1 /* 2 * Helpers for loads and stores 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "tcg.h" 23 #include "exec/helper-proto.h" 24 #include "exec/exec-all.h" 25 #include "exec/cpu_ldst.h" 26 #include "asi.h" 27 28 //#define DEBUG_MMU 29 //#define DEBUG_MXCC 30 //#define DEBUG_UNALIGNED 31 //#define DEBUG_UNASSIGNED 32 //#define DEBUG_ASI 33 //#define DEBUG_CACHE_CONTROL 34 35 #ifdef DEBUG_MMU 36 #define DPRINTF_MMU(fmt, ...) \ 37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) 38 #else 39 #define DPRINTF_MMU(fmt, ...) do {} while (0) 40 #endif 41 42 #ifdef DEBUG_MXCC 43 #define DPRINTF_MXCC(fmt, ...) \ 44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) 45 #else 46 #define DPRINTF_MXCC(fmt, ...) do {} while (0) 47 #endif 48 49 #ifdef DEBUG_ASI 50 #define DPRINTF_ASI(fmt, ...) \ 51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) 52 #endif 53 54 #ifdef DEBUG_CACHE_CONTROL 55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \ 56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) 57 #else 58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) 59 #endif 60 61 #ifdef TARGET_SPARC64 62 #ifndef TARGET_ABI32 63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM) 64 #else 65 #define AM_CHECK(env1) (1) 66 #endif 67 #endif 68 69 #define QT0 (env->qt0) 70 #define QT1 (env->qt1) 71 72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) 73 /* Calculates TSB pointer value for fault page size 74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers 75 * UA2005 holds the page size configuration in mmu_ctx registers */ 76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env, 77 const SparcV9MMU *mmu, const int idx) 78 { 79 uint64_t tsb_register; 80 int page_size; 81 if (cpu_has_hypervisor(env)) { 82 int tsb_index = 0; 83 int ctx = mmu->tag_access & 0x1fffULL; 84 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0]; 85 tsb_index = idx; 86 tsb_index |= ctx ? 2 : 0; 87 page_size = idx ? ctx_register >> 8 : ctx_register; 88 page_size &= 7; 89 tsb_register = mmu->sun4v_tsb_pointers[tsb_index]; 90 } else { 91 page_size = idx; 92 tsb_register = mmu->tsb; 93 } 94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; 95 int tsb_size = tsb_register & 0xf; 96 97 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size; 98 99 /* move va bits to correct position, 100 * the context bits will be masked out later */ 101 uint64_t va = mmu->tag_access >> (3 * page_size + 9); 102 103 /* calculate tsb_base mask and adjust va if split is in use */ 104 if (tsb_split) { 105 if (idx == 0) { 106 va &= ~(1ULL << (13 + tsb_size)); 107 } else { 108 va |= (1ULL << (13 + tsb_size)); 109 } 110 tsb_base_mask <<= 1; 111 } 112 113 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; 114 } 115 116 /* Calculates tag target register value by reordering bits 117 in tag access register */ 118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) 119 { 120 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); 121 } 122 123 static void replace_tlb_entry(SparcTLBEntry *tlb, 124 uint64_t tlb_tag, uint64_t tlb_tte, 125 CPUSPARCState *env1) 126 { 127 target_ulong mask, size, va, offset; 128 129 /* flush page range if translation is valid */ 130 if (TTE_IS_VALID(tlb->tte)) { 131 CPUState *cs = CPU(sparc_env_get_cpu(env1)); 132 133 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte); 134 mask = 1ULL + ~size; 135 136 va = tlb->tag & mask; 137 138 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { 139 tlb_flush_page(cs, va + offset); 140 } 141 } 142 143 tlb->tag = tlb_tag; 144 tlb->tte = tlb_tte; 145 } 146 147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, 148 const char *strmmu, CPUSPARCState *env1) 149 { 150 unsigned int i; 151 target_ulong mask; 152 uint64_t context; 153 154 int is_demap_context = (demap_addr >> 6) & 1; 155 156 /* demap context */ 157 switch ((demap_addr >> 4) & 3) { 158 case 0: /* primary */ 159 context = env1->dmmu.mmu_primary_context; 160 break; 161 case 1: /* secondary */ 162 context = env1->dmmu.mmu_secondary_context; 163 break; 164 case 2: /* nucleus */ 165 context = 0; 166 break; 167 case 3: /* reserved */ 168 default: 169 return; 170 } 171 172 for (i = 0; i < 64; i++) { 173 if (TTE_IS_VALID(tlb[i].tte)) { 174 175 if (is_demap_context) { 176 /* will remove non-global entries matching context value */ 177 if (TTE_IS_GLOBAL(tlb[i].tte) || 178 !tlb_compare_context(&tlb[i], context)) { 179 continue; 180 } 181 } else { 182 /* demap page 183 will remove any entry matching VA */ 184 mask = 0xffffffffffffe000ULL; 185 mask <<= 3 * ((tlb[i].tte >> 61) & 3); 186 187 if (!compare_masked(demap_addr, tlb[i].tag, mask)) { 188 continue; 189 } 190 191 /* entry should be global or matching context value */ 192 if (!TTE_IS_GLOBAL(tlb[i].tte) && 193 !tlb_compare_context(&tlb[i], context)) { 194 continue; 195 } 196 } 197 198 replace_tlb_entry(&tlb[i], 0, 0, env1); 199 #ifdef DEBUG_MMU 200 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); 201 dump_mmu(stdout, fprintf, env1); 202 #endif 203 } 204 } 205 } 206 207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag, 208 uint64_t sun4v_tte) 209 { 210 uint64_t sun4u_tte; 211 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) { 212 /* is already in the sun4u format */ 213 return sun4v_tte; 214 } 215 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT); 216 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */ 217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT); 218 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT); 219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT); 220 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005, 221 TTE_SIDEEFFECT_BIT); 222 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT); 223 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT); 224 return sun4u_tte; 225 } 226 227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, 228 uint64_t tlb_tag, uint64_t tlb_tte, 229 const char *strmmu, CPUSPARCState *env1, 230 uint64_t addr) 231 { 232 unsigned int i, replace_used; 233 234 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte); 235 if (cpu_has_hypervisor(env1)) { 236 uint64_t new_vaddr = tlb_tag & ~0x1fffULL; 237 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte); 238 uint32_t new_ctx = tlb_tag & 0x1fffU; 239 for (i = 0; i < 64; i++) { 240 uint32_t ctx = tlb[i].tag & 0x1fffU; 241 /* check if new mapping overlaps an existing one */ 242 if (new_ctx == ctx) { 243 uint64_t vaddr = tlb[i].tag & ~0x1fffULL; 244 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte); 245 if (new_vaddr == vaddr 246 || (new_vaddr < vaddr + size 247 && vaddr < new_vaddr + new_size)) { 248 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr, 249 new_vaddr); 250 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 251 return; 252 } 253 } 254 255 } 256 } 257 /* Try replacing invalid entry */ 258 for (i = 0; i < 64; i++) { 259 if (!TTE_IS_VALID(tlb[i].tte)) { 260 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 261 #ifdef DEBUG_MMU 262 