xref: /openbmc/qemu/target/sparc/ldst_helper.c (revision dcb32f1d)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "tcg/tcg.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "asi.h"
27 
28 //#define DEBUG_MMU
29 //#define DEBUG_MXCC
30 //#define DEBUG_UNALIGNED
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71 
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75  * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77                                        const SparcV9MMU *mmu, const int idx)
78 {
79     uint64_t tsb_register;
80     int page_size;
81     if (cpu_has_hypervisor(env)) {
82         int tsb_index = 0;
83         int ctx = mmu->tag_access & 0x1fffULL;
84         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85         tsb_index = idx;
86         tsb_index |= ctx ? 2 : 0;
87         page_size = idx ? ctx_register >> 8 : ctx_register;
88         page_size &= 7;
89         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90     } else {
91         page_size = idx;
92         tsb_register = mmu->tsb;
93     }
94     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95     int tsb_size  = tsb_register & 0xf;
96 
97     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98 
99     /* move va bits to correct position,
100      * the context bits will be masked out later */
101     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102 
103     /* calculate tsb_base mask and adjust va if split is in use */
104     if (tsb_split) {
105         if (idx == 0) {
106             va &= ~(1ULL << (13 + tsb_size));
107         } else {
108             va |= (1ULL << (13 + tsb_size));
109         }
110         tsb_base_mask <<= 1;
111     }
112 
113     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115 
116 /* Calculates tag target register value by reordering bits
117    in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122 
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124                               uint64_t tlb_tag, uint64_t tlb_tte,
125                               CPUSPARCState *env)
126 {
127     target_ulong mask, size, va, offset;
128 
129     /* flush page range if translation is valid */
130     if (TTE_IS_VALID(tlb->tte)) {
131         CPUState *cs = env_cpu(env);
132 
133         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134         mask = 1ULL + ~size;
135 
136         va = tlb->tag & mask;
137 
138         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139             tlb_flush_page(cs, va + offset);
140         }
141     }
142 
143     tlb->tag = tlb_tag;
144     tlb->tte = tlb_tte;
145 }
146 
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148                       const char *strmmu, CPUSPARCState *env1)
149 {
150     unsigned int i;
151     target_ulong mask;
152     uint64_t context;
153 
154     int is_demap_context = (demap_addr >> 6) & 1;
155 
156     /* demap context */
157     switch ((demap_addr >> 4) & 3) {
158     case 0: /* primary */
159         context = env1->dmmu.mmu_primary_context;
160         break;
161     case 1: /* secondary */
162         context = env1->dmmu.mmu_secondary_context;
163         break;
164     case 2: /* nucleus */
165         context = 0;
166         break;
167     case 3: /* reserved */
168     default:
169         return;
170     }
171 
172     for (i = 0; i < 64; i++) {
173         if (TTE_IS_VALID(tlb[i].tte)) {
174 
175             if (is_demap_context) {
176                 /* will remove non-global entries matching context value */
177                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178                     !tlb_compare_context(&tlb[i], context)) {
179                     continue;
180                 }
181             } else {
182                 /* demap page
183                    will remove any entry matching VA */
184                 mask = 0xffffffffffffe000ULL;
185                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186 
187                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188                     continue;
189                 }
190 
191                 /* entry should be global or matching context value */
192                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193                     !tlb_compare_context(&tlb[i], context)) {
194                     continue;
195                 }
196             }
197 
198             replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201             dump_mmu(env1);
202 #endif
203         }
204     }
205 }
206 
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208                                    uint64_t sun4v_tte)
209 {
210     uint64_t sun4u_tte;
211     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212         /* is already in the sun4u format */
213         return sun4v_tte;
214     }
215     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221                              TTE_SIDEEFFECT_BIT);
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224     return sun4u_tte;
225 }
226 
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228                                  uint64_t tlb_tag, uint64_t tlb_tte,
229                                  const char *strmmu, CPUSPARCState *env1,
230                                  uint64_t addr)
231 {
232     unsigned int i, replace_used;
233 
234     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235     if (cpu_has_hypervisor(env1)) {
236         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238         uint32_t new_ctx = tlb_tag & 0x1fffU;
239         for (i = 0; i < 64; i++) {
240             uint32_t ctx = tlb[i].tag & 0x1fffU;
241             /* check if new mapping overlaps an existing one */
242             if (new_ctx == ctx) {
243                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245                 if (new_vaddr == vaddr
246                     || (new_vaddr < vaddr + size
247                         && vaddr < new_vaddr + new_size)) {
248                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249                                 new_vaddr);
250                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251                     return;
252                 }
253             }
254 
255         }
256     }
257     /* Try replacing invalid entry */
258     for (i = 0; i < 64; i++) {
259         if (!TTE_IS_VALID(tlb[i].tte)) {
260             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263             dump_mmu(env1);
264 #endif
265             return;
266         }
267     }
268 
269     /* All entries are valid, try replacing unlocked entry */
270 
271     for (replace_used = 0; replace_used < 2; ++replace_used) {
272 
273         /* Used entries are not replaced on first pass */
274 
275         for (i = 0; i < 64; i++) {
276             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277 
278                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281                             strmmu, (replace_used ? "used" : "unused"), i);
282                 dump_mmu(env1);
283 #endif
284                 return;
285             }
286         }
287 
288         /* Now reset used bit and search for unused entries again */
289 
290         for (i = 0; i < 64; i++) {
291             TTE_SET_UNUSED(tlb[i].tte);
292         }
293     }
294 
295 #ifdef DEBUG_MMU
296     DPRINTF_MMU("%s lru replacement: no free entries available, "
297                 "replacing the last one\n", strmmu);
298 #endif
299     /* corner case: the last entry is replaced anyway */
300     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302 
303 #endif
304 
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307    otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311     /* Ultrasparc IIi translating asi
312        - note this list is defined by cpu implementation
313     */
314     switch (asi) {
315     case 0x04 ... 0x11:
316     case 0x16 ... 0x19:
317     case 0x1E ... 0x1F:
318     case 0x24 ... 0x2C:
319     case 0x70 ... 0x73:
320     case 0x78 ... 0x79:
321     case 0x80 ... 0xFF:
322         return 1;
323 
324     default:
325         return 0;
326     }
327 }
328 
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331     if (AM_CHECK(env1)) {
332         addr &= 0xffffffffULL;
333     }
334     return addr;
335 }
336 
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338                                             int asi, target_ulong addr)
339 {
340     if (is_translating_asi(asi)) {
341         addr = address_mask(env, addr);
342     }
343     return addr;
344 }
345 
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349     /* ASIs >= 0x80 are user mode.
350      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351      * ASIs <= 0x2f are super mode.
