xref: /openbmc/qemu/target/sparc/ldst_helper.c (revision 2f95279a)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/page-protection.h"
27 #include "exec/cpu_ldst.h"
28 #include "asi.h"
29 
30 //#define DEBUG_MMU
31 //#define DEBUG_MXCC
32 //#define DEBUG_UNASSIGNED
33 //#define DEBUG_ASI
34 //#define DEBUG_CACHE_CONTROL
35 
36 #ifdef DEBUG_MMU
37 #define DPRINTF_MMU(fmt, ...)                                   \
38     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF_MMU(fmt, ...) do {} while (0)
41 #endif
42 
43 #ifdef DEBUG_MXCC
44 #define DPRINTF_MXCC(fmt, ...)                                  \
45     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
48 #endif
49 
50 #ifdef DEBUG_ASI
51 #define DPRINTF_ASI(fmt, ...)                                   \
52     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
53 #endif
54 
55 #ifdef DEBUG_CACHE_CONTROL
56 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
57     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
60 #endif
61 
62 #ifdef TARGET_SPARC64
63 #ifndef TARGET_ABI32
64 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
65 #else
66 #define AM_CHECK(env1) (1)
67 #endif
68 #endif
69 
70 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
71 /* Calculates TSB pointer value for fault page size
72  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
73  * UA2005 holds the page size configuration in mmu_ctx registers */
74 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
75                                        const SparcV9MMU *mmu, const int idx)
76 {
77     uint64_t tsb_register;
78     int page_size;
79     if (cpu_has_hypervisor(env)) {
80         int tsb_index = 0;
81         int ctx = mmu->tag_access & 0x1fffULL;
82         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
83         tsb_index = idx;
84         tsb_index |= ctx ? 2 : 0;
85         page_size = idx ? ctx_register >> 8 : ctx_register;
86         page_size &= 7;
87         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
88     } else {
89         page_size = idx;
90         tsb_register = mmu->tsb;
91     }
92     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
93     int tsb_size  = tsb_register & 0xf;
94 
95     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
96 
97     /* move va bits to correct position,
98      * the context bits will be masked out later */
99     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
100 
101     /* calculate tsb_base mask and adjust va if split is in use */
102     if (tsb_split) {
103         if (idx == 0) {
104             va &= ~(1ULL << (13 + tsb_size));
105         } else {
106             va |= (1ULL << (13 + tsb_size));
107         }
108         tsb_base_mask <<= 1;
109     }
110 
111     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
112 }
113 
114 /* Calculates tag target register value by reordering bits
115    in tag access register */
116 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
117 {
118     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
119 }
120 
121 static void replace_tlb_entry(SparcTLBEntry *tlb,
122                               uint64_t tlb_tag, uint64_t tlb_tte,
123                               CPUSPARCState *env)
124 {
125     target_ulong mask, size, va, offset;
126 
127     /* flush page range if translation is valid */
128     if (TTE_IS_VALID(tlb->tte)) {
129         CPUState *cs = env_cpu(env);
130 
131         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
132         mask = 1ULL + ~size;
133 
134         va = tlb->tag & mask;
135 
136         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
137             tlb_flush_page(cs, va + offset);
138         }
139     }
140 
141     tlb->tag = tlb_tag;
142     tlb->tte = tlb_tte;
143 }
144 
145 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
146                       const char *strmmu, CPUSPARCState *env1)
147 {
148     unsigned int i;
149     target_ulong mask;
150     uint64_t context;
151 
152     int is_demap_context = (demap_addr >> 6) & 1;
153 
154     /* demap context */
155     switch ((demap_addr >> 4) & 3) {
156     case 0: /* primary */
157         context = env1->dmmu.mmu_primary_context;
158         break;
159     case 1: /* secondary */
160         context = env1->dmmu.mmu_secondary_context;
161         break;
162     case 2: /* nucleus */
163         context = 0;
164         break;
165     case 3: /* reserved */
166     default:
167         return;
168     }
169 
170     for (i = 0; i < 64; i++) {
171         if (TTE_IS_VALID(tlb[i].tte)) {
172 
173             if (is_demap_context) {
174                 /* will remove non-global entries matching context value */
175                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
176                     !tlb_compare_context(&tlb[i], context)) {
177                     continue;
178                 }
179             } else {
180                 /* demap page
181                    will remove any entry matching VA */
182                 mask = 0xffffffffffffe000ULL;
183                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
184 
185                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
186                     continue;
187                 }
188 
189                 /* entry should be global or matching context value */
190                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
191                     !tlb_compare_context(&tlb[i], context)) {
192                     continue;
193                 }
194             }
195 
196             replace_tlb_entry(&tlb[i], 0, 0, env1);
197 #ifdef DEBUG_MMU
198             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
199             dump_mmu(env1);
200 #endif
201         }
202     }
203 }
204 
205 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
206                                    uint64_t sun4v_tte)
207 {
208     uint64_t sun4u_tte;
209     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
210         /* is already in the sun4u format */
211         return sun4v_tte;
212     }
213     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
214     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
215     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
216     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
219                              TTE_SIDEEFFECT_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
221     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
222     return sun4u_tte;
223 }
224 
225 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
226                                  uint64_t tlb_tag, uint64_t tlb_tte,
227                                  const char *strmmu, CPUSPARCState *env1,
228                                  uint64_t addr)
229 {
230     unsigned int i, replace_used;
231 
232     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
233     if (cpu_has_hypervisor(env1)) {
234         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
235         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
236         uint32_t new_ctx = tlb_tag & 0x1fffU;
237         for (i = 0; i < 64; i++) {
238             uint32_t ctx = tlb[i].tag & 0x1fffU;
239             /* check if new mapping overlaps an existing one */
240             if (new_ctx == ctx) {
241                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
242                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
243                 if (new_vaddr == vaddr
244                     || (new_vaddr < vaddr + size
245                         && vaddr < new_vaddr + new_size)) {
246                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
247                                 new_vaddr);
248                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
249                     return;
250                 }
251             }
252 
253         }
254     }
255     /* Try replacing invalid entry */
256     for (i = 0; i < 64; i++) {
257         if (!TTE_IS_VALID(tlb[i].tte)) {
258             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
259 #ifdef DEBUG_MMU
260             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
261             dump_mmu(env1);
262 #endif
263             return;
264         }
265     }
266 
267     /* All entries are valid, try replacing unlocked entry */
268 
269     for (replace_used = 0; replace_used < 2; ++replace_used) {
270 
271         /* Used entries are not replaced on first pass */
272 
273         for (i = 0; i < 64; i++) {
274             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
275 
276                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
277 #ifdef DEBUG_MMU
278                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
279                             strmmu, (replace_used ? "used" : "unused"), i);
280                 dump_mmu(env1);
281 #endif
282                 return;
283             }
284         }
285 
286         /* Now reset used bit and search for unused entries again */
287 
288         for (i = 0; i < 64; i++) {
289             TTE_SET_UNUSED(tlb[i].tte);
290         }
291     }
292 
293 #ifdef DEBUG_MMU
294     DPRINTF_MMU("%s lru replacement: no free entries available, "
295                 "replacing the last one\n", strmmu);
296 #endif
297     /* corner case: the last entry is replaced anyway */
298     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
299 }
300 
301 #endif
302 
303 #ifdef TARGET_SPARC64
304 /* returns true if access using this ASI is to have address translated by MMU
305    otherwise access is to raw physical address */
306 /* TODO: check sparc32 bits */
307 static inline int is_translating_asi(int asi)
308 {
309     /* Ultrasparc IIi translating asi
310        - note this list is defined by cpu implementation
311     */
312     switch (asi) {
313     case 0x04 ... 0x11:
314     case 0x16 ... 0x19:
315     case 0x1E ... 0x1F:
316     case 0x24 ... 0x2C:
317     case 0x70 ... 0x73:
318     case 0x78 ... 0x79:
319     case 0x80 ... 0xFF:
320         return 1;
321 
322     default:
323         return 0;
324     }
325 }
326 
327 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
328 {
329     if (AM_CHECK(env1)) {
330         addr &= 0xffffffffULL;
331     }
332     return addr;
333 }
334 
335 static inline target_ulong asi_address_mask(CPUSPARCState *env,
336                                             int asi, target_ulong addr)
337 {
338     if (is_translating_asi(asi)) {
339         addr = address_mask(env, addr);
340     }
341     return addr;
342 }
343 
344 #ifndef CONFIG_USER_ONLY
345 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
346 {
347     /* ASIs >= 0x80 are user mode.