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); 263 dump_mmu(stdout, fprintf, env1); 264 #endif 265 return; 266 } 267 } 268 269 /* All entries are valid, try replacing unlocked entry */ 270 271 for (replace_used = 0; replace_used < 2; ++replace_used) { 272 273 /* Used entries are not replaced on first pass */ 274 275 for (i = 0; i < 64; i++) { 276 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { 277 278 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 279 #ifdef DEBUG_MMU 280 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", 281 strmmu, (replace_used ? "used" : "unused"), i); 282 dump_mmu(stdout, fprintf, env1); 283 #endif 284 return; 285 } 286 } 287 288 /* Now reset used bit and search for unused entries again */ 289 290 for (i = 0; i < 64; i++) { 291 TTE_SET_UNUSED(tlb[i].tte); 292 } 293 } 294 295 #ifdef DEBUG_MMU 296 DPRINTF_MMU("%s lru replacement: no free entries available, " 297 "replacing the last one\n", strmmu); 298 #endif 299 /* corner case: the last entry is replaced anyway */ 300 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1); 301 } 302 303 #endif 304 305 #ifdef TARGET_SPARC64 306 /* returns true if access using this ASI is to have address translated by MMU 307 otherwise access is to raw physical address */ 308 /* TODO: check sparc32 bits */ 309 static inline int is_translating_asi(int asi) 310 { 311 /* Ultrasparc IIi translating asi 312 - note this list is defined by cpu implementation 313 */ 314 switch (asi) { 315 case 0x04 ... 0x11: 316 case 0x16 ... 0x19: 317 case 0x1E ... 0x1F: 318 case 0x24 ... 0x2C: 319 case 0x70 ... 0x73: 320 case 0x78 ... 0x79: 321 case 0x80 ... 0xFF: 322 return 1; 323 324 default: 325 return 0; 326 } 327 } 328 329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr) 330 { 331 if (AM_CHECK(env1)) { 332 addr &= 0xffffffffULL; 333 } 334 return addr; 335 } 336 337 static inline target_ulong asi_address_mask(CPUSPARCState *env, 338 int asi, target_ulong addr) 339 { 340 if (is_translating_asi(asi)) { 341 addr = address_mask(env, addr); 342 } 343 return addr; 344 } 345 346 #ifndef CONFIG_USER_ONLY 347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra) 348 { 349 /* ASIs >= 0x80 are user mode. 350 * ASIs >= 0x30 are hyper mode (or super if hyper is not available). 351 * ASIs <= 0x2f are super mode. 352 */ 353 if (asi < 0x80 354 && !cpu_hypervisor_mode(env) 355 && (!cpu_supervisor_mode(env) 356 || (asi >= 0x30 && cpu_has_hypervisor(env)))) { 357 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra); 358 } 359 } 360 #endif /* !CONFIG_USER_ONLY */ 361 #endif 362 363 static void do_check_align(CPUSPARCState *env, target_ulong addr, 364 uint32_t align, uintptr_t ra) 365 { 366 if (addr & align) { 367 #ifdef DEBUG_UNALIGNED 368 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx 369 "\n", addr, env->pc); 370 #endif 371 cpu_raise_exception_ra(env, TT_UNALIGNED, ra); 372 } 373 } 374 375 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align) 376 { 377 do_check_align(env, addr, align, GETPC()); 378 } 379 380 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ 381 defined(DEBUG_MXCC) 382 static void dump_mxcc(CPUSPARCState *env) 383 { 384 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 385 "\n", 386 env->mxccdata[0], env->mxccdata[1], 387 env->mxccdata[2], env->mxccdata[3]); 388 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 389 "\n" 390 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 391 "\n", 392 env->mxccregs[0], env->mxccregs[1], 393 env->mxccregs[2], env->mxccregs[3], 394 env->mxccregs[4], env->mxccregs[5], 395 env->mxccregs[6], env->mxccregs[7]); 396 } 397 #endif 398 399 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ 400 && defined(DEBUG_ASI) 401 static void dump_asi(const char *txt, target_ulong addr, int asi, int size, 402 uint64_t r1) 403 { 404 switch (size) { 405 case 1: 406 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, 407 addr, asi, r1 & 0xff); 408 break; 409 case 2: 410 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, 411 addr, asi, r1 & 0xffff); 412 break; 413 case 4: 414 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, 415 addr, asi, r1 & 0xffffffff); 416 break; 417 case 8: 418 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, 419 addr, asi, r1); 420 break; 421 } 422 } 423 #endif 424 425 #ifndef TARGET_SPARC64 426 #ifndef CONFIG_USER_ONLY 427 428 429 /* Leon3 cache control */ 430 431 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr, 432 uint64_t val, int size) 433 { 434 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", 435 addr, val, size); 436 437 if (size != 4) { 438 DPRINTF_CACHE_CONTROL("32bits only\n"); 439 return; 440 } 441 442 switch (addr) { 443 case 0x00: /* Cache control */ 444 445 /* These values must always be read as zeros */ 446 val &= ~CACHE_CTRL_FD; 447 val &= ~CACHE_CTRL_FI; 448 val &= ~CACHE_CTRL_IB; 449 val &= ~CACHE_CTRL_IP; 450 val &= ~CACHE_CTRL_DP; 451 452 env->cache_control = val; 453 break; 454 case 0x04: /* Instruction cache configuration */ 455 case 0x08: /* Data cache configuration */ 456 /* Read Only */ 457 break; 458 default: 459 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); 460 break; 461 }; 462 } 463 464 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr, 465 int size) 466 { 467 uint64_t ret = 0; 468 469 if (size != 4) { 470 DPRINTF_CACHE_CONTROL("32bits only\n"); 471 return 0; 472 } 473 474 switch (addr) { 475 case 0x00: /* Cache control */ 476 ret = env->cache_control; 477 break; 478 479 /* Configuration registers are read and only always keep those 480 predefined values */ 481 482 case 0x04: /* Instruction cache configuration */ 483 ret = 0x10220000; 484 break; 485 case 0x08: /* Data cache configuration */ 486 ret = 0x18220000; 487 break; 488 default: 489 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); 490 break; 491 }; 492 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", 493 addr, ret, size); 494 return ret; 495 } 496 497 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 498 int asi, uint32_t memop) 499 { 500 int size = 1 << (memop & MO_SIZE); 501 int sign = memop & MO_SIGN; 502 CPUState *cs = CPU(sparc_env_get_cpu(env)); 503 uint64_t ret = 0; 504 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) 505 uint32_t last_addr = addr; 506 #endif 507 508 do_check_align(env, addr, size - 1, GETPC()); 509 switch (asi) { 510 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ 511 /* case ASI_LEON_CACHEREGS: Leon3 cache control */ 512 switch (addr) { 513 case 0x00: /* Leon3 Cache Control */ 514 case 0x08: /* Leon3 Instruction Cache config */ 515 case 0x0C: /* Leon3 Date Cache config */ 516 if (env->def.features & CPU_FEATURE_CACHE_CTRL) { 517 ret = leon3_cache_control_ld(env, addr, size); 518 } 519 break; 520 case 0x01c00a00: /* MXCC control register */ 521 if (size == 8) { 522 ret = env->mxccregs[3]; 523 } else { 524 qemu_log_mask(LOG_UNIMP, 525 "%08x: unimplemented access size: %d\n", addr, 526 size); 527 } 528 break; 529 case 0x01c00a04: /* MXCC