xref: /openbmc/qemu/target/sparc/ldst_helper.c (revision 39164c13)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "tcg.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "asi.h"
27 
28 //#define DEBUG_MMU
29 //#define DEBUG_MXCC
30 //#define DEBUG_UNALIGNED
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71 
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75  * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77                                        const SparcV9MMU *mmu, const int idx)
78 {
79     uint64_t tsb_register;
80     int page_size;
81     if (cpu_has_hypervisor(env)) {
82         int tsb_index = 0;
83         int ctx = mmu->tag_access & 0x1fffULL;
84         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85         tsb_index = idx;
86         tsb_index |= ctx ? 2 : 0;
87         page_size = idx ? ctx_register >> 8 : ctx_register;
88         page_size &= 7;
89         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90     } else {
91         page_size = idx;
92         tsb_register = mmu->tsb;
93     }
94     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95     int tsb_size  = tsb_register & 0xf;
96 
97     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98 
99     /* move va bits to correct position,
100      * the context bits will be masked out later */
101     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102 
103     /* calculate tsb_base mask and adjust va if split is in use */
104     if (tsb_split) {
105         if (idx == 0) {
106             va &= ~(1ULL << (13 + tsb_size));
107         } else {
108             va |= (1ULL << (13 + tsb_size));
109         }
110         tsb_base_mask <<= 1;
111     }
112 
113     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115 
116 /* Calculates tag target register value by reordering bits
117    in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122 
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124                               uint64_t tlb_tag, uint64_t tlb_tte,
125                               CPUSPARCState *env1)
126 {
127     target_ulong mask, size, va, offset;
128 
129     /* flush page range if translation is valid */
130     if (TTE_IS_VALID(tlb->tte)) {
131         CPUState *cs = CPU(sparc_env_get_cpu(env1));
132 
133         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134         mask = 1ULL + ~size;
135 
136         va = tlb->tag & mask;
137 
138         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139             tlb_flush_page(cs, va + offset);
140         }
141     }
142 
143     tlb->tag = tlb_tag;
144     tlb->tte = tlb_tte;
145 }
146 
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148                       const char *strmmu, CPUSPARCState *env1)
149 {
150     unsigned int i;
151     target_ulong mask;
152     uint64_t context;
153 
154     int is_demap_context = (demap_addr >> 6) & 1;
155 
156     /* demap context */
157     switch ((demap_addr >> 4) & 3) {
158     case 0: /* primary */
159         context = env1->dmmu.mmu_primary_context;
160         break;
161     case 1: /* secondary */
162         context = env1->dmmu.mmu_secondary_context;
163         break;
164     case 2: /* nucleus */
165         context = 0;
166         break;
167     case 3: /* reserved */
168     default:
169         return;
170     }
171 
172     for (i = 0; i < 64; i++) {
173         if (TTE_IS_VALID(tlb[i].tte)) {
174 
175             if (is_demap_context) {
176                 /* will remove non-global entries matching context value */
177                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178                     !tlb_compare_context(&tlb[i], context)) {
179                     continue;
180                 }
181             } else {
182                 /* demap page
183                    will remove any entry matching VA */
184                 mask = 0xffffffffffffe000ULL;
185                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186 
187                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188                     continue;
189                 }
190 
191                 /* entry should be global or matching context value */
192                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193                     !tlb_compare_context(&tlb[i], context)) {
194                     continue;
195                 }
196             }
197 
198             replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201             dump_mmu(stdout, fprintf, env1);
202 #endif
203         }
204     }
205 }
206 
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208                                    uint64_t sun4v_tte)
209 {
210     uint64_t sun4u_tte;
211     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212         /* is already in the sun4u format */
213         return sun4v_tte;
214     }
215     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221                              TTE_SIDEEFFECT_BIT);
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224     return sun4u_tte;
225 }
226 
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228                                  uint64_t tlb_tag, uint64_t tlb_tte,
229                                  const char *strmmu, CPUSPARCState *env1,
230                                  uint64_t addr)
231 {
232     unsigned int i, replace_used;
233 
234     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235     if (cpu_has_hypervisor(env1)) {
236         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238         uint32_t new_ctx = tlb_tag & 0x1fffU;
239         for (i = 0; i < 64; i++) {
240             uint32_t ctx = tlb[i].tag & 0x1fffU;
241             /* check if new mapping overlaps an existing one */
242             if (new_ctx == ctx) {
243                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245                 if (new_vaddr == vaddr
246                     || (new_vaddr < vaddr + size
247                         && vaddr < new_vaddr + new_size)) {
248                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249                                 new_vaddr);
250                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251                     return;
252                 }
253             }
254 
255         }
256     }
257     /* Try replacing invalid entry */
258     for (i = 0; i < 64; i++) {
259         if (!TTE_IS_VALID(tlb[i].tte)) {
260             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263             dump_mmu(stdout, fprintf, env1);
264 #endif
265             return;
266         }
267     }
268 
269     /* All entries are valid, try replacing unlocked entry */
270 
271     for (replace_used = 0; replace_used < 2; ++replace_used) {
272 
273         /* Used entries are not replaced on first pass */
274 
275         for (i = 0; i < 64; i++) {
276             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277 
278                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281                             strmmu, (replace_used ? "used" : "unused"), i);
282                 dump_mmu(stdout, fprintf, env1);
283 #endif
284                 return;
285             }
286         }
287 
288         /* Now reset used bit and search for unused entries again */
289 
290         for (i = 0; i < 64; i++) {
291             TTE_SET_UNUSED(tlb[i].tte);
292         }
293     }
294 
295 #ifdef DEBUG_MMU
296     DPRINTF_MMU("%s lru replacement: no free entries available, "
297                 "replacing the last one\n", strmmu);
298 #endif
299     /* corner case: the last entry is replaced anyway */
300     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302 
303 #endif
304 
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307    otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311     /* Ultrasparc IIi translating asi
312        - note this list is defined by cpu implementation
313     */
314     switch (asi) {
315     case 0x04 ... 0x11:
316     case 0x16 ... 0x19:
317     case 0x1E ... 0x1F:
318     case 0x24 ... 0x2C:
319     case 0x70 ... 0x73:
320     case 0x78 ... 0x79:
321     case 0x80 ... 0xFF:
322         return 1;
323 
324     default:
325         return 0;
326     }
327 }
328 
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331     if (AM_CHECK(env1)) {
332         addr &= 0xffffffffULL;
333     }
334     return addr;
335 }
336 
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338                                             int asi, target_ulong addr)
339 {
340     if (is_translating_asi(asi)) {
341         addr = address_mask(env, addr);
342     }
343     return addr;
344 }
345 
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349     /* ASIs >= 0x80 are user mode.
350      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351      * ASIs <= 0x2f are super mode.
