xref: /openbmc/qemu/target/sparc/ldst_helper.c (revision 259ebed4)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28 
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71 
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75  * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77                                        const SparcV9MMU *mmu, const int idx)
78 {
79     uint64_t tsb_register;
80     int page_size;
81     if (cpu_has_hypervisor(env)) {
82         int tsb_index = 0;
83         int ctx = mmu->tag_access & 0x1fffULL;
84         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85         tsb_index = idx;
86         tsb_index |= ctx ? 2 : 0;
87         page_size = idx ? ctx_register >> 8 : ctx_register;
88         page_size &= 7;
89         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90     } else {
91         page_size = idx;
92         tsb_register = mmu->tsb;
93     }
94     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95     int tsb_size  = tsb_register & 0xf;
96 
97     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98 
99     /* move va bits to correct position,
100      * the context bits will be masked out later */
101     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102 
103     /* calculate tsb_base mask and adjust va if split is in use */
104     if (tsb_split) {
105         if (idx == 0) {
106             va &= ~(1ULL << (13 + tsb_size));
107         } else {
108             va |= (1ULL << (13 + tsb_size));
109         }
110         tsb_base_mask <<= 1;
111     }
112 
113     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115 
116 /* Calculates tag target register value by reordering bits
117    in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122 
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124                               uint64_t tlb_tag, uint64_t tlb_tte,
125                               CPUSPARCState *env)
126 {
127     target_ulong mask, size, va, offset;
128 
129     /* flush page range if translation is valid */
130     if (TTE_IS_VALID(tlb->tte)) {
131         CPUState *cs = env_cpu(env);
132 
133         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134         mask = 1ULL + ~size;
135 
136         va = tlb->tag & mask;
137 
138         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139             tlb_flush_page(cs, va + offset);
140         }
141     }
142 
143     tlb->tag = tlb_tag;
144     tlb->tte = tlb_tte;
145 }
146 
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148                       const char *strmmu, CPUSPARCState *env1)
149 {
150     unsigned int i;
151     target_ulong mask;
152     uint64_t context;
153 
154     int is_demap_context = (demap_addr >> 6) & 1;
155 
156     /* demap context */
157     switch ((demap_addr >> 4) & 3) {
158     case 0: /* primary */
159         context = env1->dmmu.mmu_primary_context;
160         break;
161     case 1: /* secondary */
162         context = env1->dmmu.mmu_secondary_context;
163         break;
164     case 2: /* nucleus */
165         context = 0;
166         break;
167     case 3: /* reserved */
168     default:
169         return;
170     }
171 
172     for (i = 0; i < 64; i++) {
173         if (TTE_IS_VALID(tlb[i].tte)) {
174 
175             if (is_demap_context) {
176                 /* will remove non-global entries matching context value */
177                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178                     !tlb_compare_context(&tlb[i], context)) {
179                     continue;
180                 }
181             } else {
182                 /* demap page
183                    will remove any entry matching VA */
184                 mask = 0xffffffffffffe000ULL;
185                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186 
187                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188                     continue;
189                 }
190 
191                 /* entry should be global or matching context value */
192                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193                     !tlb_compare_context(&tlb[i], context)) {
194                     continue;
195                 }
196             }
197 
198             replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201             dump_mmu(env1);
202 #endif
203         }
204     }
205 }
206 
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208                                    uint64_t sun4v_tte)
209 {
210     uint64_t sun4u_tte;
211     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212         /* is already in the sun4u format */
213         return sun4v_tte;
214     }
215     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221                              TTE_SIDEEFFECT_BIT);
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224     return sun4u_tte;
225 }
226 
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228                                  uint64_t tlb_tag, uint64_t tlb_tte,
229                                  const char *strmmu, CPUSPARCState *env1,
230                                  uint64_t addr)
231 {
232     unsigned int i, replace_used;
233 
234     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235     if (cpu_has_hypervisor(env1)) {
236         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238         uint32_t new_ctx = tlb_tag & 0x1fffU;
239         for (i = 0; i < 64; i++) {
240             uint32_t ctx = tlb[i].tag & 0x1fffU;
241             /* check if new mapping overlaps an existing one */
242             if (new_ctx == ctx) {
243                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245                 if (new_vaddr == vaddr
246                     || (new_vaddr < vaddr + size
247                         && vaddr < new_vaddr + new_size)) {
248                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249                                 new_vaddr);
250                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251                     return;
252                 }
253             }
254 
255         }
256     }
257     /* Try replacing invalid entry */
258     for (i = 0; i < 64; i++) {
259         if (!TTE_IS_VALID(tlb[i].tte)) {
260             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263             dump_mmu(env1);
264 #endif
265             return;
266         }
267     }
268 
269     /* All entries are valid, try replacing unlocked entry */
270 
271     for (replace_used = 0; replace_used < 2; ++replace_used) {
272 
273         /* Used entries are not replaced on first pass */
274 
275         for (i = 0; i < 64; i++) {
276             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277 
278                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281                             strmmu, (replace_used ? "used" : "unused"), i);
282                 dump_mmu(env1);
283 #endif
284                 return;
285             }
286         }
287 
288         /* Now reset used bit and search for unused entries again */
289 
290         for (i = 0; i < 64; i++) {
291             TTE_SET_UNUSED(tlb[i].tte);
292         }
293     }
294 
295 #ifdef DEBUG_MMU
296     DPRINTF_MMU("%s lru replacement: no free entries available, "
297                 "replacing the last one\n", strmmu);
298 #endif
299     /* corner case: the last entry is replaced anyway */
300     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302 
303 #endif
304 
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307    otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311     /* Ultrasparc IIi translating asi
312        - note this list is defined by cpu implementation
313     */
314     switch (asi) {
315     case 0x04 ... 0x11:
316     case 0x16 ... 0x19:
317     case 0x1E ... 0x1F:
318     case 0x24 ... 0x2C:
319     case 0x70 ... 0x73:
320     case 0x78 ... 0x79:
321     case 0x80 ... 0xFF:
322         return 1;
323 
324     default:
325         return 0;
326     }
327 }
328 
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331     if (AM_CHECK(env1)) {
332         addr &= 0xffffffffULL;
333     }
334     return addr;
335 }
336 
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338                                             int asi, target_ulong addr)
339 {
340     if (is_translating_asi(asi)) {
341         addr = address_mask(env, addr);
342     }
343     return addr;
344 }
345 
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349     /* ASIs >= 0x80 are user mode.
350      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351      * ASIs <= 0x2f are super mode.