352      */
353     if (asi < 0x80
354         && !cpu_hypervisor_mode(env)
355         && (!cpu_supervisor_mode(env)
356             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358     }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362 
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364                            uint32_t align, uintptr_t ra)
365 {
366     if (addr & align) {
367 #ifdef DEBUG_UNALIGNED
368         printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
369                "\n", addr, env->pc);
370 #endif
371         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
372     }
373 }
374 
375 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
376 {
377     do_check_align(env, addr, align, GETPC());
378 }
379 
380 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
381     defined(DEBUG_MXCC)
382 static void dump_mxcc(CPUSPARCState *env)
383 {
384     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385            "\n",
386            env->mxccdata[0], env->mxccdata[1],
387            env->mxccdata[2], env->mxccdata[3]);
388     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
389            "\n"
390            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
391            "\n",
392            env->mxccregs[0], env->mxccregs[1],
393            env->mxccregs[2], env->mxccregs[3],
394            env->mxccregs[4], env->mxccregs[5],
395            env->mxccregs[6], env->mxccregs[7]);
396 }
397 #endif
398 
399 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
400     && defined(DEBUG_ASI)
401 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
402                      uint64_t r1)
403 {
404     switch (size) {
405     case 1:
406         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
407                     addr, asi, r1 & 0xff);
408         break;
409     case 2:
410         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
411                     addr, asi, r1 & 0xffff);
412         break;
413     case 4:
414         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
415                     addr, asi, r1 & 0xffffffff);
416         break;
417     case 8:
418         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
419                     addr, asi, r1);
420         break;
421     }
422 }
423 #endif
424 
425 #ifndef CONFIG_USER_ONLY
426 #ifndef TARGET_SPARC64
427 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
428                                   bool is_write, bool is_exec, int is_asi,
429                                   unsigned size, uintptr_t retaddr)
430 {
431     SPARCCPU *cpu = SPARC_CPU(cs);
432     CPUSPARCState *env = &cpu->env;
433     int fault_type;
434 
435 #ifdef DEBUG_UNASSIGNED
436     if (is_asi) {
437         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
438                " asi 0x%02x from " TARGET_FMT_lx "\n",
439                is_exec ? "exec" : is_write ? "write" : "read", size,
440                size == 1 ? "" : "s", addr, is_asi, env->pc);
441     } else {
442         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
443                " from " TARGET_FMT_lx "\n",
444                is_exec ? "exec" : is_write ? "write" : "read", size,
445                size == 1 ? "" : "s", addr, env->pc);
446     }
447 #endif
448     /* Don't overwrite translation and access faults */
449     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
450     if ((fault_type > 4) || (fault_type == 0)) {
451         env->mmuregs[3] = 0; /* Fault status register */
452         if (is_asi) {
453             env->mmuregs[3] |= 1 << 16;
454         }
455         if (env->psrs) {
456             env->mmuregs[3] |= 1 << 5;
457         }
458         if (is_exec) {
459             env->mmuregs[3] |= 1 << 6;
460         }
461         if (is_write) {
462             env->mmuregs[3] |= 1 << 7;
463         }
464         env->mmuregs[3] |= (5 << 2) | 2;
465         /* SuperSPARC will never place instruction fault addresses in the FAR */
466         if (!is_exec) {
467             env->mmuregs[4] = addr; /* Fault address register */
468         }
469     }
470     /* overflow (same type fault was not read before another fault) */
471     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
472         env->mmuregs[3] |= 1;
473     }
474 
475     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
476         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
477         cpu_raise_exception_ra(env, tt, retaddr);
478     }
479 
480     /*
481      * flush neverland mappings created during no-fault mode,
482      * so the sequential MMU faults report proper fault types
483      */
484     if (env->mmuregs[0] & MMU_NF) {
485         tlb_flush(cs);
486     }
487 }
488 #else
489 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
490                                   bool is_write, bool is_exec, int is_asi,
491                                   unsigned size, uintptr_t retaddr)
492 {
493     SPARCCPU *cpu = SPARC_CPU(cs);
494     CPUSPARCState *env = &cpu->env;
495 
496 #ifdef DEBUG_UNASSIGNED
497     printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
498            "\n", addr, env->pc);
499 #endif
500 
501     if (is_exec) { /* XXX has_hypervisor */
502         if (env->lsu & (IMMU_E)) {
503             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
504         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
505             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
506         }
507     } else {
508         if (env->lsu & (DMMU_E)) {
509             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
510         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
511             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
512         }
513     }
514 }
515 #endif
516 #endif
517 
518 #ifndef TARGET_SPARC64
519 #ifndef CONFIG_USER_ONLY
520 
521 
522 /* Leon3 cache control */
523 
524 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
525                                    uint64_t val, int size)
526 {
527     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
528                           addr, val, size);
529 
530     if (size != 4) {
531         DPRINTF_CACHE_CONTROL("32bits only\n");
532         return;
533     }
534 
535     switch (addr) {
536     case 0x00:              /* Cache control */
537 
538         /* These values must always be read as zeros */
539         val &= ~CACHE_CTRL_FD;
540         val &= ~CACHE_CTRL_FI;
541         val &= ~CACHE_CTRL_IB;
542         val &= ~CACHE_CTRL_IP;
543         val &= ~CACHE_CTRL_DP;
544 
545         env->cache_control = val;
546         break;
547     case 0x04:              /* Instruction cache configuration */
548     case 0x08:              /* Data cache configuration */
549         /* Read Only */
550         break;
551     default:
552         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
553         break;
554     };
555 }
556 
557 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
558                                        int size)
559 {
560     uint64_t ret = 0;
561 
562     if (size != 4) {
563         DPRINTF_CACHE_CONTROL("32bits only\n");
564         return 0;
565     }
566 
567     switch (addr) {
568     case 0x00:              /* Cache control */
569         ret = env->cache_control;
570         break;
571 
572         /* Configuration registers are read and only always keep those
573            predefined values */
574 
575     case 0x04:              /* Instruction cache configuration */
576         ret = 0x10220000;
577         break;
578     case 0x08:              /* Data cache configuration */
579         ret = 0x18220000;
580         break;
581     default:
582         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
583         break;
584     };
585     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
586                           addr, ret, size);
587     return ret;
588 }
589 
590 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
591                        int asi, uint32_t memop)
592 {
593     int size = 1 << (memop & MO_SIZE);
594     int sign = memop & MO_SIGN;
595     CPUState *cs = env_cpu(env);
596     uint64_t ret = 0;
597 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
598     uint32_t last_addr = addr;
599 #endif
600 
601     do_check_align(env, addr, size - 1, GETPC());
602     switch (asi) {
603     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
604     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
605         switch (addr) {
606         case 0x00:          /* Leon3 Cache Control */
607         case 0x08:          /* Leon3 Instruction Cache config */
608         case 0x0C:          /* Leon3 Date Cache config */
609             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
610                 ret = leon3_cache_control_ld(env, addr, size);
611             }
612             break;