352      */
353     if (asi < 0x80
354         && !cpu_hypervisor_mode(env)
355         && (!cpu_supervisor_mode(env)
356             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358     }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362 
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364                            uint32_t align, uintptr_t ra)
365 {
366     if (addr & align) {
367 #ifdef DEBUG_UNALIGNED
368         printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
369                "\n", addr, env->pc);
370 #endif
371         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
372     }
373 }
374 
375 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
376 {
377     do_check_align(env, addr, align, GETPC());
378 }
379 
380 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
381     defined(DEBUG_MXCC)
382 static void dump_mxcc(CPUSPARCState *env)
383 {
384     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385            "\n",
386            env->mxccdata[0], env->mxccdata[1],
387            env->mxccdata[2], env->mxccdata[3]);
388     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
389            "\n"
390            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
391            "\n",
392            env->mxccregs[0], env->mxccregs[1],
393            env->mxccregs[2], env->mxccregs[3],
394            env->mxccregs[4], env->mxccregs[5],
395            env->mxccregs[6], env->mxccregs[7]);
396 }
397 #endif
398 
399 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
400     && defined(DEBUG_ASI)
401 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
402                      uint64_t r1)
403 {
404     switch (size) {
405     case 1:
406         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
407                     addr, asi, r1 & 0xff);
408         break;
409     case 2:
410         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
411                     addr, asi, r1 & 0xffff);
412         break;
413     case 4:
414         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
415                     addr, asi, r1 & 0xffffffff);
416         break;
417     case 8:
418         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
419                     addr, asi, r1);
420         break;
421     }
422 }
423 #endif
424 
425 #ifndef TARGET_SPARC64
426 #ifndef CONFIG_USER_ONLY
427 
428 
429 /* Leon3 cache control */
430 
431 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
432                                    uint64_t val, int size)
433 {
434     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
435                           addr, val, size);
436 
437     if (size != 4) {
438         DPRINTF_CACHE_CONTROL("32bits only\n");
439         return;
440     }
441 
442     switch (addr) {
443     case 0x00:              /* Cache control */
444 
445         /* These values must always be read as zeros */
446         val &= ~CACHE_CTRL_FD;
447         val &= ~CACHE_CTRL_FI;
448         val &= ~CACHE_CTRL_IB;
449         val &= ~CACHE_CTRL_IP;
450         val &= ~CACHE_CTRL_DP;
451 
452         env->cache_control = val;
453         break;
454     case 0x04:              /* Instruction cache configuration */
455     case 0x08:              /* Data cache configuration */
456         /* Read Only */
457         break;
458     default:
459         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
460         break;
461     };
462 }
463 
464 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
465                                        int size)
466 {
467     uint64_t ret = 0;
468 
469     if (size != 4) {
470         DPRINTF_CACHE_CONTROL("32bits only\n");
471         return 0;
472     }
473 
474     switch (addr) {
475     case 0x00:              /* Cache control */
476         ret = env->cache_control;
477         break;
478 
479         /* Configuration registers are read and only always keep those
480            predefined values */
481 
482     case 0x04:              /* Instruction cache configuration */
483         ret = 0x10220000;
484         break;
485     case 0x08:              /* Data cache configuration */
486         ret = 0x18220000;
487         break;
488     default:
489         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
490         break;
491     };
492     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
493                           addr, ret, size);
494     return ret;
495 }
496 
497 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
498                        int asi, uint32_t memop)
499 {
500     int size = 1 << (memop & MO_SIZE);
501     int sign = memop & MO_SIGN;
502     CPUState *cs = CPU(sparc_env_get_cpu(env));
503     uint64_t ret = 0;
504 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
505     uint32_t last_addr = addr;
506 #endif
507 
508     do_check_align(env, addr, size - 1, GETPC());
509     switch (asi) {
510     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
511     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
512         switch (addr) {
513         case 0x00:          /* Leon3 Cache Control */
514         case 0x08:          /* Leon3 Instruction Cache config */
515         case 0x0C:          /* Leon3 Date Cache config */
516             if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
517                 ret = leon3_cache_control_ld(env, addr, size);
518             }
519             break;
520         case 0x01c00a00: /* MXCC control register */
521             if (size == 8) {
522                 ret = env->mxccregs[3];
523             } else {
524                 qemu_log_mask(LOG_UNIMP,
525                               "%08x: unimplemented access size: %d\n", addr,
526                               size);
527             }
528             break;
529         case 0x01c00a04: /* MXCC control register */
530             if (size == 4) {
531                 ret = env->mxccregs[3];
532             } else {
533                 qemu_log_mask(LOG_UNIMP,
534                               "%08x: unimplemented access size: %d\n", addr,
535                               size);
536             }
537             break;
538         case 0x01c00c00: /* Module reset register */
539             if (size == 8) {
540                 ret = env->mxccregs[5];
541                 /* should we do something here? */
542             } else {
543                 qemu_log_mask(LOG_UNIMP,
544                               "%08x: unimplemented access size: %d\n", addr,
545                               size);
546             }
547             break;
548         case 0x01c00f00: /* MBus port address register */
549             if (size == 8) {
550                 ret = env->mxccregs[7];
551             } else {
552                 qemu_log_mask(LOG_UNIMP,
553                               "%08x: unimplemented access size: %d\n", addr,
554                               size);
555             }
556             break;
557         default:
558             qemu_log_mask(LOG_UNIMP,
559                           "%08x: unimplemented address, size: %d\n", addr,
560                           size);
561             break;
562         }
563         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
564                      "addr = %08x -> ret = %" PRIx64 ","
565                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
566 #ifdef DEBUG_MXCC
567         dump_mxcc(env);
568 #endif
569         break;
570     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
571     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
572         {
573             int mmulev;
574 
575             mmulev = (addr >> 8) & 15;
576             if (mmulev > 4) {
577                 ret = 0;
578             } else {
579                 ret = mmu_probe(env, addr, mmulev);
580             }
581             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
582                         addr, mmulev, ret);
583         }
584         break;
585     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
586     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
587         {
588             int reg = (addr >> 8) & 0x1f;
589 
590             ret = env->mmuregs[reg];
591             if (reg == 3) { /* Fault status cleared on read */
592                 env->mmuregs[3] = 0;
593             } else if (reg == 0x13) { /* Fault status read */
594                 ret = env->mmuregs[3];
595             } else if (reg == 0x14) { /* Fault address read */
596                 ret = env->mmuregs[4];
597             }
598             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
599         }
600         break;
601     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
602     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