352      */
353     if (asi < 0x80
354         && !cpu_hypervisor_mode(env)
355         && (!cpu_supervisor_mode(env)
356             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358     }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362 
363 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
364 static void do_check_align(CPUSPARCState *env, target_ulong addr,
365                            uint32_t align, uintptr_t ra)
366 {
367     if (addr & align) {
368         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
369     }
370 }
371 #endif
372 
373 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
374     defined(DEBUG_MXCC)
375 static void dump_mxcc(CPUSPARCState *env)
376 {
377     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
378            "\n",
379            env->mxccdata[0], env->mxccdata[1],
380            env->mxccdata[2], env->mxccdata[3]);
381     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
382            "\n"
383            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
384            "\n",
385            env->mxccregs[0], env->mxccregs[1],
386            env->mxccregs[2], env->mxccregs[3],
387            env->mxccregs[4], env->mxccregs[5],
388            env->mxccregs[6], env->mxccregs[7]);
389 }
390 #endif
391 
392 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
393     && defined(DEBUG_ASI)
394 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
395                      uint64_t r1)
396 {
397     switch (size) {
398     case 1:
399         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
400                     addr, asi, r1 & 0xff);
401         break;
402     case 2:
403         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
404                     addr, asi, r1 & 0xffff);
405         break;
406     case 4:
407         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
408                     addr, asi, r1 & 0xffffffff);
409         break;
410     case 8:
411         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
412                     addr, asi, r1);
413         break;
414     }
415 }
416 #endif
417 
418 #ifndef CONFIG_USER_ONLY
419 #ifndef TARGET_SPARC64
420 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
421                                   bool is_write, bool is_exec, int is_asi,
422                                   unsigned size, uintptr_t retaddr)
423 {
424     SPARCCPU *cpu = SPARC_CPU(cs);
425     CPUSPARCState *env = &cpu->env;
426     int fault_type;
427 
428 #ifdef DEBUG_UNASSIGNED
429     if (is_asi) {
430         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
431                " asi 0x%02x from " TARGET_FMT_lx "\n",
432                is_exec ? "exec" : is_write ? "write" : "read", size,
433                size == 1 ? "" : "s", addr, is_asi, env->pc);
434     } else {
435         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
436                " from " TARGET_FMT_lx "\n",
437                is_exec ? "exec" : is_write ? "write" : "read", size,
438                size == 1 ? "" : "s", addr, env->pc);
439     }
440 #endif
441     /* Don't overwrite translation and access faults */
442     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
443     if ((fault_type > 4) || (fault_type == 0)) {
444         env->mmuregs[3] = 0; /* Fault status register */
445         if (is_asi) {
446             env->mmuregs[3] |= 1 << 16;
447         }
448         if (env->psrs) {
449             env->mmuregs[3] |= 1 << 5;
450         }
451         if (is_exec) {
452             env->mmuregs[3] |= 1 << 6;
453         }
454         if (is_write) {
455             env->mmuregs[3] |= 1 << 7;
456         }
457         env->mmuregs[3] |= (5 << 2) | 2;
458         /* SuperSPARC will never place instruction fault addresses in the FAR */
459         if (!is_exec) {
460             env->mmuregs[4] = addr; /* Fault address register */
461         }
462     }
463     /* overflow (same type fault was not read before another fault) */
464     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
465         env->mmuregs[3] |= 1;
466     }
467 
468     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
469         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
470         cpu_raise_exception_ra(env, tt, retaddr);
471     }
472 
473     /*
474      * flush neverland mappings created during no-fault mode,
475      * so the sequential MMU faults report proper fault types
476      */
477     if (env->mmuregs[0] & MMU_NF) {
478         tlb_flush(cs);
479     }
480 }
481 #else
482 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
483                                   bool is_write, bool is_exec, int is_asi,
484                                   unsigned size, uintptr_t retaddr)
485 {
486     SPARCCPU *cpu = SPARC_CPU(cs);
487     CPUSPARCState *env = &cpu->env;
488 
489 #ifdef DEBUG_UNASSIGNED
490     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
491            "\n", addr, env->pc);
492 #endif
493 
494     if (is_exec) { /* XXX has_hypervisor */
495         if (env->lsu & (IMMU_E)) {
496             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
497         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
498             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
499         }
500     } else {
501         if (env->lsu & (DMMU_E)) {
502             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
503         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
504             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
505         }
506     }
507 }
508 #endif
509 #endif
510 
511 #ifndef TARGET_SPARC64
512 #ifndef CONFIG_USER_ONLY
513 
514 
515 /* Leon3 cache control */
516 
517 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
518                                    uint64_t val, int size)
519 {
520     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
521                           addr, val, size);
522 
523     if (size != 4) {
524         DPRINTF_CACHE_CONTROL("32bits only\n");
525         return;
526     }
527 
528     switch (addr) {
529     case 0x00:              /* Cache control */
530 
531         /* These values must always be read as zeros */
532         val &= ~CACHE_CTRL_FD;
533         val &= ~CACHE_CTRL_FI;
534         val &= ~CACHE_CTRL_IB;
535         val &= ~CACHE_CTRL_IP;
536         val &= ~CACHE_CTRL_DP;
537 
538         env->cache_control = val;
539         break;
540     case 0x04:              /* Instruction cache configuration */
541     case 0x08:              /* Data cache configuration */
542         /* Read Only */
543         break;
544     default:
545         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
546         break;
547     };
548 }
549 
550 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
551                                        int size)
552 {
553     uint64_t ret = 0;
554 
555     if (size != 4) {
556         DPRINTF_CACHE_CONTROL("32bits only\n");
557         return 0;
558     }
559 
560     switch (addr) {
561     case 0x00:              /* Cache control */
562         ret = env->cache_control;
563         break;
564 
565         /* Configuration registers are read and only always keep those
566            predefined values */
567 
568     case 0x04:              /* Instruction cache configuration */
569         ret = 0x10220000;
570         break;
571     case 0x08:              /* Data cache configuration */
572         ret = 0x18220000;
573         break;
574     default:
575         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
576         break;
577     };
578     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
579                           addr, ret, size);
580     return ret;
581 }
582 
583 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
584                        int asi, uint32_t memop)
585 {
586     int size = 1 << (memop & MO_SIZE);
587     int sign = memop & MO_SIGN;
588     CPUState *cs = env_cpu(env);
589     uint64_t ret = 0;
590 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
591     uint32_t last_addr = addr;
592 #endif
593     MemOpIdx oi;
594 
595     do_check_align(env, addr, size - 1, GETPC());
596     switch (asi) {
597     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
598     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
599         switch (addr) {
600         case 0x00:          /* Leon3 Cache Control */
601         case 0x08:          /* Leon3 Instruction Cache config */
602         case 0x0C:          /* Leon3 Date Cache config */
603             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
604                 ret = leon3_cache_control_ld(env, addr, size);
605             }
606             break;
