 8: /* Physical Watchpoint */ 1829 env->dmmu.physical_watchpoint = val; 1830 break; 1831 default: 1832 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1833 break; 1834 } 1835 1836 if (oldreg != env->dmmu.mmuregs[reg]) { 1837 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" 1838 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); 1839 } 1840 #ifdef DEBUG_MMU 1841 dump_mmu(env); 1842 #endif 1843 return; 1844 } 1845 case ASI_DTLB_DATA_IN: /* D-MMU data in */ 1846 /* ignore real translation entries */ 1847 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1848 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, 1849 val, "dmmu", env, addr); 1850 } 1851 return; 1852 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ 1853 { 1854 unsigned int i = (addr >> 3) & 0x3f; 1855 1856 /* ignore real translation entries */ 1857 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1858 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, 1859 sun4v_tte_to_sun4u(env, addr, val), env); 1860 } 1861 #ifdef DEBUG_MMU 1862 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); 1863 dump_mmu(env); 1864 #endif 1865 return; 1866 } 1867 case ASI_DMMU_DEMAP: /* D-MMU demap */ 1868 demap_tlb(env->dtlb, addr, "dmmu", env); 1869 return; 1870 case ASI_INTR_RECEIVE: /* Interrupt data receive */ 1871 env->ivec_status = val & 0x20; 1872 return; 1873 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ 1874 if (unlikely((addr >= 0x20) && (addr < 0x30))) { 1875 /* Hyperprivileged access only */ 1876 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1877 } 1878 /* fall through */ 1879 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ 1880 { 1881 unsigned int i = (addr >> 3) & 0x7; 1882 env->scratch[i] = val; 1883 return; 1884 } 1885 case ASI_MMU: /* UA2005 Context ID registers */ 1886 { 1887 switch ((addr >> 3) & 0x3) { 1888 case 1: 1889 env->dmmu.mmu_primary_context = val; 1890 env->immu.mmu_primary_context = val; 1891 tlb_flush_by_mmuidx(cs, 1892 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX)); 1893 break; 1894 case 2: 1895 env->dmmu.mmu_secondary_context = val; 1896 env->immu.mmu_secondary_context = val; 1897 tlb_flush_by_mmuidx(cs, 1898 (1 << MMU_USER_SECONDARY_IDX) | 1899 (1 << MMU_KERNEL_SECONDARY_IDX)); 1900 break; 1901 default: 1902 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1903 } 1904 } 1905 return; 1906 case ASI_QUEUE: /* UA2005 CPU mondo queue */ 1907 case ASI_DCACHE_DATA: /* D-cache data */ 1908 case ASI_DCACHE_TAG: /* D-cache tag access */ 1909 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ 1910 case ASI_AFSR: /* E-cache asynchronous fault status */ 1911 case ASI_AFAR: /* E-cache asynchronous fault address */ 1912 case ASI_EC_TAG_DATA: /* E-cache tag data */ 1913 case ASI_IC_INSTR: /* I-cache instruction access */ 1914 case ASI_IC_TAG: /* I-cache tag access */ 1915 case ASI_IC_PRE_DECODE: /* I-cache predecode */ 1916 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ 1917 case ASI_EC_W: /* E-cache tag */ 1918 case ASI_EC_R: /* E-cache tag */ 1919 return; 1920 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */ 1921 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */ 1922 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */ 1923 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */ 1924 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */ 1925 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */ 1926 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */ 1927 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ 1928 case ASI_INTR_R: /* Incoming interrupt vector, RO */ 1929 case ASI_PNF: /* Primary no-fault, RO */ 1930 case ASI_SNF: /* Secondary no-fault, RO */ 1931 case ASI_PNFL: /* Primary no-fault LE, RO */ 1932 case ASI_SNFL: /* Secondary no-fault LE, RO */ 1933 default: 1934 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1935 return; 1936 } 1937 } 1938 #endif /* CONFIG_USER_ONLY */ 1939 #endif /* TARGET_SPARC64 */ 1940 1941 #if !defined(CONFIG_USER_ONLY) 1942 1943 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1944 vaddr addr, unsigned size, 1945 MMUAccessType access_type, 1946 int mmu_idx, MemTxAttrs attrs, 1947 MemTxResult response, uintptr_t retaddr) 1948 { 1949 bool is_write = access_type == MMU_DATA_STORE; 1950 bool is_exec = access_type == MMU_INST_FETCH; 1951 bool is_asi = false; 1952 1953 sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec, 1954 is_asi, size, retaddr); 1955 } 1956 #endif 1957