control register */ 530 if (size == 4) { 531 ret = env->mxccregs[3]; 532 } else { 533 qemu_log_mask(LOG_UNIMP, 534 "%08x: unimplemented access size: %d\n", addr, 535 size); 536 } 537 break; 538 case 0x01c00c00: /* Module reset register */ 539 if (size == 8) { 540 ret = env->mxccregs[5]; 541 /* should we do something here? */ 542 } else { 543 qemu_log_mask(LOG_UNIMP, 544 "%08x: unimplemented access size: %d\n", addr, 545 size); 546 } 547 break; 548 case 0x01c00f00: /* MBus port address register */ 549 if (size == 8) { 550 ret = env->mxccregs[7]; 551 } else { 552 qemu_log_mask(LOG_UNIMP, 553 "%08x: unimplemented access size: %d\n", addr, 554 size); 555 } 556 break; 557 default: 558 qemu_log_mask(LOG_UNIMP, 559 "%08x: unimplemented address, size: %d\n", addr, 560 size); 561 break; 562 } 563 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " 564 "addr = %08x -> ret = %" PRIx64 "," 565 "addr = %08x\n", asi, size, sign, last_addr, ret, addr); 566 #ifdef DEBUG_MXCC 567 dump_mxcc(env); 568 #endif 569 break; 570 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */ 571 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */ 572 { 573 int mmulev; 574 575 mmulev = (addr >> 8) & 15; 576 if (mmulev > 4) { 577 ret = 0; 578 } else { 579 ret = mmu_probe(env, addr, mmulev); 580 } 581 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", 582 addr, mmulev, ret); 583 } 584 break; 585 case ASI_M_MMUREGS: /* SuperSparc MMU regs */ 586 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */ 587 { 588 int reg = (addr >> 8) & 0x1f; 589 590 ret = env->mmuregs[reg]; 591 if (reg == 3) { /* Fault status cleared on read */ 592 env->mmuregs[3] = 0; 593 } else if (reg == 0x13) { /* Fault status read */ 594 ret = env->mmuregs[3]; 595 } else if (reg == 0x14) { /* Fault address read */ 596 ret = env->mmuregs[4]; 597 } 598 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); 599 } 600 break; 601 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ 602 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ 603 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ 604 break; 605 case ASI_KERNELTXT: /* Supervisor code access */ 606 switch (size) { 607 case 1: 608 ret = cpu_ldub_code(env, addr); 609 break; 610 case 2: 611 ret = cpu_lduw_code(env, addr); 612 break; 613 default: 614 case 4: 615 ret = cpu_ldl_code(env, addr); 616 break; 617 case 8: 618 ret = cpu_ldq_code(env, addr); 619 break; 620 } 621 break; 622 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */ 623 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */ 624 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */ 625 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */ 626 break; 627 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ 628 switch (size) { 629 case 1: 630 ret = ldub_phys(cs->as, (hwaddr)addr 631 | ((hwaddr)(asi & 0xf) << 32)); 632 break; 633 case 2: 634 ret = lduw_phys(cs->as, (hwaddr)addr 635 | ((hwaddr)(asi & 0xf) << 32)); 636 break; 637 default: 638 case 4: 639 ret = ldl_phys(cs->as, (hwaddr)addr 640 | ((hwaddr)(asi & 0xf) << 32)); 641 break; 642 case 8: 643 ret = ldq_phys(cs->as, (hwaddr)addr 644 | ((hwaddr)(asi & 0xf) << 32)); 645 break; 646 } 647 break; 648 case 0x30: /* Turbosparc secondary cache diagnostic */ 649 case 0x31: /* Turbosparc RAM snoop */ 650 case 0x32: /* Turbosparc page table descriptor diagnostic */ 651 case 0x39: /* data cache diagnostic register */ 652 ret = 0; 653 break; 654 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ 655 { 656 int reg = (addr >> 8) & 3; 657 658 switch (reg) { 659 case 0: /* Breakpoint Value (Addr) */ 660 ret = env->mmubpregs[reg]; 661 break; 662 case 1: /* Breakpoint Mask */ 663 ret = env->mmubpregs[reg]; 664 break; 665 case 2: /* Breakpoint Control */ 666 ret = env->mmubpregs[reg]; 667 break; 668 case 3: /* Breakpoint Status */ 669 ret = env->mmubpregs[reg]; 670 env->mmubpregs[reg] = 0ULL; 671 break; 672 } 673 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, 674 ret); 675 } 676 break; 677 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ 678 ret = env->mmubpctrv; 679 break; 680 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ 681 ret = env->mmubpctrc; 682 break; 683 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ 684 ret = env->mmubpctrs; 685 break; 686 case 0x4c: /* SuperSPARC MMU Breakpoint Action */ 687 ret = env->mmubpaction; 688 break; 689 case ASI_USERTXT: /* User code access, XXX */ 690 default: 691 cpu_unassigned_access(cs, addr, false, false, asi, size); 692 ret = 0; 693 break; 694 695 case ASI_USERDATA: /* User data access */ 696 case ASI_KERNELDATA: /* Supervisor data access */ 697 case ASI_P: /* Implicit primary context data access (v9 only?) */ 698 case ASI_M_BYPASS: /* MMU passthrough */ 699 case ASI_LEON_BYPASS: /* LEON MMU passthrough */ 700 /* These are always handled inline. */ 701 g_assert_not_reached(); 702 } 703 if (sign) { 704 switch (size) { 705 case 1: 706 ret = (int8_t) ret; 707 break; 708 case 2: 709 ret = (int16_t) ret; 710 break; 711 case 4: 712 ret = (int32_t) ret; 713 break; 714 default: 715 break; 716 } 717 } 718 #ifdef DEBUG_ASI 719 dump_asi("read ", last_addr, asi, size, ret); 720 #endif 721 return ret; 722 } 723 724 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, 725 int asi, uint32_t memop) 726 { 727 int size = 1 << (memop & MO_SIZE); 728 SPARCCPU *cpu = sparc_env_get_cpu(env); 729 CPUState *cs = CPU(cpu); 730 731 do_check_align(env, addr, size - 1, GETPC()); 732 switch (asi) { 733 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ 734 /* case ASI_LEON_CACHEREGS: Leon3 cache control */ 735 switch (addr) { 736 case 0x00: /* Leon3 Cache Control */ 737 case 0x08: /* Leon3 Instruction Cache config */ 738 case 0x0C: /* Leon3 Date Cache config */ 739 if (env->def.features & CPU_FEATURE_CACHE_CTRL) { 740 leon3_cache_control_st(env, addr, val, size); 741 } 742 break; 743 744 case 0x01c00000: /* MXCC stream data register 0 */ 745 if (size == 8) { 746 env->mxccdata[0] = val; 747 } else { 748 qemu_log_mask(LOG_UNIMP, 749 "%08x: unimplemented access size: %d\n", addr, 750 size); 751 } 752 break; 753 case 0x01c00008: /* MXCC stream data register 1 */ 754 if (size == 8) { 755 env->mxccdata[1] = val; 756 } else { 757 qemu_log_mask(LOG_UNIMP, 758 "%08x: unimplemented access size: %d\n", addr, 759 size); 760 } 761 break; 762 case 0x01c00010: /* MXCC stream data register 2 */ 763 if (size == 8) { 764 env->mxccdata[2] = val; 765 } else { 766 qemu_log_mask(LOG_UNIMP, 767 "%08x: unimplemented access size: %d\n", addr, 768 size); 769 } 770 break; 771 case 0x01c00018: /* MXCC stream data register 3 */ 772 if (size == 8) { 773 env->mxccdata[3] = val; 774 } else { 775 qemu_log_mask(LOG_UNIMP, 776 "%08x: unimplemented access size: %d\n", addr, 777 size); 778 } 779 break; 780 case 0x01c00100: /* MXCC stream source */ 781 if (size == 8) { 782 env->mxccregs[0] = val; 783 } else { 784 qemu_log_mask(LOG_UNIMP, 785 "%08x: unimplemented access size: %d\n", addr, 786 size); 787 } 788 env->mxccdata[0] = ldq_phys(cs->as, 