613         case 0x01c00a00: /* MXCC control register */
614             if (size == 8) {
615                 ret = env->mxccregs[3];
616             } else {
617                 qemu_log_mask(LOG_UNIMP,
618                               "%08x: unimplemented access size: %d\n", addr,
619                               size);
620             }
621             break;
622         case 0x01c00a04: /* MXCC control register */
623             if (size == 4) {
624                 ret = env->mxccregs[3];
625             } else {
626                 qemu_log_mask(LOG_UNIMP,
627                               "%08x: unimplemented access size: %d\n", addr,
628                               size);
629             }
630             break;
631         case 0x01c00c00: /* Module reset register */
632             if (size == 8) {
633                 ret = env->mxccregs[5];
634                 /* should we do something here? */
635             } else {
636                 qemu_log_mask(LOG_UNIMP,
637                               "%08x: unimplemented access size: %d\n", addr,
638                               size);
639             }
640             break;
641         case 0x01c00f00: /* MBus port address register */
642             if (size == 8) {
643                 ret = env->mxccregs[7];
644             } else {
645                 qemu_log_mask(LOG_UNIMP,
646                               "%08x: unimplemented access size: %d\n", addr,
647                               size);
648             }
649             break;
650         default:
651             qemu_log_mask(LOG_UNIMP,
652                           "%08x: unimplemented address, size: %d\n", addr,
653                           size);
654             break;
655         }
656         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
657                      "addr = %08x -> ret = %" PRIx64 ","
658                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
659 #ifdef DEBUG_MXCC
660         dump_mxcc(env);
661 #endif
662         break;
663     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
664     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
665         {
666             int mmulev;
667 
668             mmulev = (addr >> 8) & 15;
669             if (mmulev > 4) {
670                 ret = 0;
671             } else {
672                 ret = mmu_probe(env, addr, mmulev);
673             }
674             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
675                         addr, mmulev, ret);
676         }
677         break;
678     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
679     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
680         {
681             int reg = (addr >> 8) & 0x1f;
682 
683             ret = env->mmuregs[reg];
684             if (reg == 3) { /* Fault status cleared on read */
685                 env->mmuregs[3] = 0;
686             } else if (reg == 0x13) { /* Fault status read */
687                 ret = env->mmuregs[3];
688             } else if (reg == 0x14) { /* Fault address read */
689                 ret = env->mmuregs[4];
690             }
691             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
692         }
693         break;
694     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
695     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
696     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
697         break;
698     case ASI_KERNELTXT: /* Supervisor code access */
699         switch (size) {
700         case 1:
701             ret = cpu_ldub_code(env, addr);
702             break;
703         case 2:
704             ret = cpu_lduw_code(env, addr);
705             break;
706         default:
707         case 4:
708             ret = cpu_ldl_code(env, addr);
709             break;
710         case 8:
711             ret = cpu_ldq_code(env, addr);
712             break;
713         }
714         break;
715     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
716     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
717     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
718     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
719         break;
720     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
721     {
722         MemTxResult result;
723         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
724 
725         switch (size) {
726         case 1:
727             ret = address_space_ldub(cs->as, access_addr,
728                                      MEMTXATTRS_UNSPECIFIED, &result);
729             break;
730         case 2:
731             ret = address_space_lduw(cs->as, access_addr,
732                                      MEMTXATTRS_UNSPECIFIED, &result);
733             break;
734         default:
735         case 4:
736             ret = address_space_ldl(cs->as, access_addr,
737                                     MEMTXATTRS_UNSPECIFIED, &result);
738             break;
739         case 8:
740             ret = address_space_ldq(cs->as, access_addr,
741                                     MEMTXATTRS_UNSPECIFIED, &result);
742             break;
743         }
744 
745         if (result != MEMTX_OK) {
746             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
747                                   size, GETPC());
748         }
749         break;
750     }
751     case 0x30: /* Turbosparc secondary cache diagnostic */
752     case 0x31: /* Turbosparc RAM snoop */
753     case 0x32: /* Turbosparc page table descriptor diagnostic */
754     case 0x39: /* data cache diagnostic register */
755         ret = 0;
756         break;
757     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
758         {
759             int reg = (addr >> 8) & 3;
760 
761             switch (reg) {
762             case 0: /* Breakpoint Value (Addr) */
763                 ret = env->mmubpregs[reg];
764                 break;
765             case 1: /* Breakpoint Mask */
766                 ret = env->mmubpregs[reg];
767                 break;
768             case 2: /* Breakpoint Control */
769                 ret = env->mmubpregs[reg];
770                 break;
771             case 3: /* Breakpoint Status */
772                 ret = env->mmubpregs[reg];
773                 env->mmubpregs[reg] = 0ULL;
774                 break;
775             }
776             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
777                         ret);
778         }
779         break;
780     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
781         ret = env->mmubpctrv;
782         break;
783     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
784         ret = env->mmubpctrc;
785         break;
786     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
787         ret = env->mmubpctrs;
788         break;
789     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
790         ret = env->mmubpaction;
791         break;
792     case ASI_USERTXT: /* User code access, XXX */
793     default:
794         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
795         ret = 0;
796         break;
797 
798     case ASI_USERDATA: /* User data access */
799     case ASI_KERNELDATA: /* Supervisor data access */
800     case ASI_P: /* Implicit primary context data access (v9 only?) */
801     case ASI_M_BYPASS:    /* MMU passthrough */
802     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
803         /* These are always handled inline.  */
804         g_assert_not_reached();
805     }
806     if (sign) {
807         switch (size) {
808         case 1:
809             ret = (int8_t) ret;
810             break;
811         case 2:
812             ret = (int16_t) ret;
813             break;
814         case 4:
815             ret = (int32_t) ret;
816             break;
817         default:
818             break;
819         }
820     }
821 #ifdef DEBUG_ASI
822     dump_asi("read ", last_addr, asi, size, ret);
823 #endif
824     return ret;
825 }
826 
827 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
828                    int asi, uint32_t memop)
829 {
830     int size = 1 << (memop & MO_SIZE);
831     CPUState *cs = env_cpu(env);
832 
833     do_check_align(env, addr, size - 1, GETPC());
834     switch (asi) {
835     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
836     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
837         switch (addr) {
838         case 0x00:          /* Leon3 Cache Control */
839         case 0x08:          /* Leon3 Instruction Cache config */
840         case 0x0C:          /* Leon3 Date Cache config */
841             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
842                 leon3_cache_control_st(env, addr, val, size);
843             }
844             break;
845 
846         case 0x01c00000: /* MXCC stream data register 0 */
847             if (size == 8) {
848                 env->mxccdata[0] = val;
849             } else {