607         case 0x01c00a00: /* MXCC control register */
608             if (size == 8) {
609                 ret = env->mxccregs[3];
610             } else {
611                 qemu_log_mask(LOG_UNIMP,
612                               "%08x: unimplemented access size: %d\n", addr,
613                               size);
614             }
615             break;
616         case 0x01c00a04: /* MXCC control register */
617             if (size == 4) {
618                 ret = env->mxccregs[3];
619             } else {
620                 qemu_log_mask(LOG_UNIMP,
621                               "%08x: unimplemented access size: %d\n", addr,
622                               size);
623             }
624             break;
625         case 0x01c00c00: /* Module reset register */
626             if (size == 8) {
627                 ret = env->mxccregs[5];
628                 /* should we do something here? */
629             } else {
630                 qemu_log_mask(LOG_UNIMP,
631                               "%08x: unimplemented access size: %d\n", addr,
632                               size);
633             }
634             break;
635         case 0x01c00f00: /* MBus port address register */
636             if (size == 8) {
637                 ret = env->mxccregs[7];
638             } else {
639                 qemu_log_mask(LOG_UNIMP,
640                               "%08x: unimplemented access size: %d\n", addr,
641                               size);
642             }
643             break;
644         default:
645             qemu_log_mask(LOG_UNIMP,
646                           "%08x: unimplemented address, size: %d\n", addr,
647                           size);
648             break;
649         }
650         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
651                      "addr = %08x -> ret = %" PRIx64 ","
652                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
653 #ifdef DEBUG_MXCC
654         dump_mxcc(env);
655 #endif
656         break;
657     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
658     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
659         {
660             int mmulev;
661 
662             mmulev = (addr >> 8) & 15;
663             if (mmulev > 4) {
664                 ret = 0;
665             } else {
666                 ret = mmu_probe(env, addr, mmulev);
667             }
668             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
669                         addr, mmulev, ret);
670         }
671         break;
672     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
673     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
674         {
675             int reg = (addr >> 8) & 0x1f;
676 
677             ret = env->mmuregs[reg];
678             if (reg == 3) { /* Fault status cleared on read */
679                 env->mmuregs[3] = 0;
680             } else if (reg == 0x13) { /* Fault status read */
681                 ret = env->mmuregs[3];
682             } else if (reg == 0x14) { /* Fault address read */
683                 ret = env->mmuregs[4];
684             }
685             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
686         }
687         break;
688     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
689     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
690     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
691         break;
692     case ASI_KERNELTXT: /* Supervisor code access */
693         oi = make_memop_idx(memop, cpu_mmu_index(env, true));
694         switch (size) {
695         case 1:
696             ret = cpu_ldb_code_mmu(env, addr, oi, GETPC());
697             break;
698         case 2:
699             ret = cpu_ldw_code_mmu(env, addr, oi, GETPC());
700             break;
701         default:
702         case 4:
703             ret = cpu_ldl_code_mmu(env, addr, oi, GETPC());
704             break;
705         case 8:
706             ret = cpu_ldq_code_mmu(env, addr, oi, GETPC());
707             break;
708         }
709         break;
710     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
711     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
712     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
713     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
714         break;
715     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
716     {
717         MemTxResult result;
718         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
719 
720         switch (size) {
721         case 1:
722             ret = address_space_ldub(cs->as, access_addr,
723                                      MEMTXATTRS_UNSPECIFIED, &result);
724             break;
725         case 2:
726             ret = address_space_lduw(cs->as, access_addr,
727                                      MEMTXATTRS_UNSPECIFIED, &result);
728             break;
729         default:
730         case 4:
731             ret = address_space_ldl(cs->as, access_addr,
732                                     MEMTXATTRS_UNSPECIFIED, &result);
733             break;
734         case 8:
735             ret = address_space_ldq(cs->as, access_addr,
736                                     MEMTXATTRS_UNSPECIFIED, &result);
737             break;
738         }
739 
740         if (result != MEMTX_OK) {
741             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
742                                   size, GETPC());
743         }
744         break;
745     }
746     case 0x30: /* Turbosparc secondary cache diagnostic */
747     case 0x31: /* Turbosparc RAM snoop */
748     case 0x32: /* Turbosparc page table descriptor diagnostic */
749     case 0x39: /* data cache diagnostic register */
750         ret = 0;
751         break;
752     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
753         {
754             int reg = (addr >> 8) & 3;
755 
756             switch (reg) {
757             case 0: /* Breakpoint Value (Addr) */
758                 ret = env->mmubpregs[reg];
759                 break;
760             case 1: /* Breakpoint Mask */
761                 ret = env->mmubpregs[reg];
762                 break;
763             case 2: /* Breakpoint Control */
764                 ret = env->mmubpregs[reg];
765                 break;
766             case 3: /* Breakpoint Status */
767                 ret = env->mmubpregs[reg];
768                 env->mmubpregs[reg] = 0ULL;
769                 break;
770             }
771             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
772                         ret);
773         }
774         break;
775     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
776         ret = env->mmubpctrv;
777         break;
778     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
779         ret = env->mmubpctrc;
780         break;
781     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
782         ret = env->mmubpctrs;
783         break;
784     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
785         ret = env->mmubpaction;
786         break;
787     case ASI_USERTXT: /* User code access, XXX */
788     default:
789         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
790         ret = 0;
791         break;
792 
793     case ASI_USERDATA: /* User data access */
794     case ASI_KERNELDATA: /* Supervisor data access */
795     case ASI_P: /* Implicit primary context data access (v9 only?) */
796     case ASI_M_BYPASS:    /* MMU passthrough */
797     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
798         /* These are always handled inline.  */
799         g_assert_not_reached();
800     }
801     if (sign) {
802         switch (size) {
803         case 1:
804             ret = (int8_t) ret;
805             break;
806         case 2:
807             ret = (int16_t) ret;
808             break;
809         case 4:
810             ret = (int32_t) ret;
811             break;
812         default:
813             break;
814         }
815     }
816 #ifdef DEBUG_ASI
817     dump_asi("read ", last_addr, asi, size, ret);
818 #endif
819     return ret;
820 }
821 
822 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
823                    int asi, uint32_t memop)
824 {
825     int size = 1 << (memop & MO_SIZE);
826     CPUState *cs = env_cpu(env);
827 
828     do_check_align(env, addr, size - 1, GETPC());
829     switch (asi) {
830     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
831     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
832         switch (addr) {
833         case 0x00:          /* Leon3 Cache Control */
834         case 0x08:          /* Leon3 Instruction Cache config */
835         case 0x0C:          /* Leon3 Date Cache config */
836             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