348      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
349      * ASIs <= 0x2f are super mode.
350      */
351     if (asi < 0x80
352         && !cpu_hypervisor_mode(env)
353         && (!cpu_supervisor_mode(env)
354             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
355         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
356     }
357 }
358 #endif /* !CONFIG_USER_ONLY */
359 #endif
360 
361 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
362 static void do_check_align(CPUSPARCState *env, target_ulong addr,
363                            uint32_t align, uintptr_t ra)
364 {
365     if (addr & align) {
366         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
367     }
368 }
369 #endif
370 
371 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
372     defined(DEBUG_MXCC)
373 static void dump_mxcc(CPUSPARCState *env)
374 {
375     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
376            "\n",
377            env->mxccdata[0], env->mxccdata[1],
378            env->mxccdata[2], env->mxccdata[3]);
379     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
380            "\n"
381            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
382            "\n",
383            env->mxccregs[0], env->mxccregs[1],
384            env->mxccregs[2], env->mxccregs[3],
385            env->mxccregs[4], env->mxccregs[5],
386            env->mxccregs[6], env->mxccregs[7]);
387 }
388 #endif
389 
390 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
391     && defined(DEBUG_ASI)
392 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
393                      uint64_t r1)
394 {
395     switch (size) {
396     case 1:
397         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
398                     addr, asi, r1 & 0xff);
399         break;
400     case 2:
401         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
402                     addr, asi, r1 & 0xffff);
403         break;
404     case 4:
405         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
406                     addr, asi, r1 & 0xffffffff);
407         break;
408     case 8:
409         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
410                     addr, asi, r1);
411         break;
412     }
413 }
414 #endif
415 
416 #ifndef CONFIG_USER_ONLY
417 #ifndef TARGET_SPARC64
418 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
419                                   bool is_write, bool is_exec, int is_asi,
420                                   unsigned size, uintptr_t retaddr)
421 {
422     CPUSPARCState *env = cpu_env(cs);
423     int fault_type;
424 
425 #ifdef DEBUG_UNASSIGNED
426     if (is_asi) {
427         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
428                " asi 0x%02x from " TARGET_FMT_lx "\n",
429                is_exec ? "exec" : is_write ? "write" : "read", size,
430                size == 1 ? "" : "s", addr, is_asi, env->pc);
431     } else {
432         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
433                " from " TARGET_FMT_lx "\n",
434                is_exec ? "exec" : is_write ? "write" : "read", size,
435                size == 1 ? "" : "s", addr, env->pc);
436     }
437 #endif
438     /* Don't overwrite translation and access faults */
439     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
440     if ((fault_type > 4) || (fault_type == 0)) {
441         env->mmuregs[3] = 0; /* Fault status register */
442         if (is_asi) {
443             env->mmuregs[3] |= 1 << 16;
444         }
445         if (env->psrs) {
446             env->mmuregs[3] |= 1 << 5;
447         }
448         if (is_exec) {
449             env->mmuregs[3] |= 1 << 6;
450         }
451         if (is_write) {
452             env->mmuregs[3] |= 1 << 7;
453         }
454         env->mmuregs[3] |= (5 << 2) | 2;
455         /* SuperSPARC will never place instruction fault addresses in the FAR */
456         if (!is_exec) {
457             env->mmuregs[4] = addr; /* Fault address register */
458         }
459     }
460     /* overflow (same type fault was not read before another fault) */
461     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
462         env->mmuregs[3] |= 1;
463     }
464 
465     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
466         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
467         cpu_raise_exception_ra(env, tt, retaddr);
468     }
469 
470     /*
471      * flush neverland mappings created during no-fault mode,
472      * so the sequential MMU faults report proper fault types
473      */
474     if (env->mmuregs[0] & MMU_NF) {
475         tlb_flush(cs);
476     }
477 }
478 #else
479 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
480                                   bool is_write, bool is_exec, int is_asi,
481                                   unsigned size, uintptr_t retaddr)
482 {
483     CPUSPARCState *env = cpu_env(cs);
484 
485 #ifdef DEBUG_UNASSIGNED
486     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
487            "\n", addr, env->pc);
488 #endif
489 
490     if (is_exec) { /* XXX has_hypervisor */
491         if (env->lsu & (IMMU_E)) {
492             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
493         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
494             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
495         }
496     } else {
497         if (env->lsu & (DMMU_E)) {
498             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
499         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
500             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
501         }
502     }
503 }
504 #endif
505 #endif
506 
507 #ifndef TARGET_SPARC64
508 #ifndef CONFIG_USER_ONLY
509 
510 
511 /* Leon3 cache control */
512 
513 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
514                                    uint64_t val, int size)
515 {
516     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
517                           addr, val, size);
518 
519     if (size != 4) {
520         DPRINTF_CACHE_CONTROL("32bits only\n");
521         return;
522     }
523 
524     switch (addr) {
525     case 0x00:              /* Cache control */
526 
527         /* These values must always be read as zeros */
528         val &= ~CACHE_CTRL_FD;
529         val &= ~CACHE_CTRL_FI;
530         val &= ~CACHE_CTRL_IB;
531         val &= ~CACHE_CTRL_IP;
532         val &= ~CACHE_CTRL_DP;
533 
534         env->cache_control = val;
535         break;
536     case 0x04:              /* Instruction cache configuration */
537     case 0x08:              /* Data cache configuration */
538         /* Read Only */
539         break;
540     default:
541         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
542         break;
543     };
544 }
545 
546 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
547                                        int size)
548 {
549     uint64_t ret = 0;
550 
551     if (size != 4) {
552         DPRINTF_CACHE_CONTROL("32bits only\n");
553         return 0;
554     }
555 
556     switch (addr) {
557     case 0x00:              /* Cache control */
558         ret = env->cache_control;
559         break;
560 
561         /* Configuration registers are read and only always keep those
562            predefined values */
563 
564     case 0x04:              /* Instruction cache configuration */
565         ret = 0x10220000;
566         break;
567     case 0x08:              /* Data cache configuration */
568         ret = 0x18220000;
569         break;
570     default:
571         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
572         break;
573     };
574     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
575                           addr, ret, size);
576     return ret;
577 }
578 
579 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
580                        int asi, uint32_t memop)
581 {
582     int size = 1 << (memop & MO_SIZE);
583     int sign = memop & MO_SIGN;
584     CPUState *cs = env_cpu(env);
585     uint64_t ret = 0;
586 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
587     uint32_t last_addr = addr;
588 #endif
589 
590     do_check_align(env, addr, size - 1, GETPC());
591     switch (asi) {
592     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
593     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
594         switch (addr) {
595         case 0x00:          /* Leon3 Cache Control */
596         case 0x08:          /* Leon3 Instruction Cache config */
597         case 0x0C:          /* Leon3 Date Cache config */
598             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
599                 ret = leon3_cache_control_ld(env, addr, size);
600             }
601             break;
602         case 0x01c00a00: /* MXCC control register */