850                 qemu_log_mask(LOG_UNIMP,
851                               "%08x: unimplemented access size: %d\n", addr,
852                               size);
853             }
854             break;
855         case 0x01c00008: /* MXCC stream data register 1 */
856             if (size == 8) {
857                 env->mxccdata[1] = val;
858             } else {
859                 qemu_log_mask(LOG_UNIMP,
860                               "%08x: unimplemented access size: %d\n", addr,
861                               size);
862             }
863             break;
864         case 0x01c00010: /* MXCC stream data register 2 */
865             if (size == 8) {
866                 env->mxccdata[2] = val;
867             } else {
868                 qemu_log_mask(LOG_UNIMP,
869                               "%08x: unimplemented access size: %d\n", addr,
870                               size);
871             }
872             break;
873         case 0x01c00018: /* MXCC stream data register 3 */
874             if (size == 8) {
875                 env->mxccdata[3] = val;
876             } else {
877                 qemu_log_mask(LOG_UNIMP,
878                               "%08x: unimplemented access size: %d\n", addr,
879                               size);
880             }
881             break;
882         case 0x01c00100: /* MXCC stream source */
883         {
884             int i;
885 
886             if (size == 8) {
887                 env->mxccregs[0] = val;
888             } else {
889                 qemu_log_mask(LOG_UNIMP,
890                               "%08x: unimplemented access size: %d\n", addr,
891                               size);
892             }
893 
894             for (i = 0; i < 4; i++) {
895                 MemTxResult result;
896                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
897 
898                 env->mxccdata[i] = address_space_ldq(cs->as,
899                                                      access_addr,
900                                                      MEMTXATTRS_UNSPECIFIED,
901                                                      &result);
902                 if (result != MEMTX_OK) {
903                     /* TODO: investigate whether this is the right behaviour */
904                     sparc_raise_mmu_fault(cs, access_addr, false, false,
905                                           false, size, GETPC());
906                 }
907             }
908             break;
909         }
910         case 0x01c00200: /* MXCC stream destination */
911         {
912             int i;
913 
914             if (size == 8) {
915                 env->mxccregs[1] = val;
916             } else {
917                 qemu_log_mask(LOG_UNIMP,
918                               "%08x: unimplemented access size: %d\n", addr,
919                               size);
920             }
921 
922             for (i = 0; i < 4; i++) {
923                 MemTxResult result;
924                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
925 
926                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
927                                   MEMTXATTRS_UNSPECIFIED, &result);
928 
929                 if (result != MEMTX_OK) {
930                     /* TODO: investigate whether this is the right behaviour */
931                     sparc_raise_mmu_fault(cs, access_addr, true, false,
932                                           false, size, GETPC());
933                 }
934             }
935             break;
936         }
937         case 0x01c00a00: /* MXCC control register */
938             if (size == 8) {
939                 env->mxccregs[3] = val;
940             } else {
941                 qemu_log_mask(LOG_UNIMP,
942                               "%08x: unimplemented access size: %d\n", addr,
943                               size);
944             }
945             break;
946         case 0x01c00a04: /* MXCC control register */
947             if (size == 4) {
948                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
949                     | val;
950             } else {
951                 qemu_log_mask(LOG_UNIMP,
952                               "%08x: unimplemented access size: %d\n", addr,
953                               size);
954             }
955             break;
956         case 0x01c00e00: /* MXCC error register  */
957             /* writing a 1 bit clears the error */
958             if (size == 8) {
959                 env->mxccregs[6] &= ~val;
960             } else {
961                 qemu_log_mask(LOG_UNIMP,
962                               "%08x: unimplemented access size: %d\n", addr,
963                               size);
964             }
965             break;
966         case 0x01c00f00: /* MBus port address register */
967             if (size == 8) {
968                 env->mxccregs[7] = val;
969             } else {
970                 qemu_log_mask(LOG_UNIMP,
971                               "%08x: unimplemented access size: %d\n", addr,
972                               size);
973             }
974             break;
975         default:
976             qemu_log_mask(LOG_UNIMP,
977                           "%08x: unimplemented address, size: %d\n", addr,
978                           size);
979             break;
980         }
981         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
982                      asi, size, addr, val);
983 #ifdef DEBUG_MXCC
984         dump_mxcc(env);
985 #endif
986         break;
987     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
988     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
989         {
990             int mmulev;
991 
992             mmulev = (addr >> 8) & 15;
993             DPRINTF_MMU("mmu flush level %d\n", mmulev);
994             switch (mmulev) {
995             case 0: /* flush page */
996                 tlb_flush_page(cs, addr & 0xfffff000);
997                 break;
998             case 1: /* flush segment (256k) */
999             case 2: /* flush region (16M) */
1000             case 3: /* flush context (4G) */
1001             case 4: /* flush entire */
1002                 tlb_flush(cs);
1003                 break;
1004             default:
1005                 break;
1006             }
1007 #ifdef DEBUG_MMU
1008             dump_mmu(env);
1009 #endif
1010         }
1011         break;
1012     case ASI_M_MMUREGS: /* write MMU regs */
1013     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1014         {
1015             int reg = (addr >> 8) & 0x1f;
1016             uint32_t oldreg;
1017 
1018             oldreg = env->mmuregs[reg];
1019             switch (reg) {
1020             case 0: /* Control Register */
1021                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1022                     (val & 0x00ffffff);
1023                 /* Mappings generated during no-fault mode
1024                    are invalid in normal mode.  */
1025                 if ((oldreg ^ env->mmuregs[reg])
1026                     & (MMU_NF | env->def.mmu_bm)) {
1027                     tlb_flush(cs);
1028                 }
1029                 break;
1030             case 1: /* Context Table Pointer Register */
1031                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1032                 break;
1033             case 2: /* Context Register */
1034                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1035                 if (oldreg != env->mmuregs[reg]) {
1036                     /* we flush when the MMU context changes because
1037                        QEMU has no MMU context support */
1038                     tlb_flush(cs);
1039                 }
1040                 break;
1041             case 3: /* Synchronous Fault Status Register with Clear */
1042             case 4: /* Synchronous Fault Address Register */
1043                 break;
1044             case 0x10: /* TLB Replacement Control Register */
1045                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1046                 break;
1047             case 0x13: /* Synchronous Fault Status Register with Read
1048                           and Clear */
1049                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1050                 break;
1051             case 0x14: /* Synchronous Fault Address Register */
1052                 env->mmuregs[4] = val;
1053                 break;
1054             default:
1055                 env->mmuregs[reg] = val;
1056                 break;
1057             }
1058             if (oldreg != env->mmuregs[reg]) {
1059                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1060                             reg, oldreg, env->mmuregs[reg]);
1061             }
1062 #ifdef DEBUG_MMU
1063             dump_mmu(env);
1064 #endif
1065         }
1066         break;