837                 leon3_cache_control_st(env, addr, val, size);
838             }
839             break;
840 
841         case 0x01c00000: /* MXCC stream data register 0 */
842             if (size == 8) {
843                 env->mxccdata[0] = val;
844             } else {
845                 qemu_log_mask(LOG_UNIMP,
846                               "%08x: unimplemented access size: %d\n", addr,
847                               size);
848             }
849             break;
850         case 0x01c00008: /* MXCC stream data register 1 */
851             if (size == 8) {
852                 env->mxccdata[1] = val;
853             } else {
854                 qemu_log_mask(LOG_UNIMP,
855                               "%08x: unimplemented access size: %d\n", addr,
856                               size);
857             }
858             break;
859         case 0x01c00010: /* MXCC stream data register 2 */
860             if (size == 8) {
861                 env->mxccdata[2] = val;
862             } else {
863                 qemu_log_mask(LOG_UNIMP,
864                               "%08x: unimplemented access size: %d\n", addr,
865                               size);
866             }
867             break;
868         case 0x01c00018: /* MXCC stream data register 3 */
869             if (size == 8) {
870                 env->mxccdata[3] = val;
871             } else {
872                 qemu_log_mask(LOG_UNIMP,
873                               "%08x: unimplemented access size: %d\n", addr,
874                               size);
875             }
876             break;
877         case 0x01c00100: /* MXCC stream source */
878         {
879             int i;
880 
881             if (size == 8) {
882                 env->mxccregs[0] = val;
883             } else {
884                 qemu_log_mask(LOG_UNIMP,
885                               "%08x: unimplemented access size: %d\n", addr,
886                               size);
887             }
888 
889             for (i = 0; i < 4; i++) {
890                 MemTxResult result;
891                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
892 
893                 env->mxccdata[i] = address_space_ldq(cs->as,
894                                                      access_addr,
895                                                      MEMTXATTRS_UNSPECIFIED,
896                                                      &result);
897                 if (result != MEMTX_OK) {
898                     /* TODO: investigate whether this is the right behaviour */
899                     sparc_raise_mmu_fault(cs, access_addr, false, false,
900                                           false, size, GETPC());
901                 }
902             }
903             break;
904         }
905         case 0x01c00200: /* MXCC stream destination */
906         {
907             int i;
908 
909             if (size == 8) {
910                 env->mxccregs[1] = val;
911             } else {
912                 qemu_log_mask(LOG_UNIMP,
913                               "%08x: unimplemented access size: %d\n", addr,
914                               size);
915             }
916 
917             for (i = 0; i < 4; i++) {
918                 MemTxResult result;
919                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
920 
921                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
922                                   MEMTXATTRS_UNSPECIFIED, &result);
923 
924                 if (result != MEMTX_OK) {
925                     /* TODO: investigate whether this is the right behaviour */
926                     sparc_raise_mmu_fault(cs, access_addr, true, false,
927                                           false, size, GETPC());
928                 }
929             }
930             break;
931         }
932         case 0x01c00a00: /* MXCC control register */
933             if (size == 8) {
934                 env->mxccregs[3] = val;
935             } else {
936                 qemu_log_mask(LOG_UNIMP,
937                               "%08x: unimplemented access size: %d\n", addr,
938                               size);
939             }
940             break;
941         case 0x01c00a04: /* MXCC control register */
942             if (size == 4) {
943                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
944                     | val;
945             } else {
946                 qemu_log_mask(LOG_UNIMP,
947                               "%08x: unimplemented access size: %d\n", addr,
948                               size);
949             }
950             break;
951         case 0x01c00e00: /* MXCC error register  */
952             /* writing a 1 bit clears the error */
953             if (size == 8) {
954                 env->mxccregs[6] &= ~val;
955             } else {
956                 qemu_log_mask(LOG_UNIMP,
957                               "%08x: unimplemented access size: %d\n", addr,
958                               size);
959             }
960             break;
961         case 0x01c00f00: /* MBus port address register */
962             if (size == 8) {
963                 env->mxccregs[7] = val;
964             } else {
965                 qemu_log_mask(LOG_UNIMP,
966                               "%08x: unimplemented access size: %d\n", addr,
967                               size);
968             }
969             break;
970         default:
971             qemu_log_mask(LOG_UNIMP,
972                           "%08x: unimplemented address, size: %d\n", addr,
973                           size);
974             break;
975         }
976         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
977                      asi, size, addr, val);
978 #ifdef DEBUG_MXCC
979         dump_mxcc(env);
980 #endif
981         break;
982     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
983     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
984         {
985             int mmulev;
986 
987             mmulev = (addr >> 8) & 15;
988             DPRINTF_MMU("mmu flush level %d\n", mmulev);
989             switch (mmulev) {
990             case 0: /* flush page */
991                 tlb_flush_page(cs, addr & 0xfffff000);
992                 break;
993             case 1: /* flush segment (256k) */
994             case 2: /* flush region (16M) */
995             case 3: /* flush context (4G) */
996             case 4: /* flush entire */
997                 tlb_flush(cs);
998                 break;
999             default:
1000                 break;
1001             }
1002 #ifdef DEBUG_MMU
1003             dump_mmu(env);
1004 #endif
1005         }
1006         break;
1007     case ASI_M_MMUREGS: /* write MMU regs */
1008     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1009         {
1010             int reg = (addr >> 8) & 0x1f;
1011             uint32_t oldreg;
1012 
1013             oldreg = env->mmuregs[reg];
1014             switch (reg) {
1015             case 0: /* Control Register */
1016                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1017                     (val & 0x00ffffff);
1018                 /* Mappings generated during no-fault mode
1019                    are invalid in normal mode.  */
1020                 if ((oldreg ^ env->mmuregs[reg])
1021                     & (MMU_NF | env->def.mmu_bm)) {
1022                     tlb_flush(cs);
1023                 }
1024                 break;
1025             case 1: /* Context Table Pointer Register */
1026                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1027                 break;
1028             case 2: /* Context Register */
1029                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1030                 if (oldreg != env->mmuregs[reg]) {
1031                     /* we flush when the MMU context changes because
1032                        QEMU has no MMU context support */
1033                     tlb_flush(cs);
1034                 }
1035                 break;
1036             case 3: /* Synchronous Fault Status Register with Clear */
1037             case 4: /* Synchronous Fault Address Register */
1038                 break;
1039             case 0x10: /* TLB Replacement Control Register */
1040                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1041                 break;
1042             case 0x13: /* Synchronous Fault Status Register with Read
1043                           and Clear */
1044                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1045                 break;
1046             case 0x14: /* Synchronous Fault Address Register */
1047                 env->mmuregs[4] = val;
1048                 break;