603             if (size == 8) {
604                 ret = env->mxccregs[3];
605             } else {
606                 qemu_log_mask(LOG_UNIMP,
607                               "%08x: unimplemented access size: %d\n", addr,
608                               size);
609             }
610             break;
611         case 0x01c00a04: /* MXCC control register */
612             if (size == 4) {
613                 ret = env->mxccregs[3];
614             } else {
615                 qemu_log_mask(LOG_UNIMP,
616                               "%08x: unimplemented access size: %d\n", addr,
617                               size);
618             }
619             break;
620         case 0x01c00c00: /* Module reset register */
621             if (size == 8) {
622                 ret = env->mxccregs[5];
623                 /* should we do something here? */
624             } else {
625                 qemu_log_mask(LOG_UNIMP,
626                               "%08x: unimplemented access size: %d\n", addr,
627                               size);
628             }
629             break;
630         case 0x01c00f00: /* MBus port address register */
631             if (size == 8) {
632                 ret = env->mxccregs[7];
633             } else {
634                 qemu_log_mask(LOG_UNIMP,
635                               "%08x: unimplemented access size: %d\n", addr,
636                               size);
637             }
638             break;
639         default:
640             qemu_log_mask(LOG_UNIMP,
641                           "%08x: unimplemented address, size: %d\n", addr,
642                           size);
643             break;
644         }
645         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
646                      "addr = %08x -> ret = %" PRIx64 ","
647                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
648 #ifdef DEBUG_MXCC
649         dump_mxcc(env);
650 #endif
651         break;
652     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
653     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
654         {
655             int mmulev;
656 
657             mmulev = (addr >> 8) & 15;
658             if (mmulev > 4) {
659                 ret = 0;
660             } else {
661                 ret = mmu_probe(env, addr, mmulev);
662             }
663             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
664                         addr, mmulev, ret);
665         }
666         break;
667     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
668     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
669         {
670             int reg = (addr >> 8) & 0x1f;
671 
672             ret = env->mmuregs[reg];
673             if (reg == 3) { /* Fault status cleared on read */
674                 env->mmuregs[3] = 0;
675             } else if (reg == 0x13) { /* Fault status read */
676                 ret = env->mmuregs[3];
677             } else if (reg == 0x14) { /* Fault address read */
678                 ret = env->mmuregs[4];
679             }
680             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
681         }
682         break;
683     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
684     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
685     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
686         break;
687     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
688     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
689     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
690     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
691         break;
692     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
693     {
694         MemTxResult result;
695         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
696 
697         switch (size) {
698         case 1:
699             ret = address_space_ldub(cs->as, access_addr,
700                                      MEMTXATTRS_UNSPECIFIED, &result);
701             break;
702         case 2:
703             ret = address_space_lduw(cs->as, access_addr,
704                                      MEMTXATTRS_UNSPECIFIED, &result);
705             break;
706         default:
707         case 4:
708             ret = address_space_ldl(cs->as, access_addr,
709                                     MEMTXATTRS_UNSPECIFIED, &result);
710             break;
711         case 8:
712             ret = address_space_ldq(cs->as, access_addr,
713                                     MEMTXATTRS_UNSPECIFIED, &result);
714             break;
715         }
716 
717         if (result != MEMTX_OK) {
718             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
719                                   size, GETPC());
720         }
721         break;
722     }
723     case 0x30: /* Turbosparc secondary cache diagnostic */
724     case 0x31: /* Turbosparc RAM snoop */
725     case 0x32: /* Turbosparc page table descriptor diagnostic */
726     case 0x39: /* data cache diagnostic register */
727         ret = 0;
728         break;
729     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
730         {
731             int reg = (addr >> 8) & 3;
732 
733             switch (reg) {
734             case 0: /* Breakpoint Value (Addr) */
735                 ret = env->mmubpregs[reg];
736                 break;
737             case 1: /* Breakpoint Mask */
738                 ret = env->mmubpregs[reg];
739                 break;
740             case 2: /* Breakpoint Control */
741                 ret = env->mmubpregs[reg];
742                 break;
743             case 3: /* Breakpoint Status */
744                 ret = env->mmubpregs[reg];
745                 env->mmubpregs[reg] = 0ULL;
746                 break;
747             }
748             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
749                         ret);
750         }
751         break;
752     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
753         ret = env->mmubpctrv;
754         break;
755     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
756         ret = env->mmubpctrc;
757         break;
758     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
759         ret = env->mmubpctrs;
760         break;
761     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
762         ret = env->mmubpaction;
763         break;
764     default:
765         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
766         ret = 0;
767         break;
768 
769     case ASI_USERDATA: /* User data access */
770     case ASI_KERNELDATA: /* Supervisor data access */
771     case ASI_USERTXT: /* User code access */
772     case ASI_KERNELTXT: /* Supervisor code access */
773     case ASI_P: /* Implicit primary context data access (v9 only?) */
774     case ASI_M_BYPASS:    /* MMU passthrough */
775     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
776         /* These are always handled inline.  */
777         g_assert_not_reached();
778     }
779     if (sign) {
780         switch (size) {
781         case 1:
782             ret = (int8_t) ret;
783             break;
784         case 2:
785             ret = (int16_t) ret;
786             break;
787         case 4:
788             ret = (int32_t) ret;
789             break;
790         default:
791             break;
792         }
793     }
794 #ifdef DEBUG_ASI
795     dump_asi("read ", last_addr, asi, size, ret);
796 #endif
797     return ret;
798 }
799 
800 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
801                    int asi, uint32_t memop)
802 {
803     int size = 1 << (memop & MO_SIZE);
804     CPUState *cs = env_cpu(env);
805 
806     do_check_align(env, addr, size - 1, GETPC());
807     switch (asi) {
808     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
809     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
810         switch (addr) {
811         case 0x00:          /* Leon3 Cache Control */
812         case 0x08:          /* Leon3 Instruction Cache config */
813         case 0x0C:          /* Leon3 Date Cache config */
814             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
815                 leon3_cache_control_st(env, addr, val, size);
816             }
817             break;
818 
819         case 0x01c00000: /* MXCC stream data register 0 */
820             if (size == 8) {
821                 env->mxccdata[0] = val;
822             } else {
823                 qemu_log_mask(LOG_UNIMP,
824                               "%08x: unimplemented access size: %d\n", addr,
825                               size);
826             }
827             break;
828         case 0x01c00008: /* MXCC stream data register 1 */
829             if (size == 8) {
830                 env->mxccdata[1] = val;
831             } else {
832                 qemu_log_mask(LOG_UNIMP,