1067     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1068     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1069     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1070         break;
1071     case ASI_M_TXTC_TAG:   /* I-cache tag */
1072     case ASI_M_TXTC_DATA:  /* I-cache data */
1073     case ASI_M_DATAC_TAG:  /* D-cache tag */
1074     case ASI_M_DATAC_DATA: /* D-cache data */
1075     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1076     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1077     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1078     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1079     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1080         break;
1081     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1082         {
1083             MemTxResult result;
1084             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1085 
1086             switch (size) {
1087             case 1:
1088                 address_space_stb(cs->as, access_addr, val,
1089                                   MEMTXATTRS_UNSPECIFIED, &result);
1090                 break;
1091             case 2:
1092                 address_space_stw(cs->as, access_addr, val,
1093                                   MEMTXATTRS_UNSPECIFIED, &result);
1094                 break;
1095             case 4:
1096             default:
1097                 address_space_stl(cs->as, access_addr, val,
1098                                   MEMTXATTRS_UNSPECIFIED, &result);
1099                 break;
1100             case 8:
1101                 address_space_stq(cs->as, access_addr, val,
1102                                   MEMTXATTRS_UNSPECIFIED, &result);
1103                 break;
1104             }
1105             if (result != MEMTX_OK) {
1106                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1107                                       size, GETPC());
1108             }
1109         }
1110         break;
1111     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1112     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1113                   Turbosparc snoop RAM */
1114     case 0x32: /* store buffer control or Turbosparc page table
1115                   descriptor diagnostic */
1116     case 0x36: /* I-cache flash clear */
1117     case 0x37: /* D-cache flash clear */
1118         break;
1119     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1120         {
1121             int reg = (addr >> 8) & 3;
1122 
1123             switch (reg) {
1124             case 0: /* Breakpoint Value (Addr) */
1125                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1126                 break;
1127             case 1: /* Breakpoint Mask */
1128                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1129                 break;
1130             case 2: /* Breakpoint Control */
1131                 env->mmubpregs[reg] = (val & 0x7fULL);
1132                 break;
1133             case 3: /* Breakpoint Status */
1134                 env->mmubpregs[reg] = (val & 0xfULL);
1135                 break;
1136             }
1137             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1138                         env->mmuregs[reg]);
1139         }
1140         break;
1141     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1142         env->mmubpctrv = val & 0xffffffff;
1143         break;
1144     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1145         env->mmubpctrc = val & 0x3;
1146         break;
1147     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1148         env->mmubpctrs = val & 0x3;
1149         break;
1150     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1151         env->mmubpaction = val & 0x1fff;
1152         break;
1153     case ASI_USERTXT: /* User code access, XXX */
1154     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1155     default:
1156         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1157         break;
1158 
1159     case ASI_USERDATA: /* User data access */
1160     case ASI_KERNELDATA: /* Supervisor data access */
1161     case ASI_P:
1162     case ASI_M_BYPASS:    /* MMU passthrough */
1163     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1164     case ASI_M_BCOPY: /* Block copy, sta access */
1165     case ASI_M_BFILL: /* Block fill, stda access */
1166         /* These are always handled inline.  */
1167         g_assert_not_reached();
1168     }
1169 #ifdef DEBUG_ASI
1170     dump_asi("write", addr, asi, size, val);
1171 #endif
1172 }
1173 
1174 #endif /* CONFIG_USER_ONLY */
1175 #else /* TARGET_SPARC64 */
1176 
1177 #ifdef CONFIG_USER_ONLY
1178 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1179                        int asi, uint32_t memop)
1180 {
1181     int size = 1 << (memop & MO_SIZE);
1182     int sign = memop & MO_SIGN;
1183     uint64_t ret = 0;
1184 
1185     if (asi < 0x80) {
1186         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1187     }
1188     do_check_align(env, addr, size - 1, GETPC());
1189     addr = asi_address_mask(env, asi, addr);
1190 
1191     switch (asi) {
1192     case ASI_PNF:  /* Primary no-fault */
1193     case ASI_PNFL: /* Primary no-fault LE */
1194     case ASI_SNF:  /* Secondary no-fault */
1195     case ASI_SNFL: /* Secondary no-fault LE */
1196         if (page_check_range(addr, size, PAGE_READ) == -1) {
1197             ret = 0;
1198             break;
1199         }
1200         switch (size) {
1201         case 1:
1202             ret = cpu_ldub_data(env, addr);
1203             break;
1204         case 2:
1205             ret = cpu_lduw_data(env, addr);
1206             break;
1207         case 4:
1208             ret = cpu_ldl_data(env, addr);
1209             break;
1210         case 8:
1211             ret = cpu_ldq_data(env, addr);
1212             break;
1213         default:
1214             g_assert_not_reached();
1215         }
1216         break;
1217         break;
1218 
1219     case ASI_P: /* Primary */
1220     case ASI_PL: /* Primary LE */
1221     case ASI_S:  /* Secondary */
1222     case ASI_SL: /* Secondary LE */
1223         /* These are always handled inline.  */
1224         g_assert_not_reached();
1225 
1226     default:
1227         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1228     }
1229 
1230     /* Convert from little endian */
1231     switch (asi) {
1232     case ASI_PNFL: /* Primary no-fault LE */
1233     case ASI_SNFL: /* Secondary no-fault LE */
1234         switch (size) {
1235         case 2:
1236             ret = bswap16(ret);
1237             break;
1238         case 4:
1239             ret = bswap32(ret);
1240             break;
1241         case 8:
1242             ret = bswap64(ret);
1243             break;
1244         }
1245     }
1246 
1247     /* Convert to signed number */
1248     if (sign) {
1249         switch (size) {
1250         case 1:
1251             ret = (int8_t) ret;
1252             break;
1253         case 2:
1254             ret = (int16_t) ret;
1255             break;
1256         case 4:
1257             ret = (int32_t) ret;
1258             break;
1259         }
1260     }
1261 #ifdef DEBUG_ASI
1262     dump_asi("read", addr, asi, size, ret);
1263 #endif
1264     return ret;
1265 }
1266 
1267 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1268                    int asi, uint32_t memop)
1269 {
1270     int size = 1 << (memop & MO_SIZE);
1271 #ifdef DEBUG_ASI
1272     dump_asi("write", addr, asi, size, val);
1273 #endif
1274     if (asi < 0x80) {
1275         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1276     }
1277     do_check_align(env, addr, size - 1, GETPC());
1278 
1279     switch (asi) {
1280     case ASI_P:  /* Primary */
1281     case ASI_PL: /* Primary LE */
1282     case ASI_S:  /* Secondary */
1283     case ASI_SL: /* Secondary LE */
1284         /* These are always handled inline.  */
1285         g_assert_not_reached();
1286 
1287     case ASI_PNF:  /* Primary no-fault, RO */
1288     case ASI_SNF:  /* Secondary no-fault, RO */
1289     case ASI_PNFL: /* Primary no-fault LE, RO */
1290     case ASI_SNFL: /* Secondary no-fault LE, RO */
1291     default:
1292         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1293     }
1294 }
1295 
1296 #else /* CONFIG_USER_ONLY */
1297 
1298 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1299                        int asi, uint32_t memop)
1300 {
1301     int size = 1 << (memop & MO_SIZE);
1302     int sign = memop & MO_SIGN;
1303     CPUState *cs = env_cpu(env);
1304     uint64_t ret = 0;
1305 #if defined(DEBUG_ASI)
1306     target_ulong last_addr = addr;
1307 #endif
1308 
1309     asi &= 0xff;
1310 
1311     do_check_asi(env, asi, GETPC());
1312     do_check_align(env, addr, size - 1, GETPC());
1313     addr = asi_address_mask(env, asi, addr);
1314 
1315     switch (asi) {
1316     case ASI_PNF:
1317     case ASI_PNFL:
1318     case ASI_SNF:
1319     case ASI_SNFL:
1320         {
1321             TCGMemOpIdx oi;
1322             int idx = (env->pstate & PS_PRIV
1323                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1324                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1325 
1326             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1327 #ifdef DEBUG_ASI
1328                 dump_asi("read ", last_addr, asi, size, ret);
1329 #endif
1330                 /* exception_index is set in get_physical_address_data. */
1331                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1332             }
1333             oi = make_memop_idx(memop, idx);
1334             switch (size) {
1335             case 1:
1336                 ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1337                 break;
1338             case 2:
1339                 if (asi & 8) {
1340                     ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1341                 } else {
1342                     ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1343                 }
1344                 break;
1345             case 4:
1346                 if (asi & 8) {
1347                     ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1348                 } else {
1349                     ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1350                 }
1351                 break;
1352             case 8:
1353                 if (asi & 8) {
1354                     ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1355                 } else {
1356                     ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1357                 }
1358                 break;
1359             default:
1360                 g_assert_not_reached();
1361             }
1362         }
1363         break;
1364 
1365     case ASI_AIUP:  /* As if user primary */
1366     case ASI_AIUS:  /* As if user secondary */
1367     case ASI_AIUPL: /* As if user primary LE */
1368     case ASI_AIUSL: /* As if user secondary LE */
1369     case ASI_P:  /* Primary */
1370     case ASI_S:  /* Secondary */
1371     case ASI_PL: /* Primary LE */
1372     case ASI_SL: /* Secondary LE */
1373     case ASI_REAL:      /* Bypass */
1374     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1375     case ASI_REAL_L:    /* Bypass LE */
1376     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1377     case ASI_N:  /* Nucleus */
1378     case ASI_NL: /* Nucleus Little Endian (LE) */
1379     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1380     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1381     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1382     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1383     case ASI_TWINX_REAL:   /* Real address, twinx */
1384     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1385     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1386     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1387     case ASI_TWINX_N:  /* Nucleus, twinx */
1388     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1389     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1390     case ASI_TWINX_P:  /* Primary, twinx */
1391     case ASI_TWINX_PL: /* Primary, twinx, LE */
1392     case ASI_TWINX_S:  /* Secondary, twinx */
1393     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1394         /* These are always handled inline.  */
1395         g_assert_not_reached();
1396 
1397     case ASI_UPA_CONFIG: /* UPA config */
1398         /* XXX */
1399         break;
1400     case ASI_LSU_CONTROL: /* LSU */
1401         ret = env->lsu;
1402         break;
1403     case ASI_IMMU: /* I-MMU regs */
1404         {
1405             int reg = (addr >> 3) & 0xf;
1406             switch (reg) {
1407             case 0:
1408                 /* 0x00 I-TSB Tag Target register */
1409                 ret = ultrasparc_tag_target(env->immu.tag_access);
1410                 break;
1411             case 3: /* SFSR */
1412                 ret = env->immu.sfsr;
1413                 break;
1414             case 5: /* TSB access */
1415                 ret = env->immu.tsb;
1416                 break;
1417             case 6:
1418                 /* 0x30 I-TSB Tag Access register */
1419                 ret = env->immu.tag_access;
1420                 break;
1421             default:
1422                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1423                 ret = 0;
1424             }
1425             break;
1426         }
1427     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1428         {
1429             /* env->immuregs[5] holds I-MMU TSB register value
1430                env->immuregs[6] holds I-MMU Tag Access register value */
1431             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1432             break;
1433         }
1434     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1435         {
1436             /* env->immuregs[5] holds I-MMU TSB register value
1437                env->immuregs[6] holds I-MMU Tag Access register value */
1438             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1439             break;
1440         }
1441     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1442         {
1443             int reg = (addr >> 3) & 0x3f;
1444 
1445             ret = env->itlb[reg].tte;
1446             break;
1447         }
1448     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1449         {
1450             int reg = (addr >> 3) & 0x3f;
1451 
1452             ret = env->itlb[reg].tag;
1453             break;
1454         }
1455     case ASI_DMMU: /* D-MMU regs */
1456         {
1457             int reg = (addr >> 3) & 0xf;
1458             switch (reg) {
1459             case 0:
1460                 /* 0x00 D-TSB Tag Target register */
1461                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1462                 break;
1463             case 1: /* 0x08 Primary Context */
1464                 ret = env->dmmu.mmu_primary_context;
1465                 break;
1466             case 2: /* 0x10 Secondary Context */
1467                 ret = env->dmmu.mmu_secondary_context;
1468                 break;
1469             case 3: /* SFSR */
1470                 ret = env->dmmu.sfsr;
1471                 break;
1472             case 4: /* 0x20 SFAR */
1473                 ret = env->dmmu.sfar;
1474                 break;
1475             case 5: /* 0x28 TSB access */
1476                 ret = env->dmmu.tsb;
1477                 break;
1478             case 6: /* 0x30 D-TSB Tag Access register */
1479                 ret = env->dmmu.tag_access;
1480                 break;
1481             case 7:
1482                 ret = env->dmmu.virtual_watchpoint;
1483                 break;
1484             case 8:
1485                 ret = env->dmmu.physical_watchpoint;
1486                 break;
1487             default:
1488                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1489                 ret = 0;
1490             }
1491             break;
1492         }
1493     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1494         {
1495             /* env->dmmuregs[5] holds D-MMU TSB register value
1496                env->dmmuregs[6] holds D-MMU Tag Access register value */
1497             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1498             break;
1499         }
1500     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1501         {
1502             /* env->dmmuregs[5] holds D-MMU TSB register value
1503                env->dmmuregs[6] holds D-MMU Tag Access register value */
1504             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1505             break;
1506         }
1507     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1508         {
1509             int reg = (addr >> 3) & 0x3f;
1510 
1511             ret = env->dtlb[reg].tte;
1512             break;
1513         }
1514     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1515         {
1516             int reg = (addr >> 3) & 0x3f;
1517 
1518             ret = env->dtlb[reg].tag;
1519             break;
1520         }
1521     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1522         break;
1523     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1524         ret = env->ivec_status;
1525         break;
1526     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1527         {
1528             int reg = (addr >> 4) & 0x3;
1529             if (reg < 3) {
1530                 ret = env->ivec_data[reg];
1531             }
1532             break;
1533         }
1534     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1535         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1536             /* Hyperprivileged access only */
1537             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1538         }