603     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
604         break;
605     case ASI_KERNELTXT: /* Supervisor code access */
606         switch (size) {
607         case 1:
608             ret = cpu_ldub_code(env, addr);
609             break;
610         case 2:
611             ret = cpu_lduw_code(env, addr);
612             break;
613         default:
614         case 4:
615             ret = cpu_ldl_code(env, addr);
616             break;
617         case 8:
618             ret = cpu_ldq_code(env, addr);
619             break;
620         }
621         break;
622     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
623     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
624     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
625     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
626         break;
627     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
628         switch (size) {
629         case 1:
630             ret = ldub_phys(cs->as, (hwaddr)addr
631                             | ((hwaddr)(asi & 0xf) << 32));
632             break;
633         case 2:
634             ret = lduw_phys(cs->as, (hwaddr)addr
635                             | ((hwaddr)(asi & 0xf) << 32));
636             break;
637         default:
638         case 4:
639             ret = ldl_phys(cs->as, (hwaddr)addr
640                            | ((hwaddr)(asi & 0xf) << 32));
641             break;
642         case 8:
643             ret = ldq_phys(cs->as, (hwaddr)addr
644                            | ((hwaddr)(asi & 0xf) << 32));
645             break;
646         }
647         break;
648     case 0x30: /* Turbosparc secondary cache diagnostic */
649     case 0x31: /* Turbosparc RAM snoop */
650     case 0x32: /* Turbosparc page table descriptor diagnostic */
651     case 0x39: /* data cache diagnostic register */
652         ret = 0;
653         break;
654     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
655         {
656             int reg = (addr >> 8) & 3;
657 
658             switch (reg) {
659             case 0: /* Breakpoint Value (Addr) */
660                 ret = env->mmubpregs[reg];
661                 break;
662             case 1: /* Breakpoint Mask */
663                 ret = env->mmubpregs[reg];
664                 break;
665             case 2: /* Breakpoint Control */
666                 ret = env->mmubpregs[reg];
667                 break;
668             case 3: /* Breakpoint Status */
669                 ret = env->mmubpregs[reg];
670                 env->mmubpregs[reg] = 0ULL;
671                 break;
672             }
673             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
674                         ret);
675         }
676         break;
677     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
678         ret = env->mmubpctrv;
679         break;
680     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
681         ret = env->mmubpctrc;
682         break;
683     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
684         ret = env->mmubpctrs;
685         break;
686     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
687         ret = env->mmubpaction;
688         break;
689     case ASI_USERTXT: /* User code access, XXX */
690     default:
691         cpu_unassigned_access(cs, addr, false, false, asi, size);
692         ret = 0;
693         break;
694 
695     case ASI_USERDATA: /* User data access */
696     case ASI_KERNELDATA: /* Supervisor data access */
697     case ASI_P: /* Implicit primary context data access (v9 only?) */
698     case ASI_M_BYPASS:    /* MMU passthrough */
699     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
700         /* These are always handled inline.  */
701         g_assert_not_reached();
702     }
703     if (sign) {
704         switch (size) {
705         case 1:
706             ret = (int8_t) ret;
707             break;
708         case 2:
709             ret = (int16_t) ret;
710             break;
711         case 4:
712             ret = (int32_t) ret;
713             break;
714         default:
715             break;
716         }
717     }
718 #ifdef DEBUG_ASI
719     dump_asi("read ", last_addr, asi, size, ret);
720 #endif
721     return ret;
722 }
723 
724 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
725                    int asi, uint32_t memop)
726 {
727     int size = 1 << (memop & MO_SIZE);
728     SPARCCPU *cpu = sparc_env_get_cpu(env);
729     CPUState *cs = CPU(cpu);
730 
731     do_check_align(env, addr, size - 1, GETPC());
732     switch (asi) {
733     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
734     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
735         switch (addr) {
736         case 0x00:          /* Leon3 Cache Control */
737         case 0x08:          /* Leon3 Instruction Cache config */
738         case 0x0C:          /* Leon3 Date Cache config */
739             if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
740                 leon3_cache_control_st(env, addr, val, size);
741             }
742             break;
743 
744         case 0x01c00000: /* MXCC stream data register 0 */
745             if (size == 8) {
746                 env->mxccdata[0] = val;
747             } else {
748                 qemu_log_mask(LOG_UNIMP,
749                               "%08x: unimplemented access size: %d\n", addr,
750                               size);
751             }
752             break;
753         case 0x01c00008: /* MXCC stream data register 1 */
754             if (size == 8) {
755                 env->mxccdata[1] = val;
756             } else {
757                 qemu_log_mask(LOG_UNIMP,
758                               "%08x: unimplemented access size: %d\n", addr,
759                               size);
760             }
761             break;
762         case 0x01c00010: /* MXCC stream data register 2 */
763             if (size == 8) {
764                 env->mxccdata[2] = val;
765             } else {
766                 qemu_log_mask(LOG_UNIMP,
767                               "%08x: unimplemented access size: %d\n", addr,
768                               size);
769             }
770             break;
771         case 0x01c00018: /* MXCC stream data register 3 */
772             if (size == 8) {
773                 env->mxccdata[3] = val;
774             } else {
775                 qemu_log_mask(LOG_UNIMP,
776                               "%08x: unimplemented access size: %d\n", addr,
777                               size);
778             }
779             break;
780         case 0x01c00100: /* MXCC stream source */
781             if (size == 8) {
782                 env->mxccregs[0] = val;
783             } else {
784                 qemu_log_mask(LOG_UNIMP,
785                               "%08x: unimplemented access size: %d\n", addr,
786                               size);
787             }
788             env->mxccdata[0] = ldq_phys(cs->as,
789                                         (env->mxccregs[0] & 0xffffffffULL) +
790                                         0);
791             env->mxccdata[1] = ldq_phys(cs->as,
792                                         (env->mxccregs[0] & 0xffffffffULL) +
793                                         8);
794             env->mxccdata[2] = ldq_phys(cs->as,
795                                         (env->mxccregs[0] & 0xffffffffULL) +
796                                         16);
797             env->mxccdata[3] = ldq_phys(cs->as,
798                                         (env->mxccregs[0] & 0xffffffffULL) +
799                                         24);
800             break;
801         case 0x01c00200: /* MXCC stream destination */
802             if (size == 8) {
803                 env->mxccregs[1] = val;
804             } else {
805                 qemu_log_mask(LOG_UNIMP,
806                               "%08x: unimplemented access size: %d\n", addr,
807                               size);
808             }
809             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
810                      env->mxccdata[0]);
811             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
812                      env->mxccdata[1]);
813             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
814                      env->mxccdata[2]);
815             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
816                      env->mxccdata[3]);
817             break;
818         case 0x01c00a00: /* MXCC control register */
819             if (size == 8) {
820                 env->mxccregs[3] = val;
821             } else {
822                 qemu_log_mask(LOG_UNIMP,
823                               "%08x: unimplemented access size: %d\n", addr,
824                               size);
