1 /* 2 * Helpers for loads and stores 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "tcg.h" 23 #include "exec/helper-proto.h" 24 #include "exec/exec-all.h" 25 #include "exec/cpu_ldst.h" 26 #include "asi.h" 27 28 //#define DEBUG_MMU 29 //#define DEBUG_MXCC 30 //#define DEBUG_UNALIGNED 31 //#define DEBUG_UNASSIGNED 32 //#define DEBUG_ASI 33 //#define DEBUG_CACHE_CONTROL 34 35 #ifdef DEBUG_MMU 36 #define DPRINTF_MMU(fmt, ...) \ 37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) 38 #else 39 #define DPRINTF_MMU(fmt, ...) do {} while (0) 40 #endif 41 42 #ifdef DEBUG_MXCC 43 #define DPRINTF_MXCC(fmt, ...) \ 44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) 45 #else 46 #define DPRINTF_MXCC(fmt, ...) do {} while (0) 47 #endif 48 49 #ifdef DEBUG_ASI 50 #define DPRINTF_ASI(fmt, ...) \ 51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) 52 #endif 53 54 #ifdef DEBUG_CACHE_CONTROL 55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \ 56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) 57 #else 58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) 59 #endif 60 61 #ifdef TARGET_SPARC64 62 #ifndef TARGET_ABI32 63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM) 64 #else 65 #define AM_CHECK(env1) (1) 66 #endif 67 #endif 68 69 #define QT0 (env->qt0) 70 #define QT1 (env->qt1) 71 72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) 73 /* Calculates TSB pointer value for fault page size 74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers 75 * UA2005 holds the page size configuration in mmu_ctx registers */ 76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env, 77 const SparcV9MMU *mmu, const int idx) 78 { 79 uint64_t tsb_register; 80 int page_size; 81 if (cpu_has_hypervisor(env)) { 82 int tsb_index = 0; 83 int ctx = mmu->tag_access & 0x1fffULL; 84 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0]; 85 tsb_index = idx; 86 tsb_index |= ctx ? 2 : 0; 87 page_size = idx ? ctx_register >> 8 : ctx_register; 88 page_size &= 7; 89 tsb_register = mmu->sun4v_tsb_pointers[tsb_index]; 90 } else { 91 page_size = idx; 92 tsb_register = mmu->tsb; 93 } 94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; 95 int tsb_size = tsb_register & 0xf; 96 97 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size; 98 99 /* move va bits to correct position, 100 * the context bits will be masked out later */ 101 uint64_t va = mmu->tag_access >> (3 * page_size + 9); 102 103 /* calculate tsb_base mask and adjust va if split is in use */ 104 if (tsb_split) { 105 if (idx == 0) { 106 va &= ~(1ULL << (13 + tsb_size)); 107 } else { 108 va |= (1ULL << (13 + tsb_size)); 109 } 110 tsb_base_mask <<= 1; 111 } 112 113 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; 114 } 115 116 /* Calculates tag target register value by reordering bits 117 in tag access register */ 118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) 119 { 120 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); 121 } 122 123 static void replace_tlb_entry(SparcTLBEntry *tlb, 124 uint64_t tlb_tag, uint64_t tlb_tte, 125 CPUSPARCState *env) 126 { 127 target_ulong mask, size, va, offset; 128 129 /* flush page range if translation is valid */ 130 if (TTE_IS_VALID(tlb->tte)) { 131 CPUState *cs = env_cpu(env); 132 133 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte); 134 mask = 1ULL + ~size; 135 136 va = tlb->tag & mask; 137 138 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { 139 tlb_flush_page(cs, va + offset); 140 } 141 } 142 143 tlb->tag = tlb_tag; 144 tlb->tte = tlb_tte; 145 } 146 147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, 148 const char *strmmu, CPUSPARCState *env1) 149 { 150 unsigned int i; 151 target_ulong mask; 152 uint64_t context; 153 154 int is_demap_context = (demap_addr >> 6) & 1; 155 156 /* demap context */ 157 switch ((demap_addr >> 4) & 3) { 158 case 0: /* primary */ 159 context = env1->dmmu.mmu_primary_context; 160 break; 161 case 1: /* secondary */ 162 context = env1->dmmu.mmu_secondary_context; 163 break; 164 case 2: /* nucleus */ 165 context = 0; 166 break; 167 case 3: /* reserved */ 168 default: 169 return; 170 } 171 172 for (i = 0; i < 64; i++) { 173 if (TTE_IS_VALID(tlb[i].tte)) { 174 175 if (is_demap_context) { 176 /* will remove