1539         /* fall through */
1540     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1541         {
1542             unsigned int i = (addr >> 3) & 0x7;
1543             ret = env->scratch[i];
1544             break;
1545         }
1546     case ASI_MMU: /* UA2005 Context ID registers */
1547         switch ((addr >> 3) & 0x3) {
1548         case 1:
1549             ret = env->dmmu.mmu_primary_context;
1550             break;
1551         case 2:
1552             ret = env->dmmu.mmu_secondary_context;
1553             break;
1554         default:
1555           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1556         }
1557         break;
1558     case ASI_DCACHE_DATA:     /* D-cache data */
1559     case ASI_DCACHE_TAG:      /* D-cache tag access */
1560     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1561     case ASI_AFSR:            /* E-cache asynchronous fault status */
1562     case ASI_AFAR:            /* E-cache asynchronous fault address */
1563     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1564     case ASI_IC_INSTR:        /* I-cache instruction access */
1565     case ASI_IC_TAG:          /* I-cache tag access */
1566     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1567     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1568     case ASI_EC_W:            /* E-cache tag */
1569     case ASI_EC_R:            /* E-cache tag */
1570         break;
1571     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1572     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1573     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1574     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1575     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1576     case ASI_INTR_W:              /* Interrupt vector, WO */
1577     default:
1578         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1579         ret = 0;
1580         break;
1581     }
1582 
1583     /* Convert to signed number */
1584     if (sign) {
1585         switch (size) {
1586         case 1:
1587             ret = (int8_t) ret;
1588             break;
1589         case 2:
1590             ret = (int16_t) ret;
1591             break;
1592         case 4:
1593             ret = (int32_t) ret;
1594             break;
1595         default:
1596             break;
1597         }
1598     }
1599 #ifdef DEBUG_ASI
1600     dump_asi("read ", last_addr, asi, size, ret);
1601 #endif
1602     return ret;
1603 }
1604 
1605 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1606                    int asi, uint32_t memop)
1607 {
1608     int size = 1 << (memop & MO_SIZE);
1609     CPUState *cs = env_cpu(env);
1610 
1611 #ifdef DEBUG_ASI
1612     dump_asi("write", addr, asi, size, val);
1613 #endif
1614 
1615     asi &= 0xff;
1616 
1617     do_check_asi(env, asi, GETPC());
1618     do_check_align(env, addr, size - 1, GETPC());
1619     addr = asi_address_mask(env, asi, addr);
1620 
1621     switch (asi) {
1622     case ASI_AIUP:  /* As if user primary */
1623     case ASI_AIUS:  /* As if user secondary */
1624     case ASI_AIUPL: /* As if user primary LE */
1625     case ASI_AIUSL: /* As if user secondary LE */
1626     case ASI_P:  /* Primary */
1627     case ASI_S:  /* Secondary */
1628     case ASI_PL: /* Primary LE */
1629     case ASI_SL: /* Secondary LE */
1630     case ASI_REAL:      /* Bypass */
1631     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1632     case ASI_REAL_L:    /* Bypass LE */
1633     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1634     case ASI_N:  /* Nucleus */
1635     case ASI_NL: /* Nucleus Little Endian (LE) */
1636     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1637     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1638     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1639     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1640     case ASI_TWINX_REAL:   /* Real address, twinx */
1641     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1642     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1643     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1644     case ASI_TWINX_N:  /* Nucleus, twinx */
1645     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1646     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1647     case ASI_TWINX_P:  /* Primary, twinx */
1648     case ASI_TWINX_PL: /* Primary, twinx, LE */
1649     case ASI_TWINX_S:  /* Secondary, twinx */
1650     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1651         /* These are always handled inline.  */
1652         g_assert_not_reached();
1653     /* these ASIs have different functions on UltraSPARC-IIIi
1654      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1655      */
1656     case 0x31:
1657     case 0x32:
1658     case 0x39:
1659     case 0x3a:
1660         if (cpu_has_hypervisor(env)) {
1661             /* UA2005
1662              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1663              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1664              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1665              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1666              */
1667             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1668             env->dmmu.sun4v_tsb_pointers[idx] = val;
1669         } else {
1670             helper_raise_exception(env, TT_ILL_INSN);
1671         }
1672         break;
1673     case 0x33:
1674     case 0x3b:
1675         if (cpu_has_hypervisor(env)) {
1676             /* UA2005
1677              * ASI_DMMU_CTX_ZERO_CONFIG
1678              * ASI_DMMU_CTX_NONZERO_CONFIG
1679              */
1680             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1681         } else {
1682             helper_raise_exception(env, TT_ILL_INSN);
1683         }
1684         break;
1685     case 0x35:
1686     case 0x36:
1687     case 0x3d:
1688     case 0x3e:
1689         if (cpu_has_hypervisor(env)) {
1690             /* UA2005
1691              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1692              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1693              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1694              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1695              */
1696             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1697             env->immu.sun4v_tsb_pointers[idx] = val;
1698         } else {
1699             helper_raise_exception(env, TT_ILL_INSN);
1700         }
1701       break;
1702     case 0x37:
1703     case 0x3f:
1704         if (cpu_has_hypervisor(env)) {
1705             /* UA2005
1706              * ASI_IMMU_CTX_ZERO_CONFIG
1707              * ASI_IMMU_CTX_NONZERO_CONFIG
1708              */
1709             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1710         } else {
1711           helper_raise_exception(env, TT_ILL_INSN);
1712         }
1713         break;
1714     case ASI_UPA_CONFIG: /* UPA config */
1715         /* XXX */
1716         return;
1717     case ASI_LSU_CONTROL: /* LSU */
1718         env->lsu = val & (DMMU_E | IMMU_E);
1719         return;
1720     case ASI_IMMU: /* I-MMU regs */
1721         {
1722             int reg = (addr >> 3) & 0xf;
1723             uint64_t oldreg;
1724 
1725             oldreg = env->immu.mmuregs[reg];
1726             switch (reg) {
1727             case 0: /* RO */
1728                 return;
1729             case 1: /* Not in I-MMU */
1730             case 2:
1731                 return;
1732             case 3: /* SFSR */
1733                 if ((val & 1) == 0) {
1734                     val = 0; /* Clear SFSR */
1735                 }
1736                 env->immu.sfsr = val;
1737                 break;
1738             case 4: /* RO */
1739                 return;
1740             case 5: /* TSB access */
1741                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1742                             PRIx64 "\n", env->immu.tsb, val);
1743                 env->immu.tsb = val;
1744                 break;
1745             case 6: /* Tag access */
1746                 env->immu.tag_access = val;
1747                 break;
1748             case 7:
1749             case 8:
1750                 return;
1751             default:
1752                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1753                 break;
1754             }
1755 
1756             if (oldreg != env->immu.mmuregs[reg]) {
1757                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1758                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1759             }
1760 #ifdef DEBUG_MMU
1761             dump_mmu(env);
1762 #endif
1763             return;
1764         }
1765     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1766         /* ignore real translation entries */