825             }
826             break;
827         case 0x01c00a04: /* MXCC control register */
828             if (size == 4) {
829                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
830                     | val;
831             } else {
832                 qemu_log_mask(LOG_UNIMP,
833                               "%08x: unimplemented access size: %d\n", addr,
834                               size);
835             }
836             break;
837         case 0x01c00e00: /* MXCC error register  */
838             /* writing a 1 bit clears the error */
839             if (size == 8) {
840                 env->mxccregs[6] &= ~val;
841             } else {
842                 qemu_log_mask(LOG_UNIMP,
843                               "%08x: unimplemented access size: %d\n", addr,
844                               size);
845             }
846             break;
847         case 0x01c00f00: /* MBus port address register */
848             if (size == 8) {
849                 env->mxccregs[7] = val;
850             } else {
851                 qemu_log_mask(LOG_UNIMP,
852                               "%08x: unimplemented access size: %d\n", addr,
853                               size);
854             }
855             break;
856         default:
857             qemu_log_mask(LOG_UNIMP,
858                           "%08x: unimplemented address, size: %d\n", addr,
859                           size);
860             break;
861         }
862         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
863                      asi, size, addr, val);
864 #ifdef DEBUG_MXCC
865         dump_mxcc(env);
866 #endif
867         break;
868     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
869     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
870         {
871             int mmulev;
872 
873             mmulev = (addr >> 8) & 15;
874             DPRINTF_MMU("mmu flush level %d\n", mmulev);
875             switch (mmulev) {
876             case 0: /* flush page */
877                 tlb_flush_page(CPU(cpu), addr & 0xfffff000);
878                 break;
879             case 1: /* flush segment (256k) */
880             case 2: /* flush region (16M) */
881             case 3: /* flush context (4G) */
882             case 4: /* flush entire */
883                 tlb_flush(CPU(cpu));
884                 break;
885             default:
886                 break;
887             }
888 #ifdef DEBUG_MMU
889             dump_mmu(stdout, fprintf, env);
890 #endif
891         }
892         break;
893     case ASI_M_MMUREGS: /* write MMU regs */
894     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
895         {
896             int reg = (addr >> 8) & 0x1f;
897             uint32_t oldreg;
898 
899             oldreg = env->mmuregs[reg];
900             switch (reg) {
901             case 0: /* Control Register */
902                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
903                     (val & 0x00ffffff);
904                 /* Mappings generated during no-fault mode
905                    are invalid in normal mode.  */
906                 if ((oldreg ^ env->mmuregs[reg])
907                     & (MMU_NF | env->def->mmu_bm)) {
908                     tlb_flush(CPU(cpu));
909                 }
910                 break;
911             case 1: /* Context Table Pointer Register */
912                 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
913                 break;
914             case 2: /* Context Register */
915                 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
916                 if (oldreg != env->mmuregs[reg]) {
917                     /* we flush when the MMU context changes because
918                        QEMU has no MMU context support */
919                     tlb_flush(CPU(cpu));
920                 }
921                 break;
922             case 3: /* Synchronous Fault Status Register with Clear */
923             case 4: /* Synchronous Fault Address Register */
924                 break;
925             case 0x10: /* TLB Replacement Control Register */
926                 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
927                 break;
928             case 0x13: /* Synchronous Fault Status Register with Read
929                           and Clear */
930                 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
931                 break;
932             case 0x14: /* Synchronous Fault Address Register */
933                 env->mmuregs[4] = val;
934                 break;
935             default:
936                 env->mmuregs[reg] = val;
937                 break;
938             }
939             if (oldreg != env->mmuregs[reg]) {
940                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
941                             reg, oldreg, env->mmuregs[reg]);
942             }
943 #ifdef DEBUG_MMU
944             dump_mmu(stdout, fprintf, env);
945 #endif
946         }
947         break;
948     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
949     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
950     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
951         break;
952     case ASI_M_TXTC_TAG:   /* I-cache tag */
953     case ASI_M_TXTC_DATA:  /* I-cache data */
954     case ASI_M_DATAC_TAG:  /* D-cache tag */
955     case ASI_M_DATAC_DATA: /* D-cache data */
956     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
957     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
958     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
959     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
960     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
961         break;
962     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
963         {
964             switch (size) {
965             case 1:
966                 stb_phys(cs->as, (hwaddr)addr
967                          | ((hwaddr)(asi & 0xf) << 32), val);
968                 break;
969             case 2:
970                 stw_phys(cs->as, (hwaddr)addr
971                          | ((hwaddr)(asi & 0xf) << 32), val);
972                 break;
973             case 4:
974             default:
975                 stl_phys(cs->as, (hwaddr)addr
976                          | ((hwaddr)(asi & 0xf) << 32), val);
977                 break;
978             case 8:
979                 stq_phys(cs->as, (hwaddr)addr
980                          | ((hwaddr)(asi & 0xf) << 32), val);
981                 break;
982             }
983         }
984         break;
985     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
986     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
987                   Turbosparc snoop RAM */
988     case 0x32: /* store buffer control or Turbosparc page table
989                   descriptor diagnostic */
990     case 0x36: /* I-cache flash clear */
991     case 0x37: /* D-cache flash clear */
992         break;
993     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
994         {
995             int reg = (addr >> 8) & 3;
996 
997             switch (reg) {
998             case 0: /* Breakpoint Value (Addr) */
999                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1000                 break;
1001             case 1: /* Breakpoint Mask */
1002                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1003                 break;
1004             case 2: /* Breakpoint Control */
1005                 env->mmubpregs[reg] = (val & 0x7fULL);
1006                 break;
1007             case 3: /* Breakpoint Status */
1008                 env->mmubpregs[reg] = (val & 0xfULL);
1009                 break;
1010             }
1011             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1012                         env->mmuregs[reg]);
1013         }
1014         break;
1015     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1016         env->mmubpctrv = val & 0xffffffff;
1017         break;
1018     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1019         env->mmubpctrc = val & 0x3;
1020         break;
1021     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1022         env->mmubpctrs = val & 0x3;
1023         break;
1024     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1025         env->mmubpaction = val & 0x1fff;
1026         break;
1027     case ASI_USERTXT: /* User code access, XXX */
1028     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1029     default:
1030         cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
1031                               addr, true, false, asi, size);
1032         break;
1033 
1034     case ASI_USERDATA: /* User data access */
1035     case ASI_KERNELDATA: /* Supervisor data access */