1049             default:
1050                 env->mmuregs[reg] = val;
1051                 break;
1052             }
1053             if (oldreg != env->mmuregs[reg]) {
1054                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1055                             reg, oldreg, env->mmuregs[reg]);
1056             }
1057 #ifdef DEBUG_MMU
1058             dump_mmu(env);
1059 #endif
1060         }
1061         break;
1062     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1063     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1064     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1065         break;
1066     case ASI_M_TXTC_TAG:   /* I-cache tag */
1067     case ASI_M_TXTC_DATA:  /* I-cache data */
1068     case ASI_M_DATAC_TAG:  /* D-cache tag */
1069     case ASI_M_DATAC_DATA: /* D-cache data */
1070     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1071     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1072     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1073     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1074     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1075         break;
1076     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1077         {
1078             MemTxResult result;
1079             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1080 
1081             switch (size) {
1082             case 1:
1083                 address_space_stb(cs->as, access_addr, val,
1084                                   MEMTXATTRS_UNSPECIFIED, &result);
1085                 break;
1086             case 2:
1087                 address_space_stw(cs->as, access_addr, val,
1088                                   MEMTXATTRS_UNSPECIFIED, &result);
1089                 break;
1090             case 4:
1091             default:
1092                 address_space_stl(cs->as, access_addr, val,
1093                                   MEMTXATTRS_UNSPECIFIED, &result);
1094                 break;
1095             case 8:
1096                 address_space_stq(cs->as, access_addr, val,
1097                                   MEMTXATTRS_UNSPECIFIED, &result);
1098                 break;
1099             }
1100             if (result != MEMTX_OK) {
1101                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1102                                       size, GETPC());
1103             }
1104         }
1105         break;
1106     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1107     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1108                   Turbosparc snoop RAM */
1109     case 0x32: /* store buffer control or Turbosparc page table
1110                   descriptor diagnostic */
1111     case 0x36: /* I-cache flash clear */
1112     case 0x37: /* D-cache flash clear */
1113         break;
1114     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1115         {
1116             int reg = (addr >> 8) & 3;
1117 
1118             switch (reg) {
1119             case 0: /* Breakpoint Value (Addr) */
1120                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1121                 break;
1122             case 1: /* Breakpoint Mask */
1123                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1124                 break;
1125             case 2: /* Breakpoint Control */
1126                 env->mmubpregs[reg] = (val & 0x7fULL);
1127                 break;
1128             case 3: /* Breakpoint Status */
1129                 env->mmubpregs[reg] = (val & 0xfULL);
1130                 break;
1131             }
1132             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1133                         env->mmuregs[reg]);
1134         }
1135         break;
1136     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1137         env->mmubpctrv = val & 0xffffffff;
1138         break;
1139     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1140         env->mmubpctrc = val & 0x3;
1141         break;
1142     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1143         env->mmubpctrs = val & 0x3;
1144         break;
1145     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1146         env->mmubpaction = val & 0x1fff;
1147         break;
1148     case ASI_USERTXT: /* User code access, XXX */
1149     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1150     default:
1151         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1152         break;
1153 
1154     case ASI_USERDATA: /* User data access */
1155     case ASI_KERNELDATA: /* Supervisor data access */
1156     case ASI_P:
1157     case ASI_M_BYPASS:    /* MMU passthrough */
1158     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1159     case ASI_M_BCOPY: /* Block copy, sta access */
1160     case ASI_M_BFILL: /* Block fill, stda access */
1161         /* These are always handled inline.  */
1162         g_assert_not_reached();
1163     }
1164 #ifdef DEBUG_ASI
1165     dump_asi("write", addr, asi, size, val);
1166 #endif
1167 }
1168 
1169 #endif /* CONFIG_USER_ONLY */
1170 #else /* TARGET_SPARC64 */
1171 
1172 #ifdef CONFIG_USER_ONLY
1173 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1174                        int asi, uint32_t memop)
1175 {
1176     int size = 1 << (memop & MO_SIZE);
1177     int sign = memop & MO_SIGN;
1178     uint64_t ret = 0;
1179 
1180     if (asi < 0x80) {
1181         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1182     }
1183     do_check_align(env, addr, size - 1, GETPC());
1184     addr = asi_address_mask(env, asi, addr);
1185 
1186     switch (asi) {
1187     case ASI_PNF:  /* Primary no-fault */
1188     case ASI_PNFL: /* Primary no-fault LE */
1189     case ASI_SNF:  /* Secondary no-fault */
1190     case ASI_SNFL: /* Secondary no-fault LE */
1191         if (!page_check_range(addr, size, PAGE_READ)) {
1192             ret = 0;
1193             break;
1194         }
1195         switch (size) {
1196         case 1:
1197             ret = cpu_ldub_data(env, addr);
1198             break;
1199         case 2:
1200             ret = cpu_lduw_data(env, addr);
1201             break;
1202         case 4:
1203             ret = cpu_ldl_data(env, addr);
1204             break;
1205         case 8:
1206             ret = cpu_ldq_data(env, addr);
1207             break;
1208         default:
1209             g_assert_not_reached();
1210         }
1211         break;
1212         break;
1213 
1214     case ASI_P: /* Primary */
1215     case ASI_PL: /* Primary LE */
1216     case ASI_S:  /* Secondary */
1217     case ASI_SL: /* Secondary LE */
1218         /* These are always handled inline.  */
1219         g_assert_not_reached();
1220 
1221     default:
1222         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1223     }
1224 
1225     /* Convert from little endian */
1226     switch (asi) {
1227     case ASI_PNFL: /* Primary no-fault LE */
1228     case ASI_SNFL: /* Secondary no-fault LE */
1229         switch (size) {
1230         case 2:
1231             ret = bswap16(ret);
1232             break;
1233         case 4:
1234             ret = bswap32(ret);
1235             break;
1236         case 8:
1237             ret = bswap64(ret);
1238             break;
1239         }
1240     }
1241 
1242     /* Convert to signed number */
1243     if (sign) {
1244         switch (size) {
1245         case 1:
1246             ret = (int8_t) ret;
1247             break;
1248         case 2:
1249             ret = (int16_t) ret;
1250             break;
1251         case 4:
1252             ret = (int32_t) ret;
1253             break;
1254         }
1255     }
1256 #ifdef DEBUG_ASI
1257     dump_asi("read", addr, asi, size, ret);
1258 #endif
1259     return ret;
1260 }
1261 
1262 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1263                    int asi, uint32_t memop)
1264 {
1265     int size = 1 << (memop & MO_SIZE);
1266 #ifdef DEBUG_ASI
1267     dump_asi("write", addr, asi, size, val);
1268 #endif
1269     if (asi < 0x80) {
1270         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1271     }
1272     do_check_align(env, addr, size - 1, GETPC());
1273 
1274     switch (asi) {
1275     case ASI_P:  /* Primary */
1276     case ASI_PL: /* Primary LE */
1277     case ASI_S:  /* Secondary */
1278     case ASI_SL: /* Secondary LE */
1279         /* These are always handled inline.  */
1280         g_assert_not_reached();
1281 
1282     case ASI_PNF:  /* Primary no-fault, RO */
1283     case ASI_SNF:  /* Secondary no-fault, RO */
1284     case ASI_PNFL: /* Primary no-fault LE, RO */
1285     case ASI_SNFL: /* Secondary no-fault LE, RO */
1286     default:
1287         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1288     }
1289 }
1290 