789 (env->mxccregs[0] & 0xffffffffULL) + 790 0); 791 env->mxccdata[1] = ldq_phys(cs->as, 792 (env->mxccregs[0] & 0xffffffffULL) + 793 8); 794 env->mxccdata[2] = ldq_phys(cs->as, 795 (env->mxccregs[0] & 0xffffffffULL) + 796 16); 797 env->mxccdata[3] = ldq_phys(cs->as, 798 (env->mxccregs[0] & 0xffffffffULL) + 799 24); 800 break; 801 case 0x01c00200: /* MXCC stream destination */ 802 if (size == 8) { 803 env->mxccregs[1] = val; 804 } else { 805 qemu_log_mask(LOG_UNIMP, 806 "%08x: unimplemented access size: %d\n", addr, 807 size); 808 } 809 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0, 810 env->mxccdata[0]); 811 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8, 812 env->mxccdata[1]); 813 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16, 814 env->mxccdata[2]); 815 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24, 816 env->mxccdata[3]); 817 break; 818 case 0x01c00a00: /* MXCC control register */ 819 if (size == 8) { 820 env->mxccregs[3] = val; 821 } else { 822 qemu_log_mask(LOG_UNIMP, 823 "%08x: unimplemented access size: %d\n", addr, 824 size); 825 } 826 break; 827 case 0x01c00a04: /* MXCC control register */ 828 if (size == 4) { 829 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) 830 | val; 831 } else { 832 qemu_log_mask(LOG_UNIMP, 833 "%08x: unimplemented access size: %d\n", addr, 834 size); 835 } 836 break; 837 case 0x01c00e00: /* MXCC error register */ 838 /* writing a 1 bit clears the error */ 839 if (size == 8) { 840 env->mxccregs[6] &= ~val; 841 } else { 842 qemu_log_mask(LOG_UNIMP, 843 "%08x: unimplemented access size: %d\n", addr, 844 size); 845 } 846 break; 847 case 0x01c00f00: /* MBus port address register */ 848 if (size == 8) { 849 env->mxccregs[7] = val; 850 } else { 851 qemu_log_mask(LOG_UNIMP, 852 "%08x: unimplemented access size: %d\n", addr, 853 size); 854 } 855 break; 856 default: 857 qemu_log_mask(LOG_UNIMP, 858 "%08x: unimplemented address, size: %d\n", addr, 859 size); 860 break; 861 } 862 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", 863 asi, size, addr, val); 864 #ifdef DEBUG_MXCC 865 dump_mxcc(env); 866 #endif 867 break; 868 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */ 869 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */ 870 { 871 int mmulev; 872 873 mmulev = (addr >> 8) & 15; 874 DPRINTF_MMU("mmu flush level %d\n", mmulev); 875 switch (mmulev) { 876 case 0: /* flush page */ 877 tlb_flush_page(CPU(cpu), addr & 0xfffff000); 878 break; 879 case 1: /* flush segment (256k) */ 880 case 2: /* flush region (16M) */ 881 case 3: /* flush context (4G) */ 882 case 4: /* flush entire */ 883 tlb_flush(CPU(cpu)); 884 break; 885 default: 886 break; 887 } 888 #ifdef DEBUG_MMU 889 dump_mmu(stdout, fprintf, env); 890 #endif 891 } 892 break; 893 case ASI_M_MMUREGS: /* write MMU regs */ 894 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */ 895 { 896 int reg = (addr >> 8) & 0x1f; 897 uint32_t oldreg; 898 899 oldreg = env->mmuregs[reg]; 900 switch (reg) { 901 case 0: /* Control Register */ 902 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | 903 (val & 0x00ffffff); 904 /* Mappings generated during no-fault mode 905 are invalid in normal mode. */ 906 if ((oldreg ^ env->mmuregs[reg]) 907 & (MMU_NF | env->def.mmu_bm)) { 908 tlb_flush(CPU(cpu)); 909 } 910 break; 911 case 1: /* Context Table Pointer Register */ 912 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask; 913 break; 914 case 2: /* Context Register */ 915 env->mmuregs[reg] = val & env->def.mmu_cxr_mask; 916 if (oldreg != env->mmuregs[reg]) { 917 /* we flush when the MMU context changes because 918 QEMU has no MMU context support */ 919 tlb_flush(CPU(cpu)); 920 } 921 break; 922 case 3: /* Synchronous Fault Status Register with Clear */ 923 case 4: /* Synchronous Fault Address Register */ 924 break; 925 case 0x10: /* TLB Replacement Control Register */ 926 env->mmuregs[reg] = val & env->def.mmu_trcr_mask; 927 break; 928 case 0x13: /* Synchronous Fault Status Register with Read 929 and Clear */ 930 env->mmuregs[3] = val & env->def.mmu_sfsr_mask; 931 break; 932 case 0x14: /* Synchronous Fault Address Register */ 933 env->mmuregs[4] = val; 934 break; 935 default: 936 env->mmuregs[reg] = val; 937 break; 938 } 939 if (oldreg != env->mmuregs[reg]) { 940 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", 941 reg, oldreg, env->mmuregs[reg]); 942 } 943 #ifdef DEBUG_MMU 944 dump_mmu(stdout, fprintf, env); 945 #endif 946 } 947 break; 948 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ 949 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ 950 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ 951 break; 952 case ASI_M_TXTC_TAG: /* I-cache tag */ 953 case ASI_M_TXTC_DATA: /* I-cache data */ 954 case ASI_M_DATAC_TAG: /* D-cache tag */ 955 case ASI_M_DATAC_DATA: /* D-cache data */ 956 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */ 957 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */ 958 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */ 959 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */ 960 case ASI_M_FLUSH_USER: /* I/D-cache flush user */ 961 break; 962 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ 963 { 964 switch (size) { 965 case 1: 966 stb_phys(cs->as, (hwaddr)addr 967 | ((hwaddr)(asi & 0xf) << 32), val); 968 break; 969 case 2: 970 stw_phys(cs->as, (hwaddr)addr 971 | ((hwaddr)(asi & 0xf) << 32), val); 972 break; 973 case 4: 974 default: 975 stl_phys(cs->as, (hwaddr)addr 976 | ((hwaddr)(asi & 0xf) << 32), val); 977 break; 978 case 8: 979 stq_phys(cs->as, (hwaddr)addr 980 | ((hwaddr)(asi & 0xf) << 32), val); 981 break; 982 } 983 } 984 break; 985 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */ 986 case 0x31: /* store buffer data, Ross RT620 I-cache flush or 987 Turbosparc snoop RAM */ 988 case 0x32: /* store buffer control or Turbosparc page table 989 descriptor diagnostic */ 990 case 0x36: /* I-cache flash clear */ 991 case 0x37: /* D-cache flash clear */ 992 break; 993 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ 994 { 995 int reg = (addr >> 8) & 3; 996 997 switch (reg) { 998 case 0: /* Breakpoint Value (Addr) */ 999 env->mmubpregs[reg] = (val & 0xfffffffffULL); 1000 break; 1001 case 1: /* Breakpoint Mask */ 1002 env->mmubpregs[reg] = (val & 0xfffffffffULL); 1003 break; 1004 case 2: /* Breakpoint Control */ 1005 env->mmubpregs[reg] = (val & 0x7fULL); 1006 break; 1007 case 3: /* Breakpoint Status */ 1008 env->mmubpregs[reg] = (val & 0xfULL); 1009 break; 1010 } 1011 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, 1012 env->mmuregs[reg]); 1013 } 1014 break; 1015 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ 1016 env->mmubpctrv = val & 0xffffffff; 1017 break; 1018 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ 1019 env->mmubpctrc = val & 0x3; 1020 break; 1021 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ 1022 env->mmubpctrs = val & 0x3; 1023 break; 1024 case 0x4c: /* SuperSPARC MMU Breakpoint Action */ 1025 env->mmubpaction = val & 0x1fff; 1026 break; 1027 case ASI_USERTXT: /* User code access, XXX */ 1028 case ASI_KERNELTXT: /* Supervisor code access, XXX */ 1029 default: 1030 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)), 1031 addr, true, false, asi, size); 1032 break; 1033 1034 case ASI_USERDATA: /* User data access */ 1035 case ASI_KERNELDATA: /* Supervisor data access */ 1036 case ASI_P: 1037 case ASI_M_BYPASS: /* MMU passthrough */ 1038 case ASI_LEON_BYPASS: /* LEON MMU passthrough */ 1039 case ASI_M_BCOPY: /* Block copy, sta access */ 1040 case ASI_M_BFILL: /* Block fill, stda access */ 1041 /* These are always handled inline. */ 1042 g_assert_not_reached(); 1043 } 1044 #ifdef DEBUG_ASI 1045 dump_asi("write", addr, asi, size, val); 1046 #endif 1047 } 1048 1049 #endif /* CONFIG_USER_ONLY */ 1050 #else /* TARGET_SPARC64 */ 1051 1052 #ifdef CONFIG_USER_ONLY 1053 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 1054 int asi, uint32_t memop) 1055 { 1056 int size = 1 << (memop & MO_SIZE); 1057 int sign = memop & MO_SIGN; 1058 uint64_t ret = 0; 1059 1060 if (asi < 0x80) { 1061 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); 1062 } 1063 do_check_align(env, addr, size - 1, GETPC()); 1064 addr = asi_address_mask(env, asi, addr); 1065 1066 switch (asi) { 1067 case ASI_PNF: /* Primary no-fault */ 1068 case ASI_PNFL: /* Primary no-fault LE */ 1069 case ASI_SNF: /* Secondary no-fault */ 1070 case ASI_SNFL: /* Secondary no-fault LE */ 1071 if (page_check_range(addr, size, PAGE_READ) == -1) { 1072 ret = 0; 1073 break; 1074 } 1075 switch (size) { 1076 case 1: 1077 ret = cpu_ldub_data(env, addr); 1078 break; 1079 case 2: 1080 ret = cpu_lduw_data(env, addr); 1081 break; 1082 case 4: 1083 ret = cpu_ldl_data(env, addr); 1084 break; 1085 case 8: 1086 ret = cpu_ldq_data(env, addr); 1087 break; 1088 default: 1089 g_assert_not_reached(); 1090 } 1091 break; 1092 break; 1093 1094 case ASI_P: /* Primary */ 1095 case ASI_PL: /* Primary LE */ 1096 case ASI_S: /* Secondary */ 1097 case ASI_SL: /* Secondary LE */ 1098 /* These are always handled inline. */ 1099 g_assert_not_reached(); 1100 1101 default: 1102 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); 1103 } 1104 1105 /* Convert from little endian */ 1106 switch (asi) { 1107 case ASI_PNFL: /* Primary no-fault LE */ 1108 case ASI_SNFL: /* Secondary no-fault LE */ 1109 switch (size) { 1110 case 2: 1111 ret = bswap16(ret); 1112 break; 1113 case 4: 1114 ret = bswap32(ret); 1115 break; 1116 case 8: 1117 ret = bswap64(ret); 1118 break; 1119 } 1120 } 1121 1122 /* Convert to signed number */ 1123 if (sign) { 1124 switch (size) { 1125 case 1: 1126 ret = (int8_t) ret; 1127 break; 1128 case 2: 1129 ret = (int16_t) ret; 1130 break; 1131 case 4: 1132 ret = (int32_t) ret; 1133 break; 1134 } 1135 } 1136 #ifdef DEBUG_ASI 1137 dump_asi("read", addr, asi, size, ret); 1138 #endif 1139 return ret; 1140 } 1141 1142 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, 1143 int asi, uint32_t memop) 1144 { 1145 int size = 1 << (memop & MO_SIZE); 1146 #ifdef DEBUG_ASI 1147 dump_asi("write", addr, asi, size, val); 1148 #endif 1149 if (asi < 0x80) { 1150 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); 1151 } 1152 do_check_align(env, addr, size - 1, GETPC()); 1153 1154 switch (asi) { 1155 case ASI_P: /* Primary */ 1156 case ASI_PL: /* Primary LE */ 1157 case ASI_S: /* Secondary */ 1158 case ASI_SL: /* Secondary LE */ 1159 /* These are always handled inline. */ 1160 g_assert_not_reached(); 1161 1162 case ASI_PNF: /* Primary no-fault, RO */ 1163 case ASI_SNF: /* Secondary no-fault, RO */ 1164 case ASI_PNFL: /* Primary no-fault LE, RO */ 1165 case ASI_SNFL: /* Secondary no-fault LE, RO */ 1166 default: 1167 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); 1168 } 1169 } 1170 1171 #else /* CONFIG_USER_ONLY */ 1172 1173 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 1174 int asi, uint32_t memop) 1175 { 1176 int size = 1 << (memop & MO_SIZE); 1177 int sign = memop & MO_SIGN; 1178 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1179 uint64_t ret = 0; 1180 #if defined(DEBUG_ASI) 1181 target_ulong last_addr = addr; 1182 #endif 1183 1184 asi &= 0xff; 1185 1186 do_check_asi(env, asi, GETPC()); 1187 do_check_align(env, addr, size - 1, GETPC()); 1188 addr = asi_address_mask(env, asi, addr); 1189 1190 switch (asi) { 1191 case ASI_PNF: 1192 case ASI_PNFL: 1193 case ASI_SNF: 1194 case ASI_SNFL: 1195 { 1196 TCGMemOpIdx oi; 1197 int idx = (env->pstate & PS_PRIV 1198 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX) 1199 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX)); 1200 1201 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) { 1202 #ifdef DEBUG_ASI 1203 dump_asi("read ", last_addr, asi, size, ret); 1204 #endif 1205 /* exception_index is set in get_physical_address_data. */ 1206 cpu_raise_exception_ra(env, cs->exception_index, GETPC()); 1207 } 1208 oi = make_memop_idx(memop, idx); 1209 switch (size) { 1210 case 1: 1211 ret = helper_ret_ldub_mmu(env, addr, oi, GETPC()); 1212 break; 1213 case 2: 1214 if (asi & 8) { 1215 ret = helper_le_lduw_mmu(env, addr, oi, GETPC()); 1216 } else { 1217 ret = helper_be_lduw_mmu(env, addr, oi, GETPC()); 1218 } 1219 break; 1220 case 4: 1221 if (asi & 8) { 1222 ret = helper_le_ldul_mmu(env, addr, oi, GETPC()); 1223 } else { 1224 ret = helper_be_ldul_mmu(env, addr, oi, GETPC()); 1225 } 1226 break; 1227 case 8: 1228 if (asi & 8) { 1229 ret = helper_le_ldq_mmu(env, addr, oi, GETPC()); 1230 } else { 1231 ret = helper_be_ldq_mmu(env, addr, oi, GETPC()); 1232 } 1233 break; 1234 default: 1235 g_assert_not_reached(); 1236 } 1237 } 1238 break; 1239 1240 case ASI_AIUP: /* As if user primary */ 1241 case ASI_AIUS: /* As if user secondary */ 1242 case ASI_AIUPL: /* As if user primary LE */ 1243 case ASI_AIUSL: /* As if user secondary LE */ 1244 case ASI_P: /* Primary */ 1245 case ASI_S: /* Secondary */ 1246 case ASI_PL: /* Primary LE */ 1247 case ASI_SL: /* Secondary LE */ 1248 case ASI_REAL: /* Bypass */ 1249 case ASI_REAL_IO: /* Bypass, non-cacheable */ 1250 case ASI_REAL_L: /* Bypass LE */ 1251 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ 1252 case ASI_N: /* Nucleus */ 1253 case ASI_NL: /* Nucleus Little Endian (LE) */ 1254 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ 1255 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ 1256 case ASI_TWINX_AIUP: /* As if user primary, twinx */ 1257 case ASI_TWINX_AIUS: /* As if user secondary, twinx */ 1258 case ASI_TWINX_REAL: /* Real address, twinx */ 1259 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ 1260 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ 1261 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ 1262 case ASI_TWINX_N: /* Nucleus, twinx */ 1263 case ASI_TWINX_NL: /* Nucleus, twinx, LE */ 1264 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ 1265 case ASI_TWINX_P: /* Primary, twinx */ 1266 case ASI_TWINX_PL: /* Primary, twinx, LE */ 1267 case ASI_TWINX_S: /* Secondary, twinx */ 1268 case