833                               "%08x: unimplemented access size: %d\n", addr,
834                               size);
835             }
836             break;
837         case 0x01c00010: /* MXCC stream data register 2 */
838             if (size == 8) {
839                 env->mxccdata[2] = val;
840             } else {
841                 qemu_log_mask(LOG_UNIMP,
842                               "%08x: unimplemented access size: %d\n", addr,
843                               size);
844             }
845             break;
846         case 0x01c00018: /* MXCC stream data register 3 */
847             if (size == 8) {
848                 env->mxccdata[3] = val;
849             } else {
850                 qemu_log_mask(LOG_UNIMP,
851                               "%08x: unimplemented access size: %d\n", addr,
852                               size);
853             }
854             break;
855         case 0x01c00100: /* MXCC stream source */
856         {
857             int i;
858 
859             if (size == 8) {
860                 env->mxccregs[0] = val;
861             } else {
862                 qemu_log_mask(LOG_UNIMP,
863                               "%08x: unimplemented access size: %d\n", addr,
864                               size);
865             }
866 
867             for (i = 0; i < 4; i++) {
868                 MemTxResult result;
869                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
870 
871                 env->mxccdata[i] = address_space_ldq(cs->as,
872                                                      access_addr,
873                                                      MEMTXATTRS_UNSPECIFIED,
874                                                      &result);
875                 if (result != MEMTX_OK) {
876                     /* TODO: investigate whether this is the right behaviour */
877                     sparc_raise_mmu_fault(cs, access_addr, false, false,
878                                           false, size, GETPC());
879                 }
880             }
881             break;
882         }
883         case 0x01c00200: /* MXCC stream destination */
884         {
885             int i;
886 
887             if (size == 8) {
888                 env->mxccregs[1] = val;
889             } else {
890                 qemu_log_mask(LOG_UNIMP,
891                               "%08x: unimplemented access size: %d\n", addr,
892                               size);
893             }
894 
895             for (i = 0; i < 4; i++) {
896                 MemTxResult result;
897                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
898 
899                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
900                                   MEMTXATTRS_UNSPECIFIED, &result);
901 
902                 if (result != MEMTX_OK) {
903                     /* TODO: investigate whether this is the right behaviour */
904                     sparc_raise_mmu_fault(cs, access_addr, true, false,
905                                           false, size, GETPC());
906                 }
907             }
908             break;
909         }
910         case 0x01c00a00: /* MXCC control register */
911             if (size == 8) {
912                 env->mxccregs[3] = val;
913             } else {
914                 qemu_log_mask(LOG_UNIMP,
915                               "%08x: unimplemented access size: %d\n", addr,
916                               size);
917             }
918             break;
919         case 0x01c00a04: /* MXCC control register */
920             if (size == 4) {
921                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
922                     | val;
923             } else {
924                 qemu_log_mask(LOG_UNIMP,
925                               "%08x: unimplemented access size: %d\n", addr,
926                               size);
927             }
928             break;
929         case 0x01c00e00: /* MXCC error register  */
930             /* writing a 1 bit clears the error */
931             if (size == 8) {
932                 env->mxccregs[6] &= ~val;
933             } else {
934                 qemu_log_mask(LOG_UNIMP,
935                               "%08x: unimplemented access size: %d\n", addr,
936                               size);
937             }
938             break;
939         case 0x01c00f00: /* MBus port address register */
940             if (size == 8) {
941                 env->mxccregs[7] = val;
942             } else {
943                 qemu_log_mask(LOG_UNIMP,
944                               "%08x: unimplemented access size: %d\n", addr,
945                               size);
946             }
947             break;
948         default:
949             qemu_log_mask(LOG_UNIMP,
950                           "%08x: unimplemented address, size: %d\n", addr,
951                           size);
952             break;
953         }
954         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
955                      asi, size, addr, val);
956 #ifdef DEBUG_MXCC
957         dump_mxcc(env);
958 #endif
959         break;
960     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
961     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
962         {
963             int mmulev;
964 
965             mmulev = (addr >> 8) & 15;
966             DPRINTF_MMU("mmu flush level %d\n", mmulev);
967             switch (mmulev) {
968             case 0: /* flush page */
969                 tlb_flush_page(cs, addr & 0xfffff000);
970                 break;
971             case 1: /* flush segment (256k) */
972             case 2: /* flush region (16M) */
973             case 3: /* flush context (4G) */
974             case 4: /* flush entire */
975                 tlb_flush(cs);
976                 break;
977             default:
978                 break;
979             }
980 #ifdef DEBUG_MMU
981             dump_mmu(env);
982 #endif
983         }
984         break;
985     case ASI_M_MMUREGS: /* write MMU regs */
986     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
987         {
988             int reg = (addr >> 8) & 0x1f;
989             uint32_t oldreg;
990 
991             oldreg = env->mmuregs[reg];
992             switch (reg) {
993             case 0: /* Control Register */
994                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
995                     (val & 0x00ffffff);
996                 /* Mappings generated during no-fault mode
997                    are invalid in normal mode.  */
998                 if ((oldreg ^ env->mmuregs[reg])
999                     & (MMU_NF | env->def.mmu_bm)) {
1000                     tlb_flush(cs);
1001                 }
1002                 break;
1003             case 1: /* Context Table Pointer Register */
1004                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1005                 break;
1006             case 2: /* Context Register */
1007                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1008                 if (oldreg != env->mmuregs[reg]) {
1009                     /* we flush when the MMU context changes because
1010                        QEMU has no MMU context support */
1011                     tlb_flush(cs);
1012                 }
1013                 break;
1014             case 3: /* Synchronous Fault Status Register with Clear */
1015             case 4: /* Synchronous Fault Address Register */
1016                 break;
1017             case 0x10: /* TLB Replacement Control Register */
1018                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1019                 break;
1020             case 0x13: /* Synchronous Fault Status Register with Read
1021                           and Clear */
1022                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1023                 break;
1024             case 0x14: /* Synchronous Fault Address Register */
1025                 env->mmuregs[4] = val;
1026                 break;
1027             default:
1028                 env->mmuregs[reg] = val;
1029                 break;
1030             }
1031             if (oldreg != env->mmuregs[reg]) {
1032                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1033                             reg, oldreg, env->mmuregs[reg]);
1034             }
1035 #ifdef DEBUG_MMU
1036             dump_mmu(env);
1037 #endif
1038         }
1039         break;
1040     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1041     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1042     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1043         break;
1044     case ASI_M_TXTC_TAG:   /* I-cache tag */
1045     case ASI_M_TXTC_DATA:  /* I-cache data */
1046     case ASI_M_DATAC_TAG:  /* D-cache tag */
1047     case ASI_M_DATAC_DATA: /* D-cache data */