1036     case ASI_P:
1037     case ASI_M_BYPASS:    /* MMU passthrough */
1038     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1039     case ASI_M_BCOPY: /* Block copy, sta access */
1040     case ASI_M_BFILL: /* Block fill, stda access */
1041         /* These are always handled inline.  */
1042         g_assert_not_reached();
1043     }
1044 #ifdef DEBUG_ASI
1045     dump_asi("write", addr, asi, size, val);
1046 #endif
1047 }
1048 
1049 #endif /* CONFIG_USER_ONLY */
1050 #else /* TARGET_SPARC64 */
1051 
1052 #ifdef CONFIG_USER_ONLY
1053 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1054                        int asi, uint32_t memop)
1055 {
1056     int size = 1 << (memop & MO_SIZE);
1057     int sign = memop & MO_SIGN;
1058     uint64_t ret = 0;
1059 
1060     if (asi < 0x80) {
1061         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1062     }
1063     do_check_align(env, addr, size - 1, GETPC());
1064     addr = asi_address_mask(env, asi, addr);
1065 
1066     switch (asi) {
1067     case ASI_PNF:  /* Primary no-fault */
1068     case ASI_PNFL: /* Primary no-fault LE */
1069     case ASI_SNF:  /* Secondary no-fault */
1070     case ASI_SNFL: /* Secondary no-fault LE */
1071         if (page_check_range(addr, size, PAGE_READ) == -1) {
1072             ret = 0;
1073             break;
1074         }
1075         switch (size) {
1076         case 1:
1077             ret = cpu_ldub_data(env, addr);
1078             break;
1079         case 2:
1080             ret = cpu_lduw_data(env, addr);
1081             break;
1082         case 4:
1083             ret = cpu_ldl_data(env, addr);
1084             break;
1085         case 8:
1086             ret = cpu_ldq_data(env, addr);
1087             break;
1088         default:
1089             g_assert_not_reached();
1090         }
1091         break;
1092         break;
1093 
1094     case ASI_P: /* Primary */
1095     case ASI_PL: /* Primary LE */
1096     case ASI_S:  /* Secondary */
1097     case ASI_SL: /* Secondary LE */
1098         /* These are always handled inline.  */
1099         g_assert_not_reached();
1100 
1101     default:
1102         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1103     }
1104 
1105     /* Convert from little endian */
1106     switch (asi) {
1107     case ASI_PNFL: /* Primary no-fault LE */
1108     case ASI_SNFL: /* Secondary no-fault LE */
1109         switch (size) {
1110         case 2:
1111             ret = bswap16(ret);
1112             break;
1113         case 4:
1114             ret = bswap32(ret);
1115             break;
1116         case 8:
1117             ret = bswap64(ret);
1118             break;
1119         }
1120     }
1121 
1122     /* Convert to signed number */
1123     if (sign) {
1124         switch (size) {
1125         case 1:
1126             ret = (int8_t) ret;
1127             break;
1128         case 2:
1129             ret = (int16_t) ret;
1130             break;
1131         case 4:
1132             ret = (int32_t) ret;
1133             break;
1134         }
1135     }
1136 #ifdef DEBUG_ASI
1137     dump_asi("read", addr, asi, size, ret);
1138 #endif
1139     return ret;
1140 }
1141 
1142 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1143                    int asi, uint32_t memop)
1144 {
1145     int size = 1 << (memop & MO_SIZE);
1146 #ifdef DEBUG_ASI
1147     dump_asi("write", addr, asi, size, val);
1148 #endif
1149     if (asi < 0x80) {
1150         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1151     }
1152     do_check_align(env, addr, size - 1, GETPC());
1153 
1154     switch (asi) {
1155     case ASI_P:  /* Primary */
1156     case ASI_PL: /* Primary LE */
1157     case ASI_S:  /* Secondary */
1158     case ASI_SL: /* Secondary LE */
1159         /* These are always handled inline.  */
1160         g_assert_not_reached();
1161 
1162     case ASI_PNF:  /* Primary no-fault, RO */
1163     case ASI_SNF:  /* Secondary no-fault, RO */
1164     case ASI_PNFL: /* Primary no-fault LE, RO */
1165     case ASI_SNFL: /* Secondary no-fault LE, RO */
1166     default:
1167         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1168     }
1169 }
1170 
1171 #else /* CONFIG_USER_ONLY */
1172 
1173 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1174                        int asi, uint32_t memop)
1175 {
1176     int size = 1 << (memop & MO_SIZE);
1177     int sign = memop & MO_SIGN;
1178     CPUState *cs = CPU(sparc_env_get_cpu(env));
1179     uint64_t ret = 0;
1180 #if defined(DEBUG_ASI)
1181     target_ulong last_addr = addr;
1182 #endif
1183 
1184     asi &= 0xff;
1185 
1186     do_check_asi(env, asi, GETPC());
1187     do_check_align(env, addr, size - 1, GETPC());
1188     addr = asi_address_mask(env, asi, addr);
1189 
1190     switch (asi) {
1191     case ASI_PNF:
1192     case ASI_PNFL:
1193     case ASI_SNF:
1194     case ASI_SNFL:
1195         {
1196             TCGMemOpIdx oi;
1197             int idx = (env->pstate & PS_PRIV
1198                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1199                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1200 
1201             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1202 #ifdef DEBUG_ASI
1203                 dump_asi("read ", last_addr, asi, size, ret);
1204 #endif
1205                 /* exception_index is set in get_physical_address_data. */
1206                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1207             }
1208             oi = make_memop_idx(memop, idx);
1209             switch (size) {
1210             case 1:
1211                 ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1212                 break;
1213             case 2:
1214                 if (asi & 8) {
1215                     ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1216                 } else {
1217                     ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1218                 }
1219                 break;
1220             case 4:
1221                 if (asi & 8) {
1222                     ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1223                 } else {
1224                     ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1225                 }
1226                 break;
1227             case 8:
1228                 if (asi & 8) {
1229                     ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1230                 } else {
1231                     ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1232                 }
1233                 break;
1234             default:
1235                 g_assert_not_reached();
1236             }
1237         }
1238         break;
1239 
1240     case ASI_AIUP:  /* As if user primary */
1241     case ASI_AIUS:  /* As if user secondary */
1242     case ASI_AIUPL: /* As if user primary LE */
1243     case ASI_AIUSL: /* As if user secondary LE */
1244     case ASI_P:  /* Primary */
1245     case ASI_S:  /* Secondary */
1246     case ASI_PL: /* Primary LE */
1247     case ASI_SL: /* Secondary LE */
1248     case ASI_REAL:      /* Bypass */
1249     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1250     case ASI_REAL_L:    /* Bypass LE */
1251     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1252     case ASI_N:  /* Nucleus */
1253     case ASI_NL: /* Nucleus Little Endian (LE) */
1254     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1255     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1256     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1257     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1258     case ASI_TWINX_REAL:   /* Real address, twinx */
1259     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1260     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1261     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1262     case ASI_TWINX_N:  /* Nucleus, twinx */
1263     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1264     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1265     case ASI_TWINX_P:  /* Primary, twinx */
1266     case ASI_TWINX_PL: /* Primary, twinx, LE */
1267     case ASI_TWINX_S:  /* Secondary, twinx */
1268     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1269         /* These are always handled inline.  */
1270         g_assert_not_reached();
1271 
1272     case ASI_UPA_CONFIG: /* UPA config */
1273         /* XXX */
1274         break;
1275     case ASI_LSU_CONTROL: /* LSU */
1276         ret = env->lsu;
1277         break;
1278     case ASI_IMMU: /* I-MMU regs */
1279         {
1280             int reg = (addr >> 3) & 0xf;
1281             switch (reg) {
1282             case 0:
1283                 /* 0x00 I-TSB Tag Target register */
1284                 ret = ultrasparc_tag_target(env->immu.tag_access);