ASI_TWINX_SL: /* Secondary, twinx, LE */ 1269 /* These are always handled inline. */ 1270 g_assert_not_reached(); 1271 1272 case ASI_UPA_CONFIG: /* UPA config */ 1273 /* XXX */ 1274 break; 1275 case ASI_LSU_CONTROL: /* LSU */ 1276 ret = env->lsu; 1277 break; 1278 case ASI_IMMU: /* I-MMU regs */ 1279 { 1280 int reg = (addr >> 3) & 0xf; 1281 switch (reg) { 1282 case 0: 1283 /* 0x00 I-TSB Tag Target register */ 1284 ret = ultrasparc_tag_target(env->immu.tag_access); 1285 break; 1286 case 3: /* SFSR */ 1287 ret = env->immu.sfsr; 1288 break; 1289 case 5: /* TSB access */ 1290 ret = env->immu.tsb; 1291 break; 1292 case 6: 1293 /* 0x30 I-TSB Tag Access register */ 1294 ret = env->immu.tag_access; 1295 break; 1296 default: 1297 cpu_unassigned_access(cs, addr, false, false, 1, size); 1298 ret = 0; 1299 } 1300 break; 1301 } 1302 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */ 1303 { 1304 /* env->immuregs[5] holds I-MMU TSB register value 1305 env->immuregs[6] holds I-MMU Tag Access register value */ 1306 ret = ultrasparc_tsb_pointer(env, &env->immu, 0); 1307 break; 1308 } 1309 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */ 1310 { 1311 /* env->immuregs[5] holds I-MMU TSB register value 1312 env->immuregs[6] holds I-MMU Tag Access register value */ 1313 ret = ultrasparc_tsb_pointer(env, &env->immu, 1); 1314 break; 1315 } 1316 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ 1317 { 1318 int reg = (addr >> 3) & 0x3f; 1319 1320 ret = env->itlb[reg].tte; 1321 break; 1322 } 1323 case ASI_ITLB_TAG_READ: /* I-MMU tag read */ 1324 { 1325 int reg = (addr >> 3) & 0x3f; 1326 1327 ret = env->itlb[reg].tag; 1328 break; 1329 } 1330 case ASI_DMMU: /* D-MMU regs */ 1331 { 1332 int reg = (addr >> 3) & 0xf; 1333 switch (reg) { 1334 case 0: 1335 /* 0x00 D-TSB Tag Target register */ 1336 ret = ultrasparc_tag_target(env->dmmu.tag_access); 1337 break; 1338 case 1: /* 0x08 Primary Context */ 1339 ret = env->dmmu.mmu_primary_context; 1340 break; 1341 case 2: /* 0x10 Secondary Context */ 1342 ret = env->dmmu.mmu_secondary_context; 1343 break; 1344 case 3: /* SFSR */ 1345 ret = env->dmmu.sfsr; 1346 break; 1347 case 4: /* 0x20 SFAR */ 1348 ret = env->dmmu.sfar; 1349 break; 1350 case 5: /* 0x28 TSB access */ 1351 ret = env->dmmu.tsb; 1352 break; 1353 case 6: /* 0x30 D-TSB Tag Access register */ 1354 ret = env->dmmu.tag_access; 1355 break; 1356 case 7: 1357 ret = env->dmmu.virtual_watchpoint; 1358 break; 1359 case 8: 1360 ret = env->dmmu.physical_watchpoint; 1361 break; 1362 default: 1363 cpu_unassigned_access(cs, addr, false, false, 1, size); 1364 ret = 0; 1365 } 1366 break; 1367 } 1368 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */ 1369 { 1370 /* env->dmmuregs[5] holds D-MMU TSB register value 1371 env->dmmuregs[6] holds D-MMU Tag Access register value */ 1372 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0); 1373 break; 1374 } 1375 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */ 1376 { 1377 /* env->dmmuregs[5] holds D-MMU TSB register value 1378 env->dmmuregs[6] holds D-MMU Tag Access register value */ 1379 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1); 1380 break; 1381 } 1382 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ 1383 { 1384 int reg = (addr >> 3) & 0x3f; 1385 1386 ret = env->dtlb[reg].tte; 1387 break; 1388 } 1389 case ASI_DTLB_TAG_READ: /* D-MMU tag read */ 1390 { 1391 int reg = (addr >> 3) & 0x3f; 1392 1393 ret = env->dtlb[reg].tag; 1394 break; 1395 } 1396 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ 1397 break; 1398 case ASI_INTR_RECEIVE: /* Interrupt data receive */ 1399 ret = env->ivec_status; 1400 break; 1401 case ASI_INTR_R: /* Incoming interrupt vector, RO */ 1402 { 1403 int reg = (addr >> 4) & 0x3; 1404 if (reg < 3) { 1405 ret = env->ivec_data[reg]; 1406 } 1407 break; 1408 } 1409 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ 1410 if (unlikely((addr >= 0x20) && (addr < 0x30))) { 1411 /* Hyperprivileged access only */ 1412 cpu_unassigned_access(cs, addr, false, false, 1, size); 1413 } 1414 /* fall through */ 1415 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ 1416 { 1417 unsigned int i = (addr >> 3) & 0x7; 1418 ret = env->scratch[i]; 1419 break; 1420 } 1421 case ASI_MMU: /* UA2005 Context ID registers */ 1422 switch ((addr >> 3) & 0x3) { 1423 case 1: 1424 ret = env->dmmu.mmu_primary_context; 1425 break; 1426 case 2: 1427 ret = env->dmmu.mmu_secondary_context; 1428 break; 1429 default: 1430 cpu_unassigned_access(cs, addr, true, false, 1, size); 1431 } 1432 break; 1433 case ASI_DCACHE_DATA: /* D-cache data */ 1434 case ASI_DCACHE_TAG: /* D-cache tag access */ 1435 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ 1436 case ASI_AFSR: /* E-cache asynchronous fault status */ 1437 case ASI_AFAR: /* E-cache asynchronous fault address */ 1438 case ASI_EC_TAG_DATA: /* E-cache tag data */ 1439 case ASI_IC_INSTR: /* I-cache instruction access */ 1440 case ASI_IC_TAG: /* I-cache tag access */ 1441 case ASI_IC_PRE_DECODE: /* I-cache predecode */ 1442 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ 1443 case ASI_EC_W: /* E-cache tag */ 1444 case ASI_EC_R: /* E-cache tag */ 1445 break; 1446 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */ 1447 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */ 1448 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */ 1449 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */ 1450 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */ 1451 case ASI_INTR_W: /* Interrupt vector, WO */ 1452 default: 1453 cpu_unassigned_access(cs, addr, false, false, 1, size); 1454 ret = 0; 1455 break; 1456 } 1457 1458 /* Convert to signed number */ 1459 if (sign) { 1460 switch (size) { 1461 case 1: 1462 ret = (int8_t) ret; 1463 break; 1464 case 2: 1465 ret = (int16_t) ret; 1466 break; 1467 case 4: 1468 ret = (int32_t) ret; 1469 break; 1470 default: 1471 break; 1472 } 1473 } 1474 #ifdef DEBUG_ASI 1475 dump_asi("read ", last_addr, asi, size, ret); 1476 #endif 1477 return ret; 1478 } 1479 1480 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, 1481 int asi, uint32_t memop) 1482 { 1483 int size = 1 << (memop & MO_SIZE); 1484 SPARCCPU *cpu = sparc_env_get_cpu(env); 1485 CPUState *cs = CPU(cpu); 1486 1487 #ifdef DEBUG_ASI 1488 dump_asi("write", addr, asi, size, val); 1489 #endif 1490 1491 asi &= 0xff; 1492 1493 do_check_asi(env, asi, GETPC()); 1494 do_check_align(env, addr, size - 1, GETPC()); 1495 addr = asi_address_mask(env, asi, addr); 1496 1497 switch (asi) { 1498 case ASI_AIUP: /* As if user primary */ 1499 case ASI_AIUS: /* As if user secondary */ 1500 case ASI_AIUPL: /* As if user primary LE */ 1501 case ASI_AIUSL: /* As if user secondary LE */ 1502 case ASI_P: /* Primary */ 1503 case ASI_S: /* Secondary */ 1504 case ASI_PL: /* Primary LE */ 1505 case ASI_SL: /* Secondary LE */ 1506 case ASI_REAL: /* Bypass */ 1507 case ASI_REAL_IO: /* Bypass, non-cacheable */ 1508 case ASI_REAL_L: /* Bypass LE */ 1509 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ 1510 