1048     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1049     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1050     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1051     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1052     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1053         break;
1054     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1055         {
1056             MemTxResult result;
1057             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1058 
1059             switch (size) {
1060             case 1:
1061                 address_space_stb(cs->as, access_addr, val,
1062                                   MEMTXATTRS_UNSPECIFIED, &result);
1063                 break;
1064             case 2:
1065                 address_space_stw(cs->as, access_addr, val,
1066                                   MEMTXATTRS_UNSPECIFIED, &result);
1067                 break;
1068             case 4:
1069             default:
1070                 address_space_stl(cs->as, access_addr, val,
1071                                   MEMTXATTRS_UNSPECIFIED, &result);
1072                 break;
1073             case 8:
1074                 address_space_stq(cs->as, access_addr, val,
1075                                   MEMTXATTRS_UNSPECIFIED, &result);
1076                 break;
1077             }
1078             if (result != MEMTX_OK) {
1079                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1080                                       size, GETPC());
1081             }
1082         }
1083         break;
1084     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1085     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1086                   Turbosparc snoop RAM */
1087     case 0x32: /* store buffer control or Turbosparc page table
1088                   descriptor diagnostic */
1089     case 0x36: /* I-cache flash clear */
1090     case 0x37: /* D-cache flash clear */
1091         break;
1092     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1093         {
1094             int reg = (addr >> 8) & 3;
1095 
1096             switch (reg) {
1097             case 0: /* Breakpoint Value (Addr) */
1098                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1099                 break;
1100             case 1: /* Breakpoint Mask */
1101                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1102                 break;
1103             case 2: /* Breakpoint Control */
1104                 env->mmubpregs[reg] = (val & 0x7fULL);
1105                 break;
1106             case 3: /* Breakpoint Status */
1107                 env->mmubpregs[reg] = (val & 0xfULL);
1108                 break;
1109             }
1110             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1111                         env->mmuregs[reg]);
1112         }
1113         break;
1114     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1115         env->mmubpctrv = val & 0xffffffff;
1116         break;
1117     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1118         env->mmubpctrc = val & 0x3;
1119         break;
1120     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1121         env->mmubpctrs = val & 0x3;
1122         break;
1123     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1124         env->mmubpaction = val & 0x1fff;
1125         break;
1126     case ASI_USERTXT: /* User code access, XXX */
1127     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1128     default:
1129         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1130         break;
1131 
1132     case ASI_USERDATA: /* User data access */
1133     case ASI_KERNELDATA: /* Supervisor data access */
1134     case ASI_P:
1135     case ASI_M_BYPASS:    /* MMU passthrough */
1136     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1137     case ASI_M_BCOPY: /* Block copy, sta access */
1138     case ASI_M_BFILL: /* Block fill, stda access */
1139         /* These are always handled inline.  */
1140         g_assert_not_reached();
1141     }
1142 #ifdef DEBUG_ASI
1143     dump_asi("write", addr, asi, size, val);
1144 #endif
1145 }
1146 
1147 uint64_t helper_ld_code(CPUSPARCState *env, target_ulong addr, uint32_t oi)
1148 {
1149     MemOp mop = get_memop(oi);
1150     uintptr_t ra = GETPC();
1151     uint64_t ret;
1152 
1153     switch (mop & MO_SIZE) {
1154     case MO_8:
1155         ret = cpu_ldb_code_mmu(env, addr, oi, ra);
1156         if (mop & MO_SIGN) {
1157             ret = (int8_t)ret;
1158         }
1159         break;
1160     case MO_16:
1161         ret = cpu_ldw_code_mmu(env, addr, oi, ra);
1162         if ((mop & MO_BSWAP) != MO_TE) {
1163             ret = bswap16(ret);
1164         }
1165         if (mop & MO_SIGN) {
1166             ret = (int16_t)ret;
1167         }
1168         break;
1169     case MO_32:
1170         ret = cpu_ldl_code_mmu(env, addr, oi, ra);
1171         if ((mop & MO_BSWAP) != MO_TE) {
1172             ret = bswap32(ret);
1173         }
1174         if (mop & MO_SIGN) {
1175             ret = (int32_t)ret;
1176         }
1177         break;
1178     case MO_64:
1179         ret = cpu_ldq_code_mmu(env, addr, oi, ra);
1180         if ((mop & MO_BSWAP) != MO_TE) {
1181             ret = bswap64(ret);
1182         }
1183         break;
1184     default:
1185         g_assert_not_reached();
1186     }
1187     return ret;
1188 }
1189 
1190 #endif /* CONFIG_USER_ONLY */
1191 #else /* TARGET_SPARC64 */
1192 
1193 #ifdef CONFIG_USER_ONLY
1194 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1195                        int asi, uint32_t memop)
1196 {
1197     int size = 1 << (memop & MO_SIZE);
1198     int sign = memop & MO_SIGN;
1199     uint64_t ret = 0;
1200 
1201     if (asi < 0x80) {
1202         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1203     }
1204     do_check_align(env, addr, size - 1, GETPC());
1205     addr = asi_address_mask(env, asi, addr);
1206 
1207     switch (asi) {
1208     case ASI_PNF:  /* Primary no-fault */
1209     case ASI_PNFL: /* Primary no-fault LE */
1210     case ASI_SNF:  /* Secondary no-fault */
1211     case ASI_SNFL: /* Secondary no-fault LE */
1212         if (!page_check_range(addr, size, PAGE_READ)) {
1213             ret = 0;
1214             break;
1215         }
1216         switch (size) {
1217         case 1:
1218             ret = cpu_ldub_data(env, addr);
1219             break;
1220         case 2:
1221             ret = cpu_lduw_data(env, addr);
1222             break;
1223         case 4:
1224             ret = cpu_ldl_data(env, addr);
1225             break;
1226         case 8:
1227             ret = cpu_ldq_data(env, addr);
1228             break;
1229         default:
1230             g_assert_not_reached();
1231         }
1232         break;
1233         break;
1234 
1235     case ASI_P: /* Primary */
1236     case ASI_PL: /* Primary LE */
1237     case ASI_S:  /* Secondary */
1238     case ASI_SL: /* Secondary LE */
1239         /* These are always handled inline.  */
1240         g_assert_not_reached();
1241 
1242     default:
1243         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1244     }
1245 
1246     /* Convert from little endian */
1247     switch (asi) {
1248     case ASI_PNFL: /* Primary no-fault LE */
1249     case ASI_SNFL: /* Secondary no-fault LE */
1250         switch (size) {
1251         case 2:
1252             ret = bswap16(ret);
1253             break;
1254         case 4:
1255             ret = bswap32(ret);
1256             break;
1257         case 8:
1258             ret = bswap64(ret);
1259             break;
1260         }
1261     }
1262 
1263     /* Convert to signed number */
1264     if (sign) {
1265         switch (size) {
1266         case 1:
1267             ret = (int8_t) ret;
1268             break;
1269         case 2:
1270             ret = (int16_t) ret;
1271             break;
1272         case 4:
1273             ret = (int32_t) ret;
1274             break;
1275         }
1276     }
1277 #ifdef DEBUG_ASI
1278     dump_asi("read", addr, asi, size, ret);
1279 #endif
1280     return ret;
1281 }
1282 
1283 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1284                    int asi, uint32_t memop)
1285 {
1286     int size = 1 << (memop & MO_SIZE);
1287 #ifdef DEBUG_ASI
1288     dump_asi("write", addr, asi, size, val);
1289 #endif
1290     if (asi < 0x80) {
1291         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1292     }
1293     do_check_align(env, addr, size - 1, GETPC());
1294 
1295     switch (asi) {
1296     case ASI_P:  /* Primary */
1297     case ASI_PL: /* Primary LE */
1298     case ASI_S:  /* Secondary */
1299     case ASI_SL: /* Secondary LE */
1300         /* These are always handled inline.  */
1301         g_assert_not_reached();
1302 
1303     case ASI_PNF:  /* Primary no-fault, RO */