1291 #else /* CONFIG_USER_ONLY */
1292 
1293 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1294                        int asi, uint32_t memop)
1295 {
1296     int size = 1 << (memop & MO_SIZE);
1297     int sign = memop & MO_SIGN;
1298     CPUState *cs = env_cpu(env);
1299     uint64_t ret = 0;
1300 #if defined(DEBUG_ASI)
1301     target_ulong last_addr = addr;
1302 #endif
1303 
1304     asi &= 0xff;
1305 
1306     do_check_asi(env, asi, GETPC());
1307     do_check_align(env, addr, size - 1, GETPC());
1308     addr = asi_address_mask(env, asi, addr);
1309 
1310     switch (asi) {
1311     case ASI_PNF:
1312     case ASI_PNFL:
1313     case ASI_SNF:
1314     case ASI_SNFL:
1315         {
1316             MemOpIdx oi;
1317             int idx = (env->pstate & PS_PRIV
1318                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1319                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1320 
1321             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1322 #ifdef DEBUG_ASI
1323                 dump_asi("read ", last_addr, asi, size, ret);
1324 #endif
1325                 /* exception_index is set in get_physical_address_data. */
1326                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1327             }
1328             oi = make_memop_idx(memop, idx);
1329             switch (size) {
1330             case 1:
1331                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1332                 break;
1333             case 2:
1334                 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1335                 break;
1336             case 4:
1337                 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1338                 break;
1339             case 8:
1340                 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1341                 break;
1342             default:
1343                 g_assert_not_reached();
1344             }
1345         }
1346         break;
1347 
1348     case ASI_AIUP:  /* As if user primary */
1349     case ASI_AIUS:  /* As if user secondary */
1350     case ASI_AIUPL: /* As if user primary LE */
1351     case ASI_AIUSL: /* As if user secondary LE */
1352     case ASI_P:  /* Primary */
1353     case ASI_S:  /* Secondary */
1354     case ASI_PL: /* Primary LE */
1355     case ASI_SL: /* Secondary LE */
1356     case ASI_REAL:      /* Bypass */
1357     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1358     case ASI_REAL_L:    /* Bypass LE */
1359     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1360     case ASI_N:  /* Nucleus */
1361     case ASI_NL: /* Nucleus Little Endian (LE) */
1362     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1363     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1364     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1365     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1366     case ASI_TWINX_REAL:   /* Real address, twinx */
1367     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1368     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1369     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1370     case ASI_TWINX_N:  /* Nucleus, twinx */
1371     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1372     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1373     case ASI_TWINX_P:  /* Primary, twinx */
1374     case ASI_TWINX_PL: /* Primary, twinx, LE */
1375     case ASI_TWINX_S:  /* Secondary, twinx */
1376     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1377         /* These are always handled inline.  */
1378         g_assert_not_reached();
1379 
1380     case ASI_UPA_CONFIG: /* UPA config */
1381         /* XXX */
1382         break;
1383     case ASI_LSU_CONTROL: /* LSU */
1384         ret = env->lsu;
1385         break;
1386     case ASI_IMMU: /* I-MMU regs */
1387         {
1388             int reg = (addr >> 3) & 0xf;
1389             switch (reg) {
1390             case 0:
1391                 /* 0x00 I-TSB Tag Target register */
1392                 ret = ultrasparc_tag_target(env->immu.tag_access);
1393                 break;
1394             case 3: /* SFSR */
1395                 ret = env->immu.sfsr;
1396                 break;
1397             case 5: /* TSB access */
1398                 ret = env->immu.tsb;
1399                 break;
1400             case 6:
1401                 /* 0x30 I-TSB Tag Access register */
1402                 ret = env->immu.tag_access;
1403                 break;
1404             default:
1405                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1406                 ret = 0;
1407             }
1408             break;
1409         }
1410     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1411         {
1412             /* env->immuregs[5] holds I-MMU TSB register value
1413                env->immuregs[6] holds I-MMU Tag Access register value */
1414             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1415             break;
1416         }
1417     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1418         {
1419             /* env->immuregs[5] holds I-MMU TSB register value
1420                env->immuregs[6] holds I-MMU Tag Access register value */
1421             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1422             break;
1423         }
1424     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1425         {
1426             int reg = (addr >> 3) & 0x3f;
1427 
1428             ret = env->itlb[reg].tte;
1429             break;
1430         }
1431     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1432         {
1433             int reg = (addr >> 3) & 0x3f;
1434 
1435             ret = env->itlb[reg].tag;
1436             break;
1437         }
1438     case ASI_DMMU: /* D-MMU regs */
1439         {
1440             int reg = (addr >> 3) & 0xf;
1441             switch (reg) {
1442             case 0:
1443                 /* 0x00 D-TSB Tag Target register */
1444                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1445                 break;
1446             case 1: /* 0x08 Primary Context */
1447                 ret = env->dmmu.mmu_primary_context;
1448                 break;
1449             case 2: /* 0x10 Secondary Context */
1450                 ret = env->dmmu.mmu_secondary_context;
1451                 break;
1452             case 3: /* SFSR */
1453                 ret = env->dmmu.sfsr;
1454                 break;
1455             case 4: /* 0x20 SFAR */
1456                 ret = env->dmmu.sfar;
1457                 break;
1458             case 5: /* 0x28 TSB access */
1459                 ret = env->dmmu.tsb;
1460                 break;
1461             case 6: /* 0x30 D-TSB Tag Access register */
1462                 ret = env->dmmu.tag_access;
1463                 break;
1464             case 7:
1465                 ret = env->dmmu.virtual_watchpoint;
1466                 break;
1467             case 8:
1468                 ret = env->dmmu.physical_watchpoint;
1469                 break;
1470             default:
1471                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1472                 ret = 0;
1473             }
1474             break;
1475         }
1476     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1477         {
1478             /* env->dmmuregs[5] holds D-MMU TSB register value
1479                env->dmmuregs[6] holds D-MMU Tag Access register value */
1480             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1481             break;
1482         }
1483     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1484         {
1485             /* env->dmmuregs[5] holds D-MMU TSB register value
1486                env->dmmuregs[6] holds D-MMU Tag Access register value */
1487             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1488             break;
1489         }
1490     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1491         {
1492             int reg = (addr >> 3) & 0x3f;
1493 
1494             ret = env->dtlb[reg].tte;
1495             break;
1496         }
1497     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1498         {
1499             int reg = (addr >> 3) & 0x3f;
1500 
1501             ret = env->dtlb[reg].tag;
1502             break;
1503         }
1504     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1505         break;
1506     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1507         ret = env->ivec_status;
1508         break;
1509     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1510         {
1511             int reg = (addr >> 4) & 0x3;
1512             if (reg < 3) {
1513                 ret = env->ivec_data[reg];
1514             }