case ASI_N: /* Nucleus */ 1511 case ASI_NL: /* Nucleus Little Endian (LE) */ 1512 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ 1513 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ 1514 case ASI_TWINX_AIUP: /* As if user primary, twinx */ 1515 case ASI_TWINX_AIUS: /* As if user secondary, twinx */ 1516 case ASI_TWINX_REAL: /* Real address, twinx */ 1517 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ 1518 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ 1519 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ 1520 case ASI_TWINX_N: /* Nucleus, twinx */ 1521 case ASI_TWINX_NL: /* Nucleus, twinx, LE */ 1522 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ 1523 case ASI_TWINX_P: /* Primary, twinx */ 1524 case ASI_TWINX_PL: /* Primary, twinx, LE */ 1525 case ASI_TWINX_S: /* Secondary, twinx */ 1526 case ASI_TWINX_SL: /* Secondary, twinx, LE */ 1527 /* These are always handled inline. */ 1528 g_assert_not_reached(); 1529 /* these ASIs have different functions on UltraSPARC-IIIi 1530 * and UA2005 CPUs. Use the explicit numbers to avoid confusion 1531 */ 1532 case 0x31: 1533 case 0x32: 1534 case 0x39: 1535 case 0x3a: 1536 if (cpu_has_hypervisor(env)) { 1537 /* UA2005 1538 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0 1539 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1 1540 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0 1541 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1 1542 */ 1543 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); 1544 env->dmmu.sun4v_tsb_pointers[idx] = val; 1545 } else { 1546 helper_raise_exception(env, TT_ILL_INSN); 1547 } 1548 break; 1549 case 0x33: 1550 case 0x3b: 1551 if (cpu_has_hypervisor(env)) { 1552 /* UA2005 1553 * ASI_DMMU_CTX_ZERO_CONFIG 1554 * ASI_DMMU_CTX_NONZERO_CONFIG 1555 */ 1556 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val; 1557 } else { 1558 helper_raise_exception(env, TT_ILL_INSN); 1559 } 1560 break; 1561 case 0x35: 1562 case 0x36: 1563 case 0x3d: 1564 case 0x3e: 1565 if (cpu_has_hypervisor(env)) { 1566 /* UA2005 1567 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0 1568 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1 1569 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0 1570 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1 1571 */ 1572 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); 1573 env->immu.sun4v_tsb_pointers[idx] = val; 1574 } else { 1575 helper_raise_exception(env, TT_ILL_INSN); 1576 } 1577 break; 1578 case 0x37: 1579 case 0x3f: 1580 if (cpu_has_hypervisor(env)) { 1581 /* UA2005 1582 * ASI_IMMU_CTX_ZERO_CONFIG 1583 * ASI_IMMU_CTX_NONZERO_CONFIG 1584 */ 1585 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val; 1586 } else { 1587 helper_raise_exception(env, TT_ILL_INSN); 1588 } 1589 break; 1590 case ASI_UPA_CONFIG: /* UPA config */ 1591 /* XXX */ 1592 return; 1593 case ASI_LSU_CONTROL: /* LSU */ 1594 env->lsu = val & (DMMU_E | IMMU_E); 1595 return; 1596 case ASI_IMMU: /* I-MMU regs */ 1597 { 1598 int reg = (addr >> 3) & 0xf; 1599 uint64_t oldreg; 1600 1601 oldreg = env->immu.mmuregs[reg]; 1602 switch (reg) { 1603 case 0: /* RO */ 1604 return; 1605 case 1: /* Not in I-MMU */ 1606 case 2: 1607 return; 1608 case 3: /* SFSR */ 1609 if ((val & 1) == 0) { 1610 val = 0; /* Clear SFSR */ 1611 } 1612 env->immu.sfsr = val; 1613 break; 1614 case 4: /* RO */ 1615 return; 1616 case 5: /* TSB access */ 1617 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" 1618 PRIx64 "\n", env->immu.tsb, val); 1619 env->immu.tsb = val; 1620 break; 1621 case 6: /* Tag access */ 1622 env->immu.tag_access = val; 1623 break; 1624 case 7: 1625 case 8: 1626 return; 1627 default: 1628 cpu_unassigned_access(cs, addr, true, false, 1, size); 1629 break; 1630 } 1631 1632 if (oldreg != env->immu.mmuregs[reg]) { 1633 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" 1634 PRIx64 "\n", reg, oldreg, env->immuregs[reg]); 1635 } 1636 #ifdef DEBUG_MMU 1637 dump_mmu(stdout, fprintf, env); 1638 #endif 1639 return; 1640 } 1641 case ASI_ITLB_DATA_IN: /* I-MMU data in */ 1642 /* ignore real translation entries */ 1643 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1644 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, 1645 val, "immu", env, addr); 1646 } 1647 return; 1648 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ 1649 { 1650 /* TODO: auto demap */ 1651 1652 unsigned int i = (addr >> 3) & 0x3f; 1653 1654 /* ignore real translation entries */ 1655 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1656 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, 1657 sun4v_tte_to_sun4u(env, addr, val), env); 1658 } 1659 #ifdef DEBUG_MMU 1660 DPRINTF_MMU("immu data access replaced entry [%i]\n", i); 1661 dump_mmu(stdout, fprintf, env); 1662 #endif 1663 return; 1664 } 1665 case ASI_IMMU_DEMAP: /* I-MMU demap */ 1666 demap_tlb(env->itlb, addr, "immu", env); 1667 return; 1668 case ASI_DMMU: /* D-MMU regs */ 1669 { 1670 int reg = (addr >> 3) & 0xf; 1671 uint64_t oldreg; 1672 1673 oldreg = env->dmmu.mmuregs[reg]; 1674 switch (reg) { 1675 case 0: /* RO */ 1676 case 4: 1677 return; 1678 case 3: /* SFSR */ 1679 if ((val & 1) == 0) { 1680 val = 0; /* Clear SFSR, Fault address */ 1681 env->dmmu.sfar = 0; 1682 } 1683 env->dmmu.sfsr = val; 1684 break; 1685 case 1: /* Primary context */ 1686 env->dmmu.mmu_primary_context = val; 1687 /* can be optimized to only flush MMU_USER_IDX 1688 and MMU_KERNEL_IDX entries */ 1689 tlb_flush(CPU(cpu)); 1690 break; 1691 case 2: /* Secondary context */ 1692 env->dmmu.mmu_secondary_context = val; 1693 /* can be optimized to only flush MMU_USER_SECONDARY_IDX 1694 and MMU_KERNEL_SECONDARY_IDX entries */ 1695 tlb_flush(CPU(cpu)); 1696 break; 1697 case 5: /* TSB access */ 1698 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" 1699 PRIx64 "\n", env->dmmu.tsb, val); 1700 env->dmmu.tsb = val; 1701 break; 1702 case 6: /* Tag access */ 1703 env->dmmu.tag_access = val; 1704 break; 1705 case 7: /* Virtual Watchpoint */ 1706 env->dmmu.virtual_watchpoint = val; 1707 break; 1708 case 8: /* Physical Watchpoint */ 1709 env->dmmu.physical_watchpoint = val; 1710 break; 1711 default: 1712 cpu_unassigned_access(cs, addr, true, false, 1, size); 1713 break; 1714 } 1715 1716 if (oldreg != env->dmmu.mmuregs[reg]) { 1717 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" 1718 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); 1719 } 1720 #ifdef DEBUG_MMU 1721 dump_mmu(stdout, fprintf, env); 1722 #endif 1723 return; 1724 } 1725 case ASI_DTLB_DATA_IN: /* D-MMU data in */ 1726 /* ignore real translation entries */ 1727 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1728 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, 1729 val, "dmmu", env, addr); 1730 } 1731 return; 1732 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ 1733 { 1734 unsigned int i = (addr >> 3) & 0x3f; 1735 1736 /* ignore real translation entries */ 1737 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1738 