non-global entries matching context value */ 177 if (TTE_IS_GLOBAL(tlb[i].tte) || 178 !tlb_compare_context(&tlb[i], context)) { 179 continue; 180 } 181 } else { 182 /* demap page 183 will remove any entry matching VA */ 184 mask = 0xffffffffffffe000ULL; 185 mask <<= 3 * ((tlb[i].tte >> 61) & 3); 186 187 if (!compare_masked(demap_addr, tlb[i].tag, mask)) { 188 continue; 189 } 190 191 /* entry should be global or matching context value */ 192 if (!TTE_IS_GLOBAL(tlb[i].tte) && 193 !tlb_compare_context(&tlb[i], context)) { 194 continue; 195 } 196 } 197 198 replace_tlb_entry(&tlb[i], 0, 0, env1); 199 #ifdef DEBUG_MMU 200 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); 201 dump_mmu(env1); 202 #endif 203 } 204 } 205 } 206 207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag, 208 uint64_t sun4v_tte) 209 { 210 uint64_t sun4u_tte; 211 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) { 212 /* is already in the sun4u format */ 213 return sun4v_tte; 214 } 215 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT); 216 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */ 217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT); 218 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT); 219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT); 220 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005, 221 TTE_SIDEEFFECT_BIT); 222 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT); 223 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT); 224 return sun4u_tte; 225 } 226 227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, 228 uint64_t tlb_tag, uint64_t tlb_tte, 229 const char *strmmu, CPUSPARCState *env1, 230 uint64_t addr) 231 { 232 unsigned int i, replace_used; 233 234 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte); 235 if (cpu_has_hypervisor(env1)) { 236 uint64_t new_vaddr = tlb_tag & ~0x1fffULL; 237 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte); 238 uint32_t new_ctx = tlb_tag & 0x1fffU; 239 for (i = 0; i < 64; i++) { 240 uint32_t ctx = tlb[i].tag & 0x1fffU; 241 /* check if new mapping overlaps an existing one */ 242 if (new_ctx == ctx) { 243 uint64_t vaddr = tlb[i].tag & ~0x1fffULL; 244 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte); 245 if (new_vaddr == vaddr 246 || (new_vaddr < vaddr + size 247 && vaddr < new_vaddr + new_size)) { 248 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr, 249 new_vaddr); 250 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 251 return; 252 } 253 } 254 255 } 256 } 257 /* Try replacing invalid entry */ 258 for (i = 0; i < 64; i++) { 259 if (!TTE_IS_VALID(tlb[i].tte)) { 260 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 261 #ifdef DEBUG_MMU 262 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); 263 dump_mmu(env1); 264 #endif 265 return; 266 } 267 } 268 269 /* All entries are valid, try replacing unlocked entry */ 270 271 for (replace_used = 0; replace_used < 2; ++replace_used) { 272 273 /* Used entries are not replaced on first pass */ 274 275 for (i = 0; i < 64; i++) { 276 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { 277 278 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); 279 #ifdef DEBUG_MMU 280 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", 281 strmmu, (replace_used ? "used" : "unused"), i); 282 dump_mmu(env1); 283 #endif 284 return; 285 } 286 } 287 288 /* Now reset used bit and search for unused entries again */ 289 290 for (i = 0; i < 64; i++) { 291 TTE_SET_UNUSED(tlb[i].tte); 292 } 293 } 294 295 #ifdef DEBUG_MMU 296 DPRINTF_MMU("%s lru replacement: no free entries available, " 297 "replacing the last one\n", strmmu); 298 #endif 299 /* corner case: the last entry is replaced anyway */ 300 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1); 301 } 302 303 #endif 304 305 #ifdef TARGET_SPARC64 306 /* returns true if access using this ASI is to have address translated by MMU 307 otherwise access is to raw physical address */ 308 /* TODO: check sparc32 bits */ 309 static inline int is_translating_asi(int asi) 310 { 311 /* Ultrasparc IIi translating asi 312 - note this list is defined by cpu implementation 313 */ 314 switch (asi) { 315 case 0x04 ... 0x11: 316 case 0x16 ... 0x19: 317 case 0x1E ... 0x1F: 318 case 0x24 ... 