1285                 break;
1286             case 3: /* SFSR */
1287                 ret = env->immu.sfsr;
1288                 break;
1289             case 5: /* TSB access */
1290                 ret = env->immu.tsb;
1291                 break;
1292             case 6:
1293                 /* 0x30 I-TSB Tag Access register */
1294                 ret = env->immu.tag_access;
1295                 break;
1296             default:
1297                 cpu_unassigned_access(cs, addr, false, false, 1, size);
1298                 ret = 0;
1299             }
1300             break;
1301         }
1302     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1303         {
1304             /* env->immuregs[5] holds I-MMU TSB register value
1305                env->immuregs[6] holds I-MMU Tag Access register value */
1306             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1307             break;
1308         }
1309     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1310         {
1311             /* env->immuregs[5] holds I-MMU TSB register value
1312                env->immuregs[6] holds I-MMU Tag Access register value */
1313             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1314             break;
1315         }
1316     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1317         {
1318             int reg = (addr >> 3) & 0x3f;
1319 
1320             ret = env->itlb[reg].tte;
1321             break;
1322         }
1323     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1324         {
1325             int reg = (addr >> 3) & 0x3f;
1326 
1327             ret = env->itlb[reg].tag;
1328             break;
1329         }
1330     case ASI_DMMU: /* D-MMU regs */
1331         {
1332             int reg = (addr >> 3) & 0xf;
1333             switch (reg) {
1334             case 0:
1335                 /* 0x00 D-TSB Tag Target register */
1336                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1337                 break;
1338             case 1: /* 0x08 Primary Context */
1339                 ret = env->dmmu.mmu_primary_context;
1340                 break;
1341             case 2: /* 0x10 Secondary Context */
1342                 ret = env->dmmu.mmu_secondary_context;
1343                 break;
1344             case 3: /* SFSR */
1345                 ret = env->dmmu.sfsr;
1346                 break;
1347             case 4: /* 0x20 SFAR */
1348                 ret = env->dmmu.sfar;
1349                 break;
1350             case 5: /* 0x28 TSB access */
1351                 ret = env->dmmu.tsb;
1352                 break;
1353             case 6: /* 0x30 D-TSB Tag Access register */
1354                 ret = env->dmmu.tag_access;
1355                 break;
1356             case 7:
1357                 ret = env->dmmu.virtual_watchpoint;
1358                 break;
1359             case 8:
1360                 ret = env->dmmu.physical_watchpoint;
1361                 break;
1362             default:
1363                 cpu_unassigned_access(cs, addr, false, false, 1, size);
1364                 ret = 0;
1365             }
1366             break;
1367         }
1368     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1369         {
1370             /* env->dmmuregs[5] holds D-MMU TSB register value
1371                env->dmmuregs[6] holds D-MMU Tag Access register value */
1372             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1373             break;
1374         }
1375     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1376         {
1377             /* env->dmmuregs[5] holds D-MMU TSB register value
1378                env->dmmuregs[6] holds D-MMU Tag Access register value */
1379             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1380             break;
1381         }
1382     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1383         {
1384             int reg = (addr >> 3) & 0x3f;
1385 
1386             ret = env->dtlb[reg].tte;
1387             break;
1388         }
1389     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1390         {
1391             int reg = (addr >> 3) & 0x3f;
1392 
1393             ret = env->dtlb[reg].tag;
1394             break;
1395         }
1396     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1397         break;
1398     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1399         ret = env->ivec_status;
1400         break;
1401     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1402         {
1403             int reg = (addr >> 4) & 0x3;
1404             if (reg < 3) {
1405                 ret = env->ivec_data[reg];
1406             }
1407             break;
1408         }
1409     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1410         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1411             /* Hyperprivileged access only */
1412             cpu_unassigned_access(cs, addr, false, false, 1, size);
1413         }
1414         /* fall through */
1415     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1416         {
1417             unsigned int i = (addr >> 3) & 0x7;
1418             ret = env->scratch[i];
1419             break;
1420         }
1421     case ASI_MMU: /* UA2005 Context ID registers */
1422         switch ((addr >> 3) & 0x3) {
1423         case 1:
1424             ret = env->dmmu.mmu_primary_context;
1425             break;
1426         case 2:
1427             ret = env->dmmu.mmu_secondary_context;
1428             break;
1429         default:
1430           cpu_unassigned_access(cs, addr, true, false, 1, size);
1431         }
1432         break;
1433     case ASI_DCACHE_DATA:     /* D-cache data */
1434     case ASI_DCACHE_TAG:      /* D-cache tag access */
1435     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1436     case ASI_AFSR:            /* E-cache asynchronous fault status */
1437     case ASI_AFAR:            /* E-cache asynchronous fault address */
1438     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1439     case ASI_IC_INSTR:        /* I-cache instruction access */
1440     case ASI_IC_TAG:          /* I-cache tag access */
1441     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1442     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1443     case ASI_EC_W:            /* E-cache tag */
1444     case ASI_EC_R:            /* E-cache tag */
1445         break;
1446     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1447     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1448     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1449     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1450     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1451     case ASI_INTR_W:              /* Interrupt vector, WO */
1452     default:
1453         cpu_unassigned_access(cs, addr, false, false, 1, size);
1454         ret = 0;
1455         break;
1456     }
1457 
1458     /* Convert to signed number */
1459     if (sign) {
1460         switch (size) {
1461         case 1:
1462             ret = (int8_t) ret;
1463             break;
1464         case 2:
1465             ret = (int16_t) ret;
1466             break;
1467         case 4:
1468             ret = (int32_t) ret;
1469             break;
1470         default:
1471             break;
1472         }
1473     }
1474 #ifdef DEBUG_ASI
1475     dump_asi("read ", last_addr, asi, size, ret);
1476 #endif
1477     return ret;
1478 }
1479 
1480 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1481                    int asi, uint32_t memop)
1482 {
1483     int size = 1 << (memop & MO_SIZE);
1484     SPARCCPU *cpu = sparc_env_get_cpu(env);
1485     CPUState *cs = CPU(cpu);
1486 
1487 #ifdef DEBUG_ASI
1488     dump_asi("write", addr, asi, size, val);
1489 #endif
1490 
1491     asi &= 0xff;
1492 
1493     do_check_asi(env, asi, GETPC());
1494     do_check_align(env, addr, size - 1, GETPC());
1495     addr = asi_address_mask(env, asi, addr);
1496 
1497     switch (asi) {
1498     case ASI_AIUP:  /* As if user primary */
1499     case ASI_AIUS:  /* As if user secondary */
1500     case ASI_AIUPL: /* As if user primary LE */
1501     case ASI_AIUSL: /* As if user secondary LE */
1502     case ASI_P:  /* Primary */
1503     case ASI_S:  /* Secondary */
1504     case ASI_PL: /* Primary LE */
1505     case ASI_SL: /* Secondary LE */
1506     case ASI_REAL:      /* Bypass */
1507     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1508     case ASI_REAL_L:    /* Bypass LE */
1509     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1510     case ASI_N:  /* Nucleus */
1511     case ASI_NL: /* Nucleus Little Endian (LE) */