1767         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1768             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1769                                  val, "immu", env, addr);
1770         }
1771         return;
1772     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1773         {
1774             /* TODO: auto demap */
1775 
1776             unsigned int i = (addr >> 3) & 0x3f;
1777 
1778             /* ignore real translation entries */
1779             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1780                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1781                                   sun4v_tte_to_sun4u(env, addr, val), env);
1782             }
1783 #ifdef DEBUG_MMU
1784             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1785             dump_mmu(env);
1786 #endif
1787             return;
1788         }
1789     case ASI_IMMU_DEMAP: /* I-MMU demap */
1790         demap_tlb(env->itlb, addr, "immu", env);
1791         return;
1792     case ASI_DMMU: /* D-MMU regs */
1793         {
1794             int reg = (addr >> 3) & 0xf;
1795             uint64_t oldreg;
1796 
1797             oldreg = env->dmmu.mmuregs[reg];
1798             switch (reg) {
1799             case 0: /* RO */
1800             case 4:
1801                 return;
1802             case 3: /* SFSR */
1803                 if ((val & 1) == 0) {
1804                     val = 0; /* Clear SFSR, Fault address */
1805                     env->dmmu.sfar = 0;
1806                 }
1807                 env->dmmu.sfsr = val;
1808                 break;
1809             case 1: /* Primary context */
1810                 env->dmmu.mmu_primary_context = val;
1811                 /* can be optimized to only flush MMU_USER_IDX
1812                    and MMU_KERNEL_IDX entries */
1813                 tlb_flush(cs);
1814                 break;
1815             case 2: /* Secondary context */
1816                 env->dmmu.mmu_secondary_context = val;
1817                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1818                    and MMU_KERNEL_SECONDARY_IDX entries */
1819                 tlb_flush(cs);
1820                 break;
1821             case 5: /* TSB access */
1822                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1823                             PRIx64 "\n", env->dmmu.tsb, val);
1824                 env->dmmu.tsb = val;
1825                 break;
1826             case 6: /* Tag access */
1827                 env->dmmu.tag_access = val;
1828                 break;
1829             case 7: /* Virtual Watchpoint */
1830                 env->dmmu.virtual_watchpoint = val;
1831                 break;
1832             case 8: /* Physical Watchpoint */
1833                 env->dmmu.physical_watchpoint = val;
1834                 break;
1835             default:
1836                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1837                 break;
1838             }
1839 
1840             if (oldreg != env->dmmu.mmuregs[reg]) {
1841                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1842                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1843             }
1844 #ifdef DEBUG_MMU
1845             dump_mmu(env);
1846 #endif
1847             return;
1848         }
1849     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1850       /* ignore real translation entries */
1851       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1852           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1853                                val, "dmmu", env, addr);
1854       }
1855       return;
1856     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1857         {
1858             unsigned int i = (addr >> 3) & 0x3f;
1859 
1860             /* ignore real translation entries */
1861             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1862                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1863                                   sun4v_tte_to_sun4u(env, addr, val), env);
1864             }
1865 #ifdef DEBUG_MMU
1866             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1867             dump_mmu(env);
1868 #endif
1869             return;
1870         }
1871     case ASI_DMMU_DEMAP: /* D-MMU demap */
1872         demap_tlb(env->dtlb, addr, "dmmu", env);
1873         return;
1874     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1875         env->ivec_status = val & 0x20;
1876         return;
1877     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1878         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1879             /* Hyperprivileged access only */
1880             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1881         }
1882         /* fall through */
1883     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1884         {
1885             unsigned int i = (addr >> 3) & 0x7;
1886             env->scratch[i] = val;
1887             return;
1888         }
1889     case ASI_MMU: /* UA2005 Context ID registers */
1890         {
1891           switch ((addr >> 3) & 0x3) {
1892           case 1:
1893               env->dmmu.mmu_primary_context = val;
1894               env->immu.mmu_primary_context = val;
1895               tlb_flush_by_mmuidx(cs,
1896                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1897               break;
1898           case 2:
1899               env->dmmu.mmu_secondary_context = val;
1900               env->immu.mmu_secondary_context = val;
1901               tlb_flush_by_mmuidx(cs,
1902                                   (1 << MMU_USER_SECONDARY_IDX) |
1903                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1904               break;
1905           default:
1906               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1907           }
1908         }
1909         return;
1910     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1911     case ASI_DCACHE_DATA: /* D-cache data */
1912     case ASI_DCACHE_TAG: /* D-cache tag access */
1913     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1914     case ASI_AFSR: /* E-cache asynchronous fault status */
1915     case ASI_AFAR: /* E-cache asynchronous fault address */
1916     case ASI_EC_TAG_DATA: /* E-cache tag data */
1917     case ASI_IC_INSTR: /* I-cache instruction access */
1918     case ASI_IC_TAG: /* I-cache tag access */
1919     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1920     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1921     case ASI_EC_W: /* E-cache tag */
1922     case ASI_EC_R: /* E-cache tag */
1923         return;
1924     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1925     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1926     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1927     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1928     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1929     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1930     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1931     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1932     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1933     case ASI_PNF: /* Primary no-fault, RO */
1934     case ASI_SNF: /* Secondary no-fault, RO */
1935     case ASI_PNFL: /* Primary no-fault LE, RO */
1936     case ASI_SNFL: /* Secondary no-fault LE, RO */
1937     default:
1938         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1939         return;
1940     }
1941 }
1942 #endif /* CONFIG_USER_ONLY */
1943 #endif /* TARGET_SPARC64 */
1944 
1945 #if !defined(CONFIG_USER_ONLY)
1946 
1947 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1948                                      vaddr addr, unsigned size,
1949                                      MMUAccessType access_type,
1950                                      int mmu_idx, MemTxAttrs attrs,
1951                                      MemTxResult response, uintptr_t retaddr)
1952 {
1953     bool is_write = access_type == MMU_DATA_STORE;
1954     bool is_exec = access_type == MMU_INST_FETCH;
1955     bool is_asi = false;
1956 
1957     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1958                           is_asi, size, retaddr);
1959 }
1960 #endif
1961 
1962 #if !defined(CONFIG_USER_ONLY)
1963 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1964                                                  MMUAccessType access_type,
1965                                                  int mmu_idx,
1966                                                  uintptr_t retaddr)
1967 {
1968     SPARCCPU *cpu = SPARC_CPU(cs);
1969     CPUSPARCState *env = &cpu->env;
1970 
1971 #ifdef DEBUG_UNALIGNED
1972     printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1973            "\n", addr, env->pc);
1974 #endif
1975     cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1976 }
1977 #endif
1978