1515             break;
1516         }
1517     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1518         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1519             /* Hyperprivileged access only */
1520             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1521         }
1522         /* fall through */
1523     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1524         {
1525             unsigned int i = (addr >> 3) & 0x7;
1526             ret = env->scratch[i];
1527             break;
1528         }
1529     case ASI_MMU: /* UA2005 Context ID registers */
1530         switch ((addr >> 3) & 0x3) {
1531         case 1:
1532             ret = env->dmmu.mmu_primary_context;
1533             break;
1534         case 2:
1535             ret = env->dmmu.mmu_secondary_context;
1536             break;
1537         default:
1538           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1539         }
1540         break;
1541     case ASI_DCACHE_DATA:     /* D-cache data */
1542     case ASI_DCACHE_TAG:      /* D-cache tag access */
1543     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1544     case ASI_AFSR:            /* E-cache asynchronous fault status */
1545     case ASI_AFAR:            /* E-cache asynchronous fault address */
1546     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1547     case ASI_IC_INSTR:        /* I-cache instruction access */
1548     case ASI_IC_TAG:          /* I-cache tag access */
1549     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1550     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1551     case ASI_EC_W:            /* E-cache tag */
1552     case ASI_EC_R:            /* E-cache tag */
1553         break;
1554     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1555     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1556     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1557     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1558     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1559     case ASI_INTR_W:              /* Interrupt vector, WO */
1560     default:
1561         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1562         ret = 0;
1563         break;
1564     }
1565 
1566     /* Convert to signed number */
1567     if (sign) {
1568         switch (size) {
1569         case 1:
1570             ret = (int8_t) ret;
1571             break;
1572         case 2:
1573             ret = (int16_t) ret;
1574             break;
1575         case 4:
1576             ret = (int32_t) ret;
1577             break;
1578         default:
1579             break;
1580         }
1581     }
1582 #ifdef DEBUG_ASI
1583     dump_asi("read ", last_addr, asi, size, ret);
1584 #endif
1585     return ret;
1586 }
1587 
1588 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1589                    int asi, uint32_t memop)
1590 {
1591     int size = 1 << (memop & MO_SIZE);
1592     CPUState *cs = env_cpu(env);
1593 
1594 #ifdef DEBUG_ASI
1595     dump_asi("write", addr, asi, size, val);
1596 #endif
1597 
1598     asi &= 0xff;
1599 
1600     do_check_asi(env, asi, GETPC());
1601     do_check_align(env, addr, size - 1, GETPC());
1602     addr = asi_address_mask(env, asi, addr);
1603 
1604     switch (asi) {
1605     case ASI_AIUP:  /* As if user primary */
1606     case ASI_AIUS:  /* As if user secondary */
1607     case ASI_AIUPL: /* As if user primary LE */
1608     case ASI_AIUSL: /* As if user secondary LE */
1609     case ASI_P:  /* Primary */
1610     case ASI_S:  /* Secondary */
1611     case ASI_PL: /* Primary LE */
1612     case ASI_SL: /* Secondary LE */
1613     case ASI_REAL:      /* Bypass */
1614     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1615     case ASI_REAL_L:    /* Bypass LE */
1616     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1617     case ASI_N:  /* Nucleus */
1618     case ASI_NL: /* Nucleus Little Endian (LE) */
1619     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1620     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1621     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1622     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1623     case ASI_TWINX_REAL:   /* Real address, twinx */
1624     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1625     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1626     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1627     case ASI_TWINX_N:  /* Nucleus, twinx */
1628     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1629     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1630     case ASI_TWINX_P:  /* Primary, twinx */
1631     case ASI_TWINX_PL: /* Primary, twinx, LE */
1632     case ASI_TWINX_S:  /* Secondary, twinx */
1633     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1634         /* These are always handled inline.  */
1635         g_assert_not_reached();
1636     /* these ASIs have different functions on UltraSPARC-IIIi
1637      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1638      */
1639     case 0x31:
1640     case 0x32:
1641     case 0x39:
1642     case 0x3a:
1643         if (cpu_has_hypervisor(env)) {
1644             /* UA2005
1645              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1646              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1647              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1648              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1649              */
1650             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1651             env->dmmu.sun4v_tsb_pointers[idx] = val;
1652         } else {
1653             goto illegal_insn;
1654         }
1655         break;
1656     case 0x33:
1657     case 0x3b:
1658         if (cpu_has_hypervisor(env)) {
1659             /* UA2005
1660              * ASI_DMMU_CTX_ZERO_CONFIG
1661              * ASI_DMMU_CTX_NONZERO_CONFIG
1662              */
1663             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1664         } else {
1665             goto illegal_insn;
1666         }
1667         break;
1668     case 0x35:
1669     case 0x36:
1670     case 0x3d:
1671     case 0x3e:
1672         if (cpu_has_hypervisor(env)) {
1673             /* UA2005
1674              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1675              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1676              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1677              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1678              */
1679             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1680             env->immu.sun4v_tsb_pointers[idx] = val;
1681         } else {
1682             goto illegal_insn;
1683         }
1684       break;
1685     case 0x37:
1686     case 0x3f:
1687         if (cpu_has_hypervisor(env)) {
1688             /* UA2005
1689              * ASI_IMMU_CTX_ZERO_CONFIG
1690              * ASI_IMMU_CTX_NONZERO_CONFIG
1691              */
1692             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1693         } else {
1694             goto illegal_insn;
1695         }
1696         break;
1697     case ASI_UPA_CONFIG: /* UPA config */
1698         /* XXX */
1699         return;
1700     case ASI_LSU_CONTROL: /* LSU */
1701         env->lsu = val & (DMMU_E | IMMU_E);
1702         return;
1703     case ASI_IMMU: /* I-MMU regs */
1704         {
1705             int reg = (addr >> 3) & 0xf;
1706             uint64_t oldreg;
1707 
1708             oldreg = env->immu.mmuregs[reg];
1709             switch (reg) {
1710             case 0: /* RO */
1711                 return;
1712             case 1: /* Not in I-MMU */
1713             case 2:
1714                 return;
1715             case 3: /* SFSR */
1716                 if ((val & 1) == 0) {
1717                     val = 0; /* Clear SFSR */
1718                 }
1719                 env->immu.sfsr = val;
1720                 break;
1721             case 4: /* RO */
1722                 return;
1723             case 5: /* TSB access */
1724                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1725                             PRIx64 "\n", env->immu.tsb, val);
1726                 env->immu.tsb = val;
1727                 break;
1728             case 6: /* Tag access */
1729                 env->immu.tag_access = val;
1730                 break;
1731             case 7:
1732             case 8:
1733                 return;
1734             default:
1735                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1736                 break;
1737             }
1738 
1739             if (oldreg != env->immu.mmuregs[reg]) {