1512     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1513     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1514     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1515     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1516     case ASI_TWINX_REAL:   /* Real address, twinx */
1517     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1518     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1519     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1520     case ASI_TWINX_N:  /* Nucleus, twinx */
1521     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1522     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1523     case ASI_TWINX_P:  /* Primary, twinx */
1524     case ASI_TWINX_PL: /* Primary, twinx, LE */
1525     case ASI_TWINX_S:  /* Secondary, twinx */
1526     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1527         /* These are always handled inline.  */
1528         g_assert_not_reached();
1529     /* these ASIs have different functions on UltraSPARC-IIIi
1530      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1531      */
1532     case 0x31:
1533     case 0x32:
1534     case 0x39:
1535     case 0x3a:
1536         if (cpu_has_hypervisor(env)) {
1537             /* UA2005
1538              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1539              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1540              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1541              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1542              */
1543             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1544             env->dmmu.sun4v_tsb_pointers[idx] = val;
1545         } else {
1546             helper_raise_exception(env, TT_ILL_INSN);
1547         }
1548         break;
1549     case 0x33:
1550     case 0x3b:
1551         if (cpu_has_hypervisor(env)) {
1552             /* UA2005
1553              * ASI_DMMU_CTX_ZERO_CONFIG
1554              * ASI_DMMU_CTX_NONZERO_CONFIG
1555              */
1556             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1557         } else {
1558             helper_raise_exception(env, TT_ILL_INSN);
1559         }
1560         break;
1561     case 0x35:
1562     case 0x36:
1563     case 0x3d:
1564     case 0x3e:
1565         if (cpu_has_hypervisor(env)) {
1566             /* UA2005
1567              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1568              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1569              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1570              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1571              */
1572             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1573             env->immu.sun4v_tsb_pointers[idx] = val;
1574         } else {
1575             helper_raise_exception(env, TT_ILL_INSN);
1576         }
1577       break;
1578     case 0x37:
1579     case 0x3f:
1580         if (cpu_has_hypervisor(env)) {
1581             /* UA2005
1582              * ASI_IMMU_CTX_ZERO_CONFIG
1583              * ASI_IMMU_CTX_NONZERO_CONFIG
1584              */
1585             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1586         } else {
1587           helper_raise_exception(env, TT_ILL_INSN);
1588         }
1589         break;
1590     case ASI_UPA_CONFIG: /* UPA config */
1591         /* XXX */
1592         return;
1593     case ASI_LSU_CONTROL: /* LSU */
1594         env->lsu = val & (DMMU_E | IMMU_E);
1595         return;
1596     case ASI_IMMU: /* I-MMU regs */
1597         {
1598             int reg = (addr >> 3) & 0xf;
1599             uint64_t oldreg;
1600 
1601             oldreg = env->immu.mmuregs[reg];
1602             switch (reg) {
1603             case 0: /* RO */
1604                 return;
1605             case 1: /* Not in I-MMU */
1606             case 2:
1607                 return;
1608             case 3: /* SFSR */
1609                 if ((val & 1) == 0) {
1610                     val = 0; /* Clear SFSR */
1611                 }
1612                 env->immu.sfsr = val;
1613                 break;
1614             case 4: /* RO */
1615                 return;
1616             case 5: /* TSB access */
1617                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1618                             PRIx64 "\n", env->immu.tsb, val);
1619                 env->immu.tsb = val;
1620                 break;
1621             case 6: /* Tag access */
1622                 env->immu.tag_access = val;
1623                 break;
1624             case 7:
1625             case 8:
1626                 return;
1627             default:
1628                 cpu_unassigned_access(cs, addr, true, false, 1, size);
1629                 break;
1630             }
1631 
1632             if (oldreg != env->immu.mmuregs[reg]) {
1633                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1634                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1635             }
1636 #ifdef DEBUG_MMU
1637             dump_mmu(stdout, fprintf, env);
1638 #endif
1639             return;
1640         }
1641     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1642         /* ignore real translation entries */
1643         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1644             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1645                                  val, "immu", env, addr);
1646         }
1647         return;
1648     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1649         {
1650             /* TODO: auto demap */
1651 
1652             unsigned int i = (addr >> 3) & 0x3f;
1653 
1654             /* ignore real translation entries */
1655             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1656                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1657                                   sun4v_tte_to_sun4u(env, addr, val), env);
1658             }
1659 #ifdef DEBUG_MMU
1660             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1661             dump_mmu(stdout, fprintf, env);
1662 #endif
1663             return;
1664         }
1665     case ASI_IMMU_DEMAP: /* I-MMU demap */
1666         demap_tlb(env->itlb, addr, "immu", env);
1667         return;
1668     case ASI_DMMU: /* D-MMU regs */
1669         {
1670             int reg = (addr >> 3) & 0xf;
1671             uint64_t oldreg;
1672 
1673             oldreg = env->dmmu.mmuregs[reg];
1674             switch (reg) {
1675             case 0: /* RO */
1676             case 4:
1677                 return;
1678             case 3: /* SFSR */
1679                 if ((val & 1) == 0) {
1680                     val = 0; /* Clear SFSR, Fault address */
1681                     env->dmmu.sfar = 0;
1682                 }
1683                 env->dmmu.sfsr = val;
1684                 break;
1685             case 1: /* Primary context */
1686                 env->dmmu.mmu_primary_context = val;
1687                 /* can be optimized to only flush MMU_USER_IDX
1688                    and MMU_KERNEL_IDX entries */
1689                 tlb_flush(CPU(cpu));
1690                 break;
1691             case 2: /* Secondary context */
1692                 env->dmmu.mmu_secondary_context = val;
1693                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1694                    and MMU_KERNEL_SECONDARY_IDX entries */
1695                 tlb_flush(CPU(cpu));
1696                 break;
1697             case 5: /* TSB access */
1698                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1699                             PRIx64 "\n", env->dmmu.tsb, val);
1700                 env->dmmu.tsb = val;
1701                 break;
1702             case 6: /* Tag access */
1703                 env->dmmu.tag_access = val;
1704                 break;
1705             case 7: /* Virtual Watchpoint */
1706                 env->dmmu.virtual_watchpoint = val;
1707                 break;
1708             case 8: /* Physical Watchpoint */
1709                 env->dmmu.physical_watchpoint = val;
1710                 break;
1711             default:
1712                 cpu_unassigned_access(cs, addr, true, false, 1, size);
1713                 break;
1714             }
1715 
1716             if (oldreg != env->dmmu.mmuregs[reg]) {
1717                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1718                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1719             }
1720 #ifdef DEBUG_MMU
1721             dump_mmu(stdout, fprintf, env);
1722 #endif
1723             return;
1724         }
1725     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1726       /* ignore real translation entries */
1727       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1728           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1729                                val, "dmmu", env, addr);