1304     case ASI_SNF:  /* Secondary no-fault, RO */
1305     case ASI_PNFL: /* Primary no-fault LE, RO */
1306     case ASI_SNFL: /* Secondary no-fault LE, RO */
1307     default:
1308         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1309     }
1310 }
1311 
1312 #else /* CONFIG_USER_ONLY */
1313 
1314 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1315                        int asi, uint32_t memop)
1316 {
1317     int size = 1 << (memop & MO_SIZE);
1318     int sign = memop & MO_SIGN;
1319     CPUState *cs = env_cpu(env);
1320     uint64_t ret = 0;
1321 #if defined(DEBUG_ASI)
1322     target_ulong last_addr = addr;
1323 #endif
1324 
1325     asi &= 0xff;
1326 
1327     do_check_asi(env, asi, GETPC());
1328     do_check_align(env, addr, size - 1, GETPC());
1329     addr = asi_address_mask(env, asi, addr);
1330 
1331     switch (asi) {
1332     case ASI_PNF:
1333     case ASI_PNFL:
1334     case ASI_SNF:
1335     case ASI_SNFL:
1336         {
1337             MemOpIdx oi;
1338             int idx = (env->pstate & PS_PRIV
1339                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1340                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1341 
1342             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1343 #ifdef DEBUG_ASI
1344                 dump_asi("read ", last_addr, asi, size, ret);
1345 #endif
1346                 /* exception_index is set in get_physical_address_data. */
1347                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1348             }
1349             oi = make_memop_idx(memop, idx);
1350             switch (size) {
1351             case 1:
1352                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1353                 break;
1354             case 2:
1355                 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1356                 break;
1357             case 4:
1358                 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1359                 break;
1360             case 8:
1361                 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1362                 break;
1363             default:
1364                 g_assert_not_reached();
1365             }
1366         }
1367         break;
1368 
1369     case ASI_AIUP:  /* As if user primary */
1370     case ASI_AIUS:  /* As if user secondary */
1371     case ASI_AIUPL: /* As if user primary LE */
1372     case ASI_AIUSL: /* As if user secondary LE */
1373     case ASI_P:  /* Primary */
1374     case ASI_S:  /* Secondary */
1375     case ASI_PL: /* Primary LE */
1376     case ASI_SL: /* Secondary LE */
1377     case ASI_REAL:      /* Bypass */
1378     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1379     case ASI_REAL_L:    /* Bypass LE */
1380     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1381     case ASI_N:  /* Nucleus */
1382     case ASI_NL: /* Nucleus Little Endian (LE) */
1383     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1384     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1385     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1386     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1387     case ASI_TWINX_REAL:   /* Real address, twinx */
1388     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1389     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1390     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1391     case ASI_TWINX_N:  /* Nucleus, twinx */
1392     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1393     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1394     case ASI_TWINX_P:  /* Primary, twinx */
1395     case ASI_TWINX_PL: /* Primary, twinx, LE */
1396     case ASI_TWINX_S:  /* Secondary, twinx */
1397     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1398     case ASI_MON_P:
1399     case ASI_MON_S:
1400     case ASI_MON_AIUP:
1401     case ASI_MON_AIUS:
1402         /* These are always handled inline.  */
1403         g_assert_not_reached();
1404 
1405     case ASI_UPA_CONFIG: /* UPA config */
1406         /* XXX */
1407         break;
1408     case ASI_LSU_CONTROL: /* LSU */
1409         ret = env->lsu;
1410         break;
1411     case ASI_IMMU: /* I-MMU regs */
1412         {
1413             int reg = (addr >> 3) & 0xf;
1414             switch (reg) {
1415             case 0:
1416                 /* 0x00 I-TSB Tag Target register */
1417                 ret = ultrasparc_tag_target(env->immu.tag_access);
1418                 break;
1419             case 3: /* SFSR */
1420                 ret = env->immu.sfsr;
1421                 break;
1422             case 5: /* TSB access */
1423                 ret = env->immu.tsb;
1424                 break;
1425             case 6:
1426                 /* 0x30 I-TSB Tag Access register */
1427                 ret = env->immu.tag_access;
1428                 break;
1429             default:
1430                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1431                 ret = 0;
1432             }
1433             break;
1434         }
1435     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1436         {
1437             /* env->immuregs[5] holds I-MMU TSB register value
1438                env->immuregs[6] holds I-MMU Tag Access register value */
1439             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1440             break;
1441         }
1442     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1443         {
1444             /* env->immuregs[5] holds I-MMU TSB register value
1445                env->immuregs[6] holds I-MMU Tag Access register value */
1446             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1447             break;
1448         }
1449     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1450         {
1451             int reg = (addr >> 3) & 0x3f;
1452 
1453             ret = env->itlb[reg].tte;
1454             break;
1455         }
1456     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1457         {
1458             int reg = (addr >> 3) & 0x3f;
1459 
1460             ret = env->itlb[reg].tag;
1461             break;
1462         }
1463     case ASI_DMMU: /* D-MMU regs */
1464         {
1465             int reg = (addr >> 3) & 0xf;
1466             switch (reg) {
1467             case 0:
1468                 /* 0x00 D-TSB Tag Target register */
1469                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1470                 break;
1471             case 1: /* 0x08 Primary Context */
1472                 ret = env->dmmu.mmu_primary_context;
1473                 break;
1474             case 2: /* 0x10 Secondary Context */
1475                 ret = env->dmmu.mmu_secondary_context;
1476                 break;
1477             case 3: /* SFSR */
1478                 ret = env->dmmu.sfsr;
1479                 break;
1480             case 4: /* 0x20 SFAR */
1481                 ret = env->dmmu.sfar;
1482                 break;
1483             case 5: /* 0x28 TSB access */
1484                 ret = env->dmmu.tsb;
1485                 break;
1486             case 6: /* 0x30 D-TSB Tag Access register */
1487                 ret = env->dmmu.tag_access;
1488                 break;
1489             case 7:
1490                 ret = env->dmmu.virtual_watchpoint;
1491                 break;
1492             case 8:
1493                 ret = env->dmmu.physical_watchpoint;
1494                 break;
1495             default:
1496                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1497                 ret = 0;
1498             }
1499             break;
1500         }
1501     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1502         {
1503             /* env->dmmuregs[5] holds D-MMU TSB register value
1504                env->dmmuregs[6] holds D-MMU Tag Access register value */
1505             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1506             break;
1507         }
1508     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1509         {
1510             /* env->dmmuregs[5] holds D-MMU TSB register value
1511                env->dmmuregs[6] holds D-MMU Tag Access register value */
1512             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1513             break;
1514         }
1515     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1516         {
1517             int reg = (addr >> 3) & 0x3f;
1518 
1519             ret = env->dtlb[reg].tte;
1520             break;
1521         }
1522     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1523         {
1524             int reg = (addr >> 3) & 0x3f;
1525 
1526             ret = env->dtlb[reg].tag;
1527             break;
1528         }
1529     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1530         break;
1531     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1532         ret = env->ivec_status;