0x2C: 319 case 0x70 ... 0x73: 320 case 0x78 ... 0x79: 321 case 0x80 ... 0xFF: 322 return 1; 323 324 default: 325 return 0; 326 } 327 } 328 329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr) 330 { 331 if (AM_CHECK(env1)) { 332 addr &= 0xffffffffULL; 333 } 334 return addr; 335 } 336 337 static inline target_ulong asi_address_mask(CPUSPARCState *env, 338 int asi, target_ulong addr) 339 { 340 if (is_translating_asi(asi)) { 341 addr = address_mask(env, addr); 342 } 343 return addr; 344 } 345 346 #ifndef CONFIG_USER_ONLY 347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra) 348 { 349 /* ASIs >= 0x80 are user mode. 350 * ASIs >= 0x30 are hyper mode (or super if hyper is not available). 351 * ASIs <= 0x2f are super mode. 352 */ 353 if (asi < 0x80 354 && !cpu_hypervisor_mode(env) 355 && (!cpu_supervisor_mode(env) 356 || (asi >= 0x30 && cpu_has_hypervisor(env)))) { 357 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra); 358 } 359 } 360 #endif /* !CONFIG_USER_ONLY */ 361 #endif 362 363 static void do_check_align(CPUSPARCState *env, target_ulong addr, 364 uint32_t align, uintptr_t ra) 365 { 366 if (addr & align) { 367 #ifdef DEBUG_UNALIGNED 368 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx 369 "\n", addr, env->pc); 370 #endif 371 cpu_raise_exception_ra(env, TT_UNALIGNED, ra); 372 } 373 } 374 375 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align) 376 { 377 do_check_align(env, addr, align, GETPC()); 378 } 379 380 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ 381 defined(DEBUG_MXCC) 382 static void dump_mxcc(CPUSPARCState *env) 383 { 384 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 385 "\n", 386 env->mxccdata[0], env->mxccdata[1], 387 env->mxccdata[2], env->mxccdata[3]); 388 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 389 "\n" 390 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 391 "\n", 392 env->mxccregs[0], env->mxccregs[1], 393 env->mxccregs[2], env->mxccregs[3], 394 env->mxccregs[4], env->mxccregs[5], 395 env->mxccregs[6], env->mxccregs[7]); 396 } 397 #endif 398 399 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ 400 && defined(DEBUG_ASI) 401 static void dump_asi(const char *txt, target_ulong addr, int asi, int size, 402 uint64_t r1) 403 { 404 switch (size) { 405 case 1: 406 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, 407 addr, asi, r1 & 0xff); 408 break; 409 case 2: 410 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, 411 addr, asi, r1 & 0xffff); 412 break; 413 case 4: 414 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, 415 addr, asi, r1 & 0xffffffff); 416 break; 417 case 8: 418 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, 419 addr, asi, r1); 420 break; 421 } 422 } 423 #endif 424 425 #ifndef CONFIG_USER_ONLY 426 #ifndef TARGET_SPARC64 427 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr, 428 bool is_write, bool is_exec, int is_asi, 429 unsigned size, uintptr_t retaddr) 430 { 431 SPARCCPU *cpu = SPARC_CPU(cs); 432 CPUSPARCState *env = &cpu->env; 433 int fault_type; 434 435 #ifdef DEBUG_UNASSIGNED 436 if (is_asi) { 437 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx 438 " asi 0x%02x from " TARGET_FMT_lx "\n", 439 is_exec ? "exec" : is_write ? "write" : "read", size, 440 size == 1 ? "" : "s", addr, is_asi, env->pc); 441 } else { 442 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx 443 " from " TARGET_FMT_lx "\n", 444 is_exec ? "exec" : is_write ? "write" : "read", size, 445 size == 1 ? "" : "s", addr, env->pc); 446 } 447 #endif 448 /* Don't overwrite translation and access faults */ 449 fault_type = (env->mmuregs[3] & 0x1c) >> 2; 450 if ((fault_type > 4) || (fault_type == 0)) { 451 env->mmuregs[3] = 0; /* Fault status register */ 452 if (is_asi) { 453 env->mmuregs[3] |= 1 << 16; 454 } 455 if (env->psrs) { 456 env->mmuregs[3] |= 1 << 5; 457 } 458 if (is_exec) { 459 env->mmuregs[3] |= 1 << 6; 460 } 461 if (is_write) { 462 env->mmuregs[3] |= 1 << 7; 463 } 464 env->mmuregs[3] |= (5 << 2) | 2; 465 /* SuperSPARC will never place instruction fault addresses in the FAR */ 466 if (!is_exec) { 467 env->mmuregs[4] = addr; /* Fault address register */ 468 } 469 } 470 /* overflow (same type fault was not read before another fault) */ 471 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { 472 env->mmuregs[3] |= 1; 473 } 474 475 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { 476 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS; 477 cpu_raise_exception_ra(env, tt, retaddr); 478 } 479 480 /* 481 * flush neverland mappings created during no-fault mode, 482 * so the sequential MMU faults report proper fault types 483 */ 484 if (env->mmuregs[0] & MMU_NF) { 485 tlb_flush(cs); 486 } 487 } 488 #else 489 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr, 490 bool is_write, bool is_exec, int is_asi, 491 unsigned size, uintptr_t retaddr) 492 { 493 SPARCCPU *cpu = SPARC_CPU(cs); 494 CPUSPARCState *env = &cpu->env; 495 496 #ifdef DEBUG_UNASSIGNED 497 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx 498 "\n", addr, env->pc); 499 #endif 500 501 if (is_exec) { /* XXX has_hypervisor */ 502 if (env->lsu & (IMMU_E)) { 503 cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr); 504 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { 505 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr); 506 } 507 } else { 508 if (env->lsu & (DMMU_E)) { 509 cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr); 510 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { 511 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr); 512 } 513 } 514 } 515 #endif 516 #endif 517 518 #ifndef TARGET_SPARC64 519 #ifndef CONFIG_USER_ONLY 520 521 522 /* Leon3 cache control */ 523 524 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr, 525 uint64_t val, int size) 526 { 527 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", 528 addr, val, size); 529 530 if (size != 4) { 531 DPRINTF_CACHE_CONTROL("32bits only\n"); 532 return; 533 } 534 535 switch (addr) { 536 case 0x00: /* Cache control */ 537 538 /* These values must always be read as zeros */ 539 val &= ~CACHE_CTRL_FD; 540 val &= ~CACHE_CTRL_FI; 541 val &= ~CACHE_CTRL_IB; 542 val &= ~CACHE_CTRL_IP; 543 val &= ~CACHE_CTRL_DP; 544 545 env->cache_control = val; 546 break; 547 case 0x04: /* Instruction cache configuration */ 548 case 0x08: /* Data cache configuration */ 549 /* Read Only */ 550 break; 551 default: 552 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); 553 break; 554 }; 555 } 556 557 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr, 558 int size) 559 { 560 uint64_t ret = 0; 561 562 if (size != 4) { 563 DPRINTF_CACHE_CONTROL("32bits only\n"); 564 return 0; 565 } 566 567 switch (addr) { 568 case 0x00: /* Cache control */ 569 ret = env->cache_control; 570 break; 571 572 /* Configuration registers are read and only always keep those 573 predefined values */ 574 575 case 0x04: /* Instruction cache configuration */ 576 ret = 0x10220000; 577 break; 578 case 0x08: /* Data cache configuration */ 579 ret = 0x18220000; 580 break; 581 default: 582 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); 583 break; 584 }; 585 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", 586 addr, ret, size); 587 return ret; 588 } 589 590 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 591 int asi, uint32_t memop) 592 { 593 int size = 1 << (memop & MO_SIZE); 594 int sign = memop & MO_SIGN; 595 CPUState *cs = env_cpu(env); 596 uint64_t ret = 0; 597 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) 598 uint32_t last_addr = addr; 599 #endif 600 601 do_check_align(env, addr, size - 1, GETPC()); 602 switch (asi) { 603 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ 604 /* case ASI_LEON_CACHEREGS: Leon3 cache control */ 605 switch (addr) { 606 case 0x00: /* Leon3 Cache Control */ 607 case 0x08: /* Leon3 Instruction Cache config */ 608 case 0x0C: /* Leon3 Date Cache config */ 609 if (env->def.features & CPU_FEATURE_CACHE_CTRL) { 610 ret = leon3_cache_control_ld(env, addr, size); 611 } 612 break; 613 case 0x01c00a00: /* MXCC control register */ 614 if (size == 8) { 615 ret = env->mxccregs[3]; 616 } else { 617 qemu_log_mask(LOG_UNIMP, 618 "%08x: unimplemented access size: %d\n", addr, 619 size); 620 } 621 break; 622 case 0x01c00a04: /* MXCC control register */ 623 if (size == 4) { 624 ret = env->mxccregs[3]; 625 } else { 626 qemu_log_mask(LOG_UNIMP, 627 "%08x: unimplemented access size: %d\n", addr, 628 size); 629 } 630 break; 631 case 0x01c00c00: /* Module reset register */ 632 if (size == 8) { 633 ret = env->mxccregs[5]; 634 /* should we do something here? */ 635 } else { 636 qemu_log_mask(LOG_UNIMP, 637 "%08x: unimplemented access size: %d\n", addr, 638 size); 639 } 640 break; 641 case 0x01c00f00: /* MBus port address register */ 642 if (size == 8) { 643 ret = env->mxccregs[7]; 644 } else { 645 qemu_log_mask(LOG_UNIMP, 646 "%08x: unimplemented access size: %d\n", addr, 647 size); 648 } 649 break; 650 default: 651 qemu_log_mask(LOG_UNIMP, 652 "%08x: unimplemented address, size: %d\n", addr, 653 size); 654 break; 655 } 656 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " 657 "addr = %08x -> ret = %" PRIx64 "," 658 "addr = %08x\n", asi, size, sign, last_addr, ret, addr); 659 #ifdef DEBUG_MXCC 660 dump_mxcc(env); 661 #endif 662 break; 663 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */ 664 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */ 665 { 666 int mmulev; 667 668 mmulev = (addr >> 8) & 15; 669 if (mmulev > 4) { 670 ret = 0; 671 } else { 672 ret = mmu_probe(env, addr, mmulev); 673 } 674 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", 675 addr, mmulev, ret); 676 } 677 break; 678 case ASI_M_MMUREGS: /* SuperSparc MMU regs */ 679 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */ 680 { 681 int reg = (addr >> 8) & 0x1f; 682 683 ret = env->mmuregs[reg]; 684 if (reg == 3) { /* Fault status cleared on read */ 685 env->mmuregs[3] = 0; 686 } else if (reg == 0x13) { /* Fault status read */ 687 ret = env->mmuregs[3]; 688 } else if (reg == 0x14) { /* Fault address read */ 689 ret = env->mmuregs[4]; 690 } 691 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); 692 } 693 break; 694 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ 695 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ 696 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ 697 break; 698 case ASI_KERNELTXT: /* Supervisor code access */ 699 switch (size) { 700 case 1: 701 ret = cpu_ldub_code(env, addr); 702 break; 703 case 2: 704 ret = cpu_lduw_code(env, addr); 705 break; 706 default: 707 case 4: 708 ret = cpu_ldl_code(env, addr); 709 break; 710 case 8: 711 ret = cpu_ldq_code(env, addr); 712 break; 713 } 714 break; 715 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */ 716 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */ 717 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */ 718 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */ 719 break; 720 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ 721 { 722 MemTxResult result; 723 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32); 724 725 switch (size) { 726 case 1: 727 ret = address_space_ldub(cs->as, access_addr, 728 MEMTXATTRS_UNSPECIFIED, &result); 729 break; 730 case 2: 731 ret = address_space_lduw(cs->as, access_addr, 732 MEMTXATTRS_UNSPECIFIED, &result); 733 break; 734 default: 735 case 4: 736 ret = address_space_ldl(cs->as, access_addr, 737 MEMTXATTRS_UNSPECIFIED, &result); 738 break; 739 case 8: 740 ret = address_space_ldq(cs->as, access_addr, 741 MEMTXATTRS_UNSPECIFIED, &result); 742 break; 743 } 744 745 if (result != MEMTX_OK) { 746 sparc_raise_mmu_fault(cs, access_addr, false, false, false, 747 size, GETPC()); 748 } 749 break; 750 } 751 case 0x30: /* Turbosparc secondary cache diagnostic */ 752 case 0x31: /* Turbosparc RAM snoop */ 753 case 0x32: /* Turbosparc page table descriptor diagnostic */ 754 case 0x39: /* data cache diagnostic register */ 755 ret = 0; 756 break; 757 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ 758 { 759 int reg = (addr >> 8) & 3; 760 761 switch (reg) { 762 case 0: /* Breakpoint Value (Addr) */ 763 ret = env->mmubpregs[reg]; 764 break; 765 case 1: /* Breakpoint Mask */ 766 ret = env->mmubpregs[reg]; 767 break; 768 case 2: /* Breakpoint Control */ 769 ret = env->mmubpregs[reg]; 770 break; 771 case 3: /* Breakpoint Status */ 772 ret = env->mmubpregs[reg]; 773 env->mmubpregs[reg] = 0ULL; 774 break; 775 } 776 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, 777 ret); 778 } 779 break; 780 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ 781 ret = env->mmubpctrv; 782 break; 783 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ 784 ret = env->mmubpctrc; 785 break; 786 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ 787 ret = env->mmubpctrs; 788 break; 789 case 0x4c: /* SuperSPARC MMU Breakpoint Action */ 790 ret = env->mmubpaction; 791 break; 792 case ASI_USERTXT: /* User code access, XXX */ 793 default: 794 sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC()); 795 ret = 0; 796 break; 797 798 case ASI_USERDATA: /* User data access */ 799 case ASI_KERNELDATA: /* Supervisor data access */ 800 case ASI_P: /* Implicit primary context data access (v9 only?) */ 801 case ASI_M_BYPASS: /* MMU passthrough */ 802 case ASI_LEON_BYPASS: /* LEON MMU passthrough */ 803 /* These are always handled inline. */ 804 g_assert_not_reached(); 805 } 806 if (sign) { 807 switch (size) { 808 case 1: 809 ret = (int8_t) ret; 810 break; 811 case 2: 812 ret = (int16_t) ret; 813 break; 814 case 4: 815 ret = (int32_t) ret; 816 break; 817 default: 818 break; 819 } 820 } 821 #ifdef DEBUG_ASI 822 dump_asi("read ", last_addr, asi, size, ret); 823 #endif 824 return ret; 825 } 826 827 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, 828 int asi, uint32_t memop) 829 { 830 int size = 1 << (memop & MO_SIZE); 831 CPUState *cs = env_cpu(env); 832 833 do_check_align(env, addr, size - 1, GETPC()); 834 switch (asi) { 835 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ 836 /* case ASI_LEON_CACHEREGS: Leon3 cache control */ 837 switch (addr) { 838 case 0x00: /* Leon3 Cache Control */ 839 case 0x08: /* Leon3 Instruction Cache config */ 840 case 0x0C: /* Leon3 Date Cache config */ 841 if (env->def.features & CPU_FEATURE_CACHE_CTRL) { 842 leon3_cache_control_st(env, addr, val, size); 843 } 844 break; 845 846 case 0x01c00000: /* MXCC stream data register 0 */ 847 if (size == 8) { 848 env->mxccdata[0] = val; 849 } else { 850 qemu_log_mask(LOG_UNIMP, 851 "%08x: unimplemented access size: %d\n", addr, 852 size); 853 } 854 break; 855 case 0x01c00008: /* MXCC stream data register 1 */ 856 if (size == 8) { 857 env->mxccdata[1] = val; 858 } else { 859 qemu_log_mask(LOG_UNIMP, 860 "%08x: unimplemented access size: %d\n", addr, 861 size); 862 } 863 break; 864 case 0x01c00010: /* MXCC stream data register 2 */ 865 if (size == 8) { 866 env->mxccdata[2] = val; 867 } else { 868 qemu_log_mask(LOG_UNIMP, 869 "%08x: unimplemented access size: %d\n", addr, 870 size); 871 } 872 break; 873 case 0x01c00018: /* MXCC stream data register 3 */ 874 if (size == 8) { 875 env->mxccdata[3] = val; 876 } else { 877 qemu_log_mask(LOG_UNIMP, 878 "%08x: unimplemented access size: %d\n", addr, 879 size); 880 } 881 break; 882 case 0x01c00100: /* MXCC stream source */ 883 { 884 int i; 885 886 if (size == 8) { 887 env->mxccregs[0] = val; 888 } else { 889 qemu_log_mask(LOG_UNIMP, 890 "%08x: unimplemented access size: %d\n", addr, 891 size); 892 } 893 894 for (i = 0; i < 4; i++) { 895 MemTxResult result; 896 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i; 897 898 env->mxccdata[i] = address_space_ldq(cs->as, 899 access_addr, 900 MEMTXATTRS_UNSPECIFIED, 901 &result); 902 if (result != MEMTX_OK) { 903 /* TODO: investigate whether this is the right behaviour */ 904 sparc_raise_mmu_fault(cs, access_addr, false, false, 905 false, size, GETPC()); 906 } 907 } 908 break; 909 } 910 case 0x01c00200: /* MXCC stream destination */ 911 { 912 int i; 913 914 if (size == 8) { 915 env->mxccregs[1] = val; 916 } else { 917 qemu_log_mask(LOG_UNIMP, 918 "%08x: unimplemented access size: %d\n", addr, 919 size); 920 } 921 922 for (i = 0; i < 4; i++) { 923 MemTxResult result; 924 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i; 925 926 address_space_stq(cs->as, access_addr, env->mxccdata[i], 927 MEMTXATTRS_UNSPECIFIED, &result); 928 929 if (result != MEMTX_OK) { 930 /* TODO: investigate whether this is the right behaviour */ 931 sparc_raise_mmu_fault(cs, access_addr, true, false, 932 false, size, GETPC()); 933 } 934 } 935 break; 936 } 937 case 0x01c00a00: /* MXCC control register */ 938 if (size == 8) { 939 env->mxccregs[3] = val; 940 } else { 941 qemu_log_mask(LOG_UNIMP, 942 "%08x: unimplemented access size: %d\n", addr, 943 size); 944 } 945 break; 946 case 0x01c00a04: /* MXCC control register */ 947 if (size == 4) { 948 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) 949 | val; 950 } else { 951 qemu_log_mask(LOG_UNIMP, 952 "%08x: unimplemented access size: %d\n", addr, 953 size); 954 } 955 break; 956 case 0x01c00e00: /* MXCC error register */ 957 /* writing a 1 bit clears the error */ 958 if (size == 8) { 959 env->mxccregs[6] &= ~val; 960 } else { 961 qemu_log_mask(LOG_UNIMP, 962 "%08x: unimplemented access size: %d\n", addr, 963 size); 964 } 965 break; 966 case 0x01c00f00: /* MBus port address register */ 967 if (size == 8) { 968 env->mxccregs[7] = val; 969 } else { 970 qemu_log_mask(LOG_UNIMP, 971 "%08x: unimplemented access size: %d\n", addr, 972 size); 973 } 974 break; 975 default: 976 qemu_log_mask(LOG_UNIMP, 977 "%08x: unimplemented address, size: %d\n", addr, 978 size); 979 break; 980 } 981 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", 982 asi, size, addr, val); 983 #ifdef DEBUG_MXCC 984 dump_mxcc(env); 985 #endif 986 break; 987 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */ 988 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */ 989 { 990 int mmulev; 991 992 mmulev = (addr >> 8) & 15; 993 DPRINTF_MMU("mmu flush level %d\n", mmulev); 994 switch (mmulev) { 995 case 0: /* flush page */ 996 tlb_flush_page(cs, addr & 0xfffff000); 997 break; 998 case 1: /* flush segment (256k) */ 999 case 2: /* flush region (16M) */ 1000 case 3: /* flush context (4G) */ 1001 case 4: /* flush entire */ 1002 tlb_flush(cs); 1003 break; 1004 default: 1005 break; 1006 } 1007 #ifdef DEBUG_MMU 1008 dump_mmu(env); 1009 #endif 1010 } 1011 break; 1012 case ASI_M_MMUREGS: /* write MMU regs */ 1013 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */ 1014 { 1015 int reg = (addr >> 8) & 0x1f; 1016 uint32_t oldreg; 1017 1018 oldreg = env->mmuregs[reg]; 1019 switch (reg) { 1020 case 0: /* Control Register */ 1021 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | 1022 (val & 0x00ffffff); 1023 /* Mappings generated during no-fault mode 1024 are invalid in normal mode. */ 1025 if ((oldreg ^ env->mmuregs[reg]) 1026 & (MMU_NF | env->def.mmu_bm)) { 1027 tlb_flush(cs); 1028 } 1029 break; 1030 case 1: /* Context Table Pointer Register */ 1031 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask; 1032 break; 1033 case 2: /* Context Register */ 1034 env->mmuregs[reg] = val & env->def.mmu_cxr_mask; 1035 if (oldreg != env->mmuregs[reg]) { 1036 /* we flush when the MMU context changes because 1037 QEMU has no MMU context support */ 1038 tlb_flush(cs); 1039 } 1040 break; 1041 case 3: /* Synchronous Fault Status Register with Clear */ 1042 case 4: /* Synchronous Fault Address Register */ 1043 break; 1044 case 0x10: /* TLB Replacement Control Register */ 1045 env->mmuregs[reg] = val & env->def.mmu_trcr_mask; 1046 break; 1047 case 0x13: /* Synchronous Fault Status Register with Read 1048 and Clear */ 1049 env->mmuregs[3] = val & env->def.mmu_sfsr_mask; 1050 break; 1051 case 0x14: /* Synchronous Fault Address Register */ 1052 env->mmuregs[4] = val; 1053 break; 1054 default: 1055 env->mmuregs[reg] = val; 1056 break; 1057 } 1058 if (oldreg != env->mmuregs[reg]) { 1059 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", 1060 reg, oldreg, env->mmuregs[reg]); 1061 } 1062 #ifdef DEBUG_MMU 1063 dump_mmu(env); 1064 #endif 1065 } 1066 break; 1067 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ 1068 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ 1069 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ 1070 break; 1071 case ASI_M_TXTC_TAG: /* I-cache tag */ 1072 case ASI_M_TXTC_DATA: /* I-cache data */ 1073 case ASI_M_DATAC_TAG: /* D-cache tag */ 1074 case ASI_M_DATAC_DATA: /* D-cache data */ 1075 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */ 1076 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */ 1077 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */ 1078 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */ 1079 case ASI_M_FLUSH_USER: /* I/D-cache flush user */ 1080 break; 1081 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ 1082 { 1083 MemTxResult result; 1084 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32); 1085 1086 switch (size) { 1087 case 1: 1088 address_space_stb(cs->as, access_addr, val, 1089 MEMTXATTRS_UNSPECIFIED, &result); 1090 break; 1091 case 2: 1092 address_space_stw(cs->as, access_addr, val, 1093 MEMTXATTRS_UNSPECIFIED, &result); 1094 break; 