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, 1739 sun4v_tte_to_sun4u(env, addr, val), env); 1740 } 1741 #ifdef DEBUG_MMU 1742 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); 1743 dump_mmu(stdout, fprintf, env); 1744 #endif 1745 return; 1746 } 1747 case ASI_DMMU_DEMAP: /* D-MMU demap */ 1748 demap_tlb(env->dtlb, addr, "dmmu", env); 1749 return; 1750 case ASI_INTR_RECEIVE: /* Interrupt data receive */ 1751 env->ivec_status = val & 0x20; 1752 return; 1753 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ 1754 if (unlikely((addr >= 0x20) && (addr < 0x30))) { 1755 /* Hyperprivileged access only */ 1756 cpu_unassigned_access(cs, addr, true, false, 1, size); 1757 } 1758 /* fall through */ 1759 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ 1760 { 1761 unsigned int i = (addr >> 3) & 0x7; 1762 env->scratch[i] = val; 1763 return; 1764 } 1765 case ASI_MMU: /* UA2005 Context ID registers */ 1766 { 1767 switch ((addr >> 3) & 0x3) { 1768 case 1: 1769 env->dmmu.mmu_primary_context = val; 1770 env->immu.mmu_primary_context = val; 1771 tlb_flush_by_mmuidx(CPU(cpu), 1772 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX)); 1773 break; 1774 case 2: 1775 env->dmmu.mmu_secondary_context = val; 1776 env->immu.mmu_secondary_context = val; 1777 tlb_flush_by_mmuidx(CPU(cpu), 1778 (1 << MMU_USER_SECONDARY_IDX) | 1779 (1 << MMU_KERNEL_SECONDARY_IDX)); 1780 break; 1781 default: 1782 cpu_unassigned_access(cs, addr, true, false, 1, size); 1783 } 1784 } 1785 return; 1786 case ASI_QUEUE: /* UA2005 CPU mondo queue */ 1787 case ASI_DCACHE_DATA: /* D-cache data */ 1788 case ASI_DCACHE_TAG: /* D-cache tag access */ 1789 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ 1790 case ASI_AFSR: /* E-cache asynchronous fault status */ 1791 case ASI_AFAR: /* E-cache asynchronous fault address */ 1792 case ASI_EC_TAG_DATA: /* E-cache tag data */ 1793 case ASI_IC_INSTR: /* I-cache instruction access */ 1794 case ASI_IC_TAG: /* I-cache tag access */ 1795 case ASI_IC_PRE_DECODE: /* I-cache predecode */ 1796 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ 1797 case ASI_EC_W: /* E-cache tag */ 1798 case ASI_EC_R: /* E-cache tag */ 1799 return; 1800 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */ 1801 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */ 1802 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */ 1803 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */ 1804 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */ 1805 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */ 1806 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */ 1807 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ 1808 case ASI_INTR_R: /* Incoming interrupt vector, RO */ 1809 case ASI_PNF: /* Primary no-fault, RO */ 1810 case ASI_SNF: /* Secondary no-fault, RO */ 1811 case ASI_PNFL: /* Primary no-fault LE, RO */ 1812 case ASI_SNFL: /* Secondary no-fault LE, RO */ 1813 default: 1814 cpu_unassigned_access(cs, addr, true, false, 1, size); 1815 return; 1816 } 1817 } 1818 #endif /* CONFIG_USER_ONLY */ 1819 #endif /* TARGET_SPARC64 */ 1820 1821 #if !defined(CONFIG_USER_ONLY) 1822 #ifndef TARGET_SPARC64 1823 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr, 1824 bool is_write, bool is_exec, int is_asi, 1825 unsigned size) 1826 { 1827 SPARCCPU *cpu = SPARC_CPU(cs); 1828 CPUSPARCState *env = &cpu->env; 1829 int fault_type; 1830 1831 #ifdef DEBUG_UNASSIGNED 1832 if (is_asi) { 1833 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx 1834 " asi 0x%02x from " TARGET_FMT_lx "\n", 1835 is_exec ? "exec" : is_write ? "write" : "read", size, 1836 size == 1 ? "" : "s", addr, is_asi, env->pc); 1837 } else { 1838 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx 1839 " from " TARGET_FMT_lx "\n", 1840 is_exec ? "exec" : is_write ? "write" : "read", size, 1841 size == 1 ? "" : "s", addr, env->pc); 1842 } 1843 #endif 1844 /* Don't overwrite translation and access faults */ 1845 fault_type = (env->mmuregs[3] & 0x1c) >> 2; 1846 if ((fault_type > 4) || (fault_type == 0)) { 1847 env->mmuregs[3] = 0; /* Fault status register */ 1848 if (is_asi) { 1849 env->mmuregs[3] |= 1 << 16; 1850 } 1851 if (env->psrs) { 1852 env->mmuregs[3] |= 1 << 5; 1853 } 1854 if (is_exec) { 1855 env->mmuregs[3] |= 1 << 6; 1856 } 1857 if (is_write) { 1858 env->mmuregs[3] |= 1 << 7; 1859 } 1860 env->mmuregs[3] |= (5 << 2) | 2; 1861 /* SuperSPARC will never place instruction fault addresses in the FAR */ 1862 if (!is_exec) { 1863 env->mmuregs[4] = addr; /* Fault address register */ 1864 } 1865 } 1866 /* overflow (same type fault was not read before another fault) */ 1867 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { 1868 env->mmuregs[3] |= 1; 1869 } 1870 1871 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { 1872 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS; 1873 cpu_raise_exception_ra(env, tt, GETPC()); 1874 } 1875 1876 /* flush neverland mappings created during no-fault mode, 1877 so the sequential MMU faults report proper fault types */ 1878 if (env->mmuregs[0] & MMU_NF) { 1879 tlb_flush(cs); 1880 } 1881 } 1882 #else 1883 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr, 1884 bool is_write, bool is_exec, int is_asi, 1885 unsigned size) 1886 { 1887 SPARCCPU *cpu = SPARC_CPU(cs); 1888 CPUSPARCState *env = &cpu->env; 1889 1890 #ifdef DEBUG_UNASSIGNED 1891 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx 1892 "\n", addr, env->pc); 1893 #endif 1894 1895 if (is_exec) { /* XXX has_hypervisor */ 1896 if (env->lsu & (IMMU_E)) { 1897 cpu_raise_exception_ra(env, TT_CODE_ACCESS, GETPC()); 1898 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { 1899 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, GETPC()); 1900 } 1901 } else { 1902 if (env->lsu & (DMMU_E)) { 1903 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); 1904 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { 1905 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, GETPC()); 1906 } 1907 } 1908 } 1909 #endif 1910 #endif 1911 1912 #if !defined(CONFIG_USER_ONLY) 1913 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1914 MMUAccessType access_type, 1915 int mmu_idx, 1916 uintptr_t retaddr) 1917 { 1918 SPARCCPU *cpu = SPARC_CPU(cs); 1919 CPUSPARCState *env = &cpu->env; 1920 1921 #ifdef DEBUG_UNALIGNED 1922 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx 1923 "\n", addr, env->pc); 1924 #endif 1925 cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr); 1926 } 1927 1928 /* try to fill the TLB and return an exception if error. If retaddr is 1929 NULL, it means that the function was called in C code (i.e. not 1930 from generated code or from helper.c) */ 1931 /* XXX: fix it to restore all registers */ 1932 void tlb_fill(CPUState *cs, target_ulong addr, int size, 1933 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1934 { 1935 int ret; 1936 1937 ret = sparc_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx); 1938 if (ret) { 1939 cpu_loop_exit_restore(cs, retaddr); 1940 } 1941 } 1942 #endif 1943