1533         break;
1534     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1535         {
1536             int reg = (addr >> 4) & 0x3;
1537             if (reg < 3) {
1538                 ret = env->ivec_data[reg];
1539             }
1540             break;
1541         }
1542     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1543         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1544             /* Hyperprivileged access only */
1545             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1546         }
1547         /* fall through */
1548     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1549         {
1550             unsigned int i = (addr >> 3) & 0x7;
1551             ret = env->scratch[i];
1552             break;
1553         }
1554     case ASI_MMU: /* UA2005 Context ID registers */
1555         switch ((addr >> 3) & 0x3) {
1556         case 1:
1557             ret = env->dmmu.mmu_primary_context;
1558             break;
1559         case 2:
1560             ret = env->dmmu.mmu_secondary_context;
1561             break;
1562         default:
1563           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1564         }
1565         break;
1566     case ASI_DCACHE_DATA:     /* D-cache data */
1567     case ASI_DCACHE_TAG:      /* D-cache tag access */
1568     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1569     case ASI_AFSR:            /* E-cache asynchronous fault status */
1570     case ASI_AFAR:            /* E-cache asynchronous fault address */
1571     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1572     case ASI_IC_INSTR:        /* I-cache instruction access */
1573     case ASI_IC_TAG:          /* I-cache tag access */
1574     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1575     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1576     case ASI_EC_W:            /* E-cache tag */
1577     case ASI_EC_R:            /* E-cache tag */
1578         break;
1579     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1580     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1581     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1582     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1583     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1584     case ASI_INTR_W:              /* Interrupt vector, WO */
1585     default:
1586         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1587         ret = 0;
1588         break;
1589     }
1590 
1591     /* Convert to signed number */
1592     if (sign) {
1593         switch (size) {
1594         case 1:
1595             ret = (int8_t) ret;
1596             break;
1597         case 2:
1598             ret = (int16_t) ret;
1599             break;
1600         case 4:
1601             ret = (int32_t) ret;
1602             break;
1603         default:
1604             break;
1605         }
1606     }
1607 #ifdef DEBUG_ASI
1608     dump_asi("read ", last_addr, asi, size, ret);
1609 #endif
1610     return ret;
1611 }
1612 
1613 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1614                    int asi, uint32_t memop)
1615 {
1616     int size = 1 << (memop & MO_SIZE);
1617     CPUState *cs = env_cpu(env);
1618 
1619 #ifdef DEBUG_ASI
1620     dump_asi("write", addr, asi, size, val);
1621 #endif
1622 
1623     asi &= 0xff;
1624 
1625     do_check_asi(env, asi, GETPC());
1626     do_check_align(env, addr, size - 1, GETPC());
1627     addr = asi_address_mask(env, asi, addr);
1628 
1629     switch (asi) {
1630     case ASI_AIUP:  /* As if user primary */
1631     case ASI_AIUS:  /* As if user secondary */
1632     case ASI_AIUPL: /* As if user primary LE */
1633     case ASI_AIUSL: /* As if user secondary LE */
1634     case ASI_P:  /* Primary */
1635     case ASI_S:  /* Secondary */
1636     case ASI_PL: /* Primary LE */
1637     case ASI_SL: /* Secondary LE */
1638     case ASI_REAL:      /* Bypass */
1639     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1640     case ASI_REAL_L:    /* Bypass LE */
1641     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1642     case ASI_N:  /* Nucleus */
1643     case ASI_NL: /* Nucleus Little Endian (LE) */
1644     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1645     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1646     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1647     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1648     case ASI_TWINX_REAL:   /* Real address, twinx */
1649     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1650     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1651     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1652     case ASI_TWINX_N:  /* Nucleus, twinx */
1653     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1654     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1655     case ASI_TWINX_P:  /* Primary, twinx */
1656     case ASI_TWINX_PL: /* Primary, twinx, LE */
1657     case ASI_TWINX_S:  /* Secondary, twinx */
1658     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1659         /* These are always handled inline.  */
1660         g_assert_not_reached();
1661     /* these ASIs have different functions on UltraSPARC-IIIi
1662      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1663      */
1664     case 0x31:
1665     case 0x32:
1666     case 0x39:
1667     case 0x3a:
1668         if (cpu_has_hypervisor(env)) {
1669             /* UA2005
1670              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1671              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1672              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1673              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1674              */
1675             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1676             env->dmmu.sun4v_tsb_pointers[idx] = val;
1677         } else {
1678             goto illegal_insn;
1679         }
1680         break;
1681     case 0x33:
1682     case 0x3b:
1683         if (cpu_has_hypervisor(env)) {
1684             /* UA2005
1685              * ASI_DMMU_CTX_ZERO_CONFIG
1686              * ASI_DMMU_CTX_NONZERO_CONFIG
1687              */
1688             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1689         } else {
1690             goto illegal_insn;
1691         }
1692         break;
1693     case 0x35:
1694     case 0x36:
1695     case 0x3d:
1696     case 0x3e:
1697         if (cpu_has_hypervisor(env)) {
1698             /* UA2005
1699              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1700              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1701              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1702              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1703              */
1704             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1705             env->immu.sun4v_tsb_pointers[idx] = val;
1706         } else {
1707             goto illegal_insn;
1708         }
1709       break;
1710     case 0x37:
1711     case 0x3f:
1712         if (cpu_has_hypervisor(env)) {
1713             /* UA2005
1714              * ASI_IMMU_CTX_ZERO_CONFIG
1715              * ASI_IMMU_CTX_NONZERO_CONFIG
1716              */
1717             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1718         } else {
1719             goto illegal_insn;
1720         }
1721         break;
1722     case ASI_UPA_CONFIG: /* UPA config */
1723         /* XXX */
1724         return;
1725     case ASI_LSU_CONTROL: /* LSU */
1726         env->lsu = val & (DMMU_E | IMMU_E);
1727         return;
1728     case ASI_IMMU: /* I-MMU regs */
1729         {
1730             int reg = (addr >> 3) & 0xf;
1731             uint64_t oldreg;
1732 
1733             oldreg = env->immu.mmuregs[reg];
1734             switch (reg) {
1735             case 0: /* RO */
1736                 return;
1737             case 1: /* Not in I-MMU */
1738             case 2:
1739                 return;
1740             case 3: /* SFSR */
1741                 if ((val & 1) == 0) {
1742                     val = 0; /* Clear SFSR */
1743                 }
1744                 env->immu.sfsr = val;
1745                 break;
1746             case 4: /* RO */
1747                 return;
1748             case 5: /* TSB access */
1749                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1750                             PRIx64 "\n", env->immu.tsb, val);
1751                 env->immu.tsb = val;
1752                 break;
1753             case 6: /* Tag access */
1754                 env->immu.tag_access = val;
1755                 break;
1756             case 7:
1757             case 8:
1758                 return;
1759             default:
1760                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1761                 break;