1740                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1741                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1742             }
1743 #ifdef DEBUG_MMU
1744             dump_mmu(env);
1745 #endif
1746             return;
1747         }
1748     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1749         /* ignore real translation entries */
1750         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1751             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1752                                  val, "immu", env, addr);
1753         }
1754         return;
1755     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1756         {
1757             /* TODO: auto demap */
1758 
1759             unsigned int i = (addr >> 3) & 0x3f;
1760 
1761             /* ignore real translation entries */
1762             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1763                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1764                                   sun4v_tte_to_sun4u(env, addr, val), env);
1765             }
1766 #ifdef DEBUG_MMU
1767             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1768             dump_mmu(env);
1769 #endif
1770             return;
1771         }
1772     case ASI_IMMU_DEMAP: /* I-MMU demap */
1773         demap_tlb(env->itlb, addr, "immu", env);
1774         return;
1775     case ASI_DMMU: /* D-MMU regs */
1776         {
1777             int reg = (addr >> 3) & 0xf;
1778             uint64_t oldreg;
1779 
1780             oldreg = env->dmmu.mmuregs[reg];
1781             switch (reg) {
1782             case 0: /* RO */
1783             case 4:
1784                 return;
1785             case 3: /* SFSR */
1786                 if ((val & 1) == 0) {
1787                     val = 0; /* Clear SFSR, Fault address */
1788                     env->dmmu.sfar = 0;
1789                 }
1790                 env->dmmu.sfsr = val;
1791                 break;
1792             case 1: /* Primary context */
1793                 env->dmmu.mmu_primary_context = val;
1794                 /* can be optimized to only flush MMU_USER_IDX
1795                    and MMU_KERNEL_IDX entries */
1796                 tlb_flush(cs);
1797                 break;
1798             case 2: /* Secondary context */
1799                 env->dmmu.mmu_secondary_context = val;
1800                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1801                    and MMU_KERNEL_SECONDARY_IDX entries */
1802                 tlb_flush(cs);
1803                 break;
1804             case 5: /* TSB access */
1805                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1806                             PRIx64 "\n", env->dmmu.tsb, val);
1807                 env->dmmu.tsb = val;
1808                 break;
1809             case 6: /* Tag access */
1810                 env->dmmu.tag_access = val;
1811                 break;
1812             case 7: /* Virtual Watchpoint */
1813                 env->dmmu.virtual_watchpoint = val;
1814                 break;
1815             case 8: /* Physical Watchpoint */
1816                 env->dmmu.physical_watchpoint = val;
1817                 break;
1818             default:
1819                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1820                 break;
1821             }
1822 
1823             if (oldreg != env->dmmu.mmuregs[reg]) {
1824                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1825                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1826             }
1827 #ifdef DEBUG_MMU
1828             dump_mmu(env);
1829 #endif
1830             return;
1831         }
1832     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1833       /* ignore real translation entries */
1834       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1835           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1836                                val, "dmmu", env, addr);
1837       }
1838       return;
1839     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1840         {
1841             unsigned int i = (addr >> 3) & 0x3f;
1842 
1843             /* ignore real translation entries */
1844             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1845                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1846                                   sun4v_tte_to_sun4u(env, addr, val), env);
1847             }
1848 #ifdef DEBUG_MMU
1849             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1850             dump_mmu(env);
1851 #endif
1852             return;
1853         }
1854     case ASI_DMMU_DEMAP: /* D-MMU demap */
1855         demap_tlb(env->dtlb, addr, "dmmu", env);
1856         return;
1857     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1858         env->ivec_status = val & 0x20;
1859         return;
1860     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1861         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1862             /* Hyperprivileged access only */
1863             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1864         }
1865         /* fall through */
1866     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1867         {
1868             unsigned int i = (addr >> 3) & 0x7;
1869             env->scratch[i] = val;
1870             return;
1871         }
1872     case ASI_MMU: /* UA2005 Context ID registers */
1873         {
1874           switch ((addr >> 3) & 0x3) {
1875           case 1:
1876               env->dmmu.mmu_primary_context = val;
1877               env->immu.mmu_primary_context = val;
1878               tlb_flush_by_mmuidx(cs,
1879                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1880               break;
1881           case 2:
1882               env->dmmu.mmu_secondary_context = val;
1883               env->immu.mmu_secondary_context = val;
1884               tlb_flush_by_mmuidx(cs,
1885                                   (1 << MMU_USER_SECONDARY_IDX) |
1886                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1887               break;
1888           default:
1889               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1890           }
1891         }
1892         return;
1893     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1894     case ASI_DCACHE_DATA: /* D-cache data */
1895     case ASI_DCACHE_TAG: /* D-cache tag access */
1896     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1897     case ASI_AFSR: /* E-cache asynchronous fault status */
1898     case ASI_AFAR: /* E-cache asynchronous fault address */
1899     case ASI_EC_TAG_DATA: /* E-cache tag data */
1900     case ASI_IC_INSTR: /* I-cache instruction access */
1901     case ASI_IC_TAG: /* I-cache tag access */
1902     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1903     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1904     case ASI_EC_W: /* E-cache tag */
1905     case ASI_EC_R: /* E-cache tag */
1906         return;
1907     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1908     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1909     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1910     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1911     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1912     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1913     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1914     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1915     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1916     case ASI_PNF: /* Primary no-fault, RO */
1917     case ASI_SNF: /* Secondary no-fault, RO */
1918     case ASI_PNFL: /* Primary no-fault LE, RO */
1919     case ASI_SNFL: /* Secondary no-fault LE, RO */
1920     default:
1921         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1922         return;
1923     illegal_insn:
1924         cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1925     }
1926 }
1927 #endif /* CONFIG_USER_ONLY */
1928 #endif /* TARGET_SPARC64 */
1929 
1930 #if !defined(CONFIG_USER_ONLY)
1931 
1932 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1933                                      vaddr addr, unsigned size,
1934                                      MMUAccessType access_type,
1935                                      int mmu_idx, MemTxAttrs attrs,
1936                                      MemTxResult response, uintptr_t retaddr)
1937 {
1938     bool is_write = access_type == MMU_DATA_STORE;
1939     bool is_exec = access_type == MMU_INST_FETCH;
1940     bool is_asi = false;
1941 
1942     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1943                           is_asi, size, retaddr);
1944 }
1945 #endif
1946