1730       }
1731       return;
1732     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1733         {
1734             unsigned int i = (addr >> 3) & 0x3f;
1735 
1736             /* ignore real translation entries */
1737             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1738                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1739                                   sun4v_tte_to_sun4u(env, addr, val), env);
1740             }
1741 #ifdef DEBUG_MMU
1742             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1743             dump_mmu(stdout, fprintf, env);
1744 #endif
1745             return;
1746         }
1747     case ASI_DMMU_DEMAP: /* D-MMU demap */
1748         demap_tlb(env->dtlb, addr, "dmmu", env);
1749         return;
1750     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1751         env->ivec_status = val & 0x20;
1752         return;
1753     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1754         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1755             /* Hyperprivileged access only */
1756             cpu_unassigned_access(cs, addr, true, false, 1, size);
1757         }
1758         /* fall through */
1759     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1760         {
1761             unsigned int i = (addr >> 3) & 0x7;
1762             env->scratch[i] = val;
1763             return;
1764         }
1765     case ASI_MMU: /* UA2005 Context ID registers */
1766         {
1767           switch ((addr >> 3) & 0x3) {
1768           case 1:
1769               env->dmmu.mmu_primary_context = val;
1770               env->immu.mmu_primary_context = val;
1771               tlb_flush_by_mmuidx(CPU(cpu),
1772                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1773               break;
1774           case 2:
1775               env->dmmu.mmu_secondary_context = val;
1776               env->immu.mmu_secondary_context = val;
1777               tlb_flush_by_mmuidx(CPU(cpu),
1778                                   (1 << MMU_USER_SECONDARY_IDX) |
1779                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1780               break;
1781           default:
1782               cpu_unassigned_access(cs, addr, true, false, 1, size);
1783           }
1784         }
1785         return;
1786     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1787     case ASI_DCACHE_DATA: /* D-cache data */
1788     case ASI_DCACHE_TAG: /* D-cache tag access */
1789     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1790     case ASI_AFSR: /* E-cache asynchronous fault status */
1791     case ASI_AFAR: /* E-cache asynchronous fault address */
1792     case ASI_EC_TAG_DATA: /* E-cache tag data */
1793     case ASI_IC_INSTR: /* I-cache instruction access */
1794     case ASI_IC_TAG: /* I-cache tag access */
1795     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1796     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1797     case ASI_EC_W: /* E-cache tag */
1798     case ASI_EC_R: /* E-cache tag */
1799         return;
1800     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1801     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1802     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1803     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1804     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1805     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1806     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1807     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1808     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1809     case ASI_PNF: /* Primary no-fault, RO */
1810     case ASI_SNF: /* Secondary no-fault, RO */
1811     case ASI_PNFL: /* Primary no-fault LE, RO */
1812     case ASI_SNFL: /* Secondary no-fault LE, RO */
1813     default:
1814         cpu_unassigned_access(cs, addr, true, false, 1, size);
1815         return;
1816     }
1817 }
1818 #endif /* CONFIG_USER_ONLY */
1819 #endif /* TARGET_SPARC64 */
1820 
1821 #if !defined(CONFIG_USER_ONLY)
1822 #ifndef TARGET_SPARC64
1823 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1824                                  bool is_write, bool is_exec, int is_asi,
1825                                  unsigned size)
1826 {
1827     SPARCCPU *cpu = SPARC_CPU(cs);
1828     CPUSPARCState *env = &cpu->env;
1829     int fault_type;
1830 
1831 #ifdef DEBUG_UNASSIGNED
1832     if (is_asi) {
1833         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1834                " asi 0x%02x from " TARGET_FMT_lx "\n",
1835                is_exec ? "exec" : is_write ? "write" : "read", size,
1836                size == 1 ? "" : "s", addr, is_asi, env->pc);
1837     } else {
1838         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1839                " from " TARGET_FMT_lx "\n",
1840                is_exec ? "exec" : is_write ? "write" : "read", size,
1841                size == 1 ? "" : "s", addr, env->pc);
1842     }
1843 #endif
1844     /* Don't overwrite translation and access faults */
1845     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
1846     if ((fault_type > 4) || (fault_type == 0)) {
1847         env->mmuregs[3] = 0; /* Fault status register */
1848         if (is_asi) {
1849             env->mmuregs[3] |= 1 << 16;
1850         }
1851         if (env->psrs) {
1852             env->mmuregs[3] |= 1 << 5;
1853         }
1854         if (is_exec) {
1855             env->mmuregs[3] |= 1 << 6;
1856         }
1857         if (is_write) {
1858             env->mmuregs[3] |= 1 << 7;
1859         }
1860         env->mmuregs[3] |= (5 << 2) | 2;
1861         /* SuperSPARC will never place instruction fault addresses in the FAR */
1862         if (!is_exec) {
1863             env->mmuregs[4] = addr; /* Fault address register */
1864         }
1865     }
1866     /* overflow (same type fault was not read before another fault) */
1867     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
1868         env->mmuregs[3] |= 1;
1869     }
1870 
1871     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1872         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
1873         cpu_raise_exception_ra(env, tt, GETPC());
1874     }
1875 
1876     /* flush neverland mappings created during no-fault mode,
1877        so the sequential MMU faults report proper fault types */
1878     if (env->mmuregs[0] & MMU_NF) {
1879         tlb_flush(cs);
1880     }
1881 }
1882 #else
1883 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1884                                  bool is_write, bool is_exec, int is_asi,
1885                                  unsigned size)
1886 {
1887     SPARCCPU *cpu = SPARC_CPU(cs);
1888     CPUSPARCState *env = &cpu->env;
1889 
1890 #ifdef DEBUG_UNASSIGNED
1891     printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1892            "\n", addr, env->pc);
1893 #endif
1894 
1895     if (is_exec) { /* XXX has_hypervisor */
1896         if (env->lsu & (IMMU_E)) {
1897             cpu_raise_exception_ra(env, TT_CODE_ACCESS, GETPC());
1898         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1899             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, GETPC());
1900         }
1901     } else {
1902         if (env->lsu & (DMMU_E)) {
1903             cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1904         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1905             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, GETPC());
1906         }
1907     }
1908 }
1909 #endif
1910 #endif
1911 
1912 #if !defined(CONFIG_USER_ONLY)
1913 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1914                                                  MMUAccessType access_type,
1915                                                  int mmu_idx,
1916                                                  uintptr_t retaddr)
1917 {
1918     SPARCCPU *cpu = SPARC_CPU(cs);
1919     CPUSPARCState *env = &cpu->env;
1920 
1921 #ifdef DEBUG_UNALIGNED
1922     printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1923            "\n", addr, env->pc);
1924 #endif
1925     cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1926 }
1927 
1928 /* try to fill the TLB and return an exception if error. If retaddr is
1929    NULL, it means that the function was called in C code (i.e. not
1930    from generated code or from helper.c) */
1931 /* XXX: fix it to restore all registers */
1932 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
1933               int mmu_idx, uintptr_t retaddr)
1934 {
1935     int ret;
1936 
1937     ret = sparc_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
1938     if (ret) {
1939         cpu_loop_exit_restore(cs, retaddr);
1940     }
1941 }
1942 #endif
1943