1762             }
1763 
1764             if (oldreg != env->immu.mmuregs[reg]) {
1765                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1766                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1767             }
1768 #ifdef DEBUG_MMU
1769             dump_mmu(env);
1770 #endif
1771             return;
1772         }
1773     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1774         /* ignore real translation entries */
1775         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1776             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1777                                  val, "immu", env, addr);
1778         }
1779         return;
1780     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1781         {
1782             /* TODO: auto demap */
1783 
1784             unsigned int i = (addr >> 3) & 0x3f;
1785 
1786             /* ignore real translation entries */
1787             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1788                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1789                                   sun4v_tte_to_sun4u(env, addr, val), env);
1790             }
1791 #ifdef DEBUG_MMU
1792             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1793             dump_mmu(env);
1794 #endif
1795             return;
1796         }
1797     case ASI_IMMU_DEMAP: /* I-MMU demap */
1798         demap_tlb(env->itlb, addr, "immu", env);
1799         return;
1800     case ASI_DMMU: /* D-MMU regs */
1801         {
1802             int reg = (addr >> 3) & 0xf;
1803             uint64_t oldreg;
1804 
1805             oldreg = env->dmmu.mmuregs[reg];
1806             switch (reg) {
1807             case 0: /* RO */
1808             case 4:
1809                 return;
1810             case 3: /* SFSR */
1811                 if ((val & 1) == 0) {
1812                     val = 0; /* Clear SFSR, Fault address */
1813                     env->dmmu.sfar = 0;
1814                 }
1815                 env->dmmu.sfsr = val;
1816                 break;
1817             case 1: /* Primary context */
1818                 env->dmmu.mmu_primary_context = val;
1819                 /* can be optimized to only flush MMU_USER_IDX
1820                    and MMU_KERNEL_IDX entries */
1821                 tlb_flush(cs);
1822                 break;
1823             case 2: /* Secondary context */
1824                 env->dmmu.mmu_secondary_context = val;
1825                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1826                    and MMU_KERNEL_SECONDARY_IDX entries */
1827                 tlb_flush(cs);
1828                 break;
1829             case 5: /* TSB access */
1830                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1831                             PRIx64 "\n", env->dmmu.tsb, val);
1832                 env->dmmu.tsb = val;
1833                 break;
1834             case 6: /* Tag access */
1835                 env->dmmu.tag_access = val;
1836                 break;
1837             case 7: /* Virtual Watchpoint */
1838                 env->dmmu.virtual_watchpoint = val;
1839                 break;
1840             case 8: /* Physical Watchpoint */
1841                 env->dmmu.physical_watchpoint = val;
1842                 break;
1843             default:
1844                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1845                 break;
1846             }
1847 
1848             if (oldreg != env->dmmu.mmuregs[reg]) {
1849                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1850                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1851             }
1852 #ifdef DEBUG_MMU
1853             dump_mmu(env);
1854 #endif
1855             return;
1856         }
1857     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1858       /* ignore real translation entries */
1859       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1860           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1861                                val, "dmmu", env, addr);
1862       }
1863       return;
1864     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1865         {
1866             unsigned int i = (addr >> 3) & 0x3f;
1867 
1868             /* ignore real translation entries */
1869             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1870                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1871                                   sun4v_tte_to_sun4u(env, addr, val), env);
1872             }
1873 #ifdef DEBUG_MMU
1874             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1875             dump_mmu(env);
1876 #endif
1877             return;
1878         }
1879     case ASI_DMMU_DEMAP: /* D-MMU demap */
1880         demap_tlb(env->dtlb, addr, "dmmu", env);
1881         return;
1882     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1883         env->ivec_status = val & 0x20;
1884         return;
1885     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1886         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1887             /* Hyperprivileged access only */
1888             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1889         }
1890         /* fall through */
1891     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1892         {
1893             unsigned int i = (addr >> 3) & 0x7;
1894             env->scratch[i] = val;
1895             return;
1896         }
1897     case ASI_MMU: /* UA2005 Context ID registers */
1898         {
1899           switch ((addr >> 3) & 0x3) {
1900           case 1:
1901               env->dmmu.mmu_primary_context = val;
1902               env->immu.mmu_primary_context = val;
1903               tlb_flush_by_mmuidx(cs,
1904                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1905               break;
1906           case 2:
1907               env->dmmu.mmu_secondary_context = val;
1908               env->immu.mmu_secondary_context = val;
1909               tlb_flush_by_mmuidx(cs,
1910                                   (1 << MMU_USER_SECONDARY_IDX) |
1911                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1912               break;
1913           default:
1914               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1915           }
1916         }
1917         return;
1918     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1919     case ASI_DCACHE_DATA: /* D-cache data */
1920     case ASI_DCACHE_TAG: /* D-cache tag access */
1921     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1922     case ASI_AFSR: /* E-cache asynchronous fault status */
1923     case ASI_AFAR: /* E-cache asynchronous fault address */
1924     case ASI_EC_TAG_DATA: /* E-cache tag data */
1925     case ASI_IC_INSTR: /* I-cache instruction access */
1926     case ASI_IC_TAG: /* I-cache tag access */
1927     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1928     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1929     case ASI_EC_W: /* E-cache tag */
1930     case ASI_EC_R: /* E-cache tag */
1931         return;
1932     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1933     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1934     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1935     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1936     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1937     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1938     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1939     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1940     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1941     case ASI_PNF: /* Primary no-fault, RO */
1942     case ASI_SNF: /* Secondary no-fault, RO */
1943     case ASI_PNFL: /* Primary no-fault LE, RO */
1944     case ASI_SNFL: /* Secondary no-fault LE, RO */
1945     default:
1946         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1947         return;
1948     illegal_insn:
1949         cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1950     }
1951 }
1952 #endif /* CONFIG_USER_ONLY */
1953 #endif /* TARGET_SPARC64 */
1954 
1955 #if !defined(CONFIG_USER_ONLY)
1956 
1957 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1958                                      vaddr addr, unsigned size,
1959                                      MMUAccessType access_type,
1960                                      int mmu_idx, MemTxAttrs attrs,
1961                                      MemTxResult response, uintptr_t retaddr)
1962 {
1963     bool is_write = access_type == MMU_DATA_STORE;
1964     bool is_exec = access_type == MMU_INST_FETCH;
1965     bool is_asi = false;
1966 
1967     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1968                           is_asi, size, retaddr);
1969 }
1970 #endif
1971