1095 case 4: 1096 default: 1097 address_space_stl(cs->as, access_addr, val, 1098 MEMTXATTRS_UNSPECIFIED, &result); 1099 break; 1100 case 8: 1101 address_space_stq(cs->as, access_addr, val, 1102 MEMTXATTRS_UNSPECIFIED, &result); 1103 break; 1104 } 1105 if (result != MEMTX_OK) { 1106 sparc_raise_mmu_fault(cs, access_addr, true, false, false, 1107 size, GETPC()); 1108 } 1109 } 1110 break; 1111 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */ 1112 case 0x31: /* store buffer data, Ross RT620 I-cache flush or 1113 Turbosparc snoop RAM */ 1114 case 0x32: /* store buffer control or Turbosparc page table 1115 descriptor diagnostic */ 1116 case 0x36: /* I-cache flash clear */ 1117 case 0x37: /* D-cache flash clear */ 1118 break; 1119 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ 1120 { 1121 int reg = (addr >> 8) & 3; 1122 1123 switch (reg) { 1124 case 0: /* Breakpoint Value (Addr) */ 1125 env->mmubpregs[reg] = (val & 0xfffffffffULL); 1126 break; 1127 case 1: /* Breakpoint Mask */ 1128 env->mmubpregs[reg] = (val & 0xfffffffffULL); 1129 break; 1130 case 2: /* Breakpoint Control */ 1131 env->mmubpregs[reg] = (val & 0x7fULL); 1132 break; 1133 case 3: /* Breakpoint Status */ 1134 env->mmubpregs[reg] = (val & 0xfULL); 1135 break; 1136 } 1137 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, 1138 env->mmuregs[reg]); 1139 } 1140 break; 1141 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ 1142 env->mmubpctrv = val & 0xffffffff; 1143 break; 1144 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ 1145 env->mmubpctrc = val & 0x3; 1146 break; 1147 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ 1148 env->mmubpctrs = val & 0x3; 1149 break; 1150 case 0x4c: /* SuperSPARC MMU Breakpoint Action */ 1151 env->mmubpaction = val & 0x1fff; 1152 break; 1153 case ASI_USERTXT: /* User code access, XXX */ 1154 case ASI_KERNELTXT: /* Supervisor code access, XXX */ 1155 default: 1156 sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC()); 1157 break; 1158 1159 case ASI_USERDATA: /* User data access */ 1160 case ASI_KERNELDATA: /* Supervisor data access */ 1161 case ASI_P: 1162 case ASI_M_BYPASS: /* MMU passthrough */ 1163 case ASI_LEON_BYPASS: /* LEON MMU passthrough */ 1164 case ASI_M_BCOPY: /* Block copy, sta access */ 1165 case ASI_M_BFILL: /* Block fill, stda access */ 1166 /* These are always handled inline. */ 1167 g_assert_not_reached(); 1168 } 1169 #ifdef DEBUG_ASI 1170 dump_asi("write", addr, asi, size, val); 1171 #endif 1172 } 1173 1174 #endif /* CONFIG_USER_ONLY */ 1175 #else /* TARGET_SPARC64 */ 1176 1177 #ifdef CONFIG_USER_ONLY 1178 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 1179 int asi, uint32_t memop) 1180 { 1181 int size = 1 << (memop & MO_SIZE); 1182 int sign = memop & MO_SIGN; 1183 uint64_t ret = 0; 1184 1185 if (asi < 0x80) { 1186 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); 1187 } 1188 do_check_align(env, addr, size - 1, GETPC()); 1189 addr = asi_address_mask(env, asi, addr); 1190 1191 switch (asi) { 1192 case ASI_PNF: /* Primary no-fault */ 1193 case ASI_PNFL: /* Primary no-fault LE */ 1194 case ASI_SNF: /* Secondary no-fault */ 1195 case ASI_SNFL: /* Secondary no-fault LE */ 1196 if (page_check_range(addr, size, PAGE_READ) == -1) { 1197 ret = 0; 1198 break; 1199 } 1200 switch (size) { 1201 case 1: 1202 ret = cpu_ldub_data(env, addr); 1203 break; 1204 case 2: 1205 ret = cpu_lduw_data(env, addr); 1206 break; 1207 case 4: 1208 ret = cpu_ldl_data(env, addr); 1209 break; 1210 case 8: 1211 ret = cpu_ldq_data(env, addr); 1212 break; 1213 default: 1214 g_assert_not_reached(); 1215 } 1216 break; 1217 break; 1218 1219 case ASI_P: /* Primary */ 1220 case ASI_PL: /* Primary LE */ 1221 case ASI_S: /* Secondary */ 1222 case ASI_SL: /* Secondary LE */ 1223 /* These are always handled inline. */ 1224 g_assert_not_reached(); 1225 1226 default: 1227 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); 1228 } 1229 1230 /* Convert from little endian */ 1231 switch (asi) { 1232 case ASI_PNFL: /* Primary no-fault LE */ 1233 case ASI_SNFL: /* Secondary no-fault LE */ 1234 switch (size) { 1235 case 2: 1236 ret = bswap16(ret); 1237 break; 1238 case 4: 1239 ret = bswap32(ret); 1240 break; 1241 case 8: 1242 ret = bswap64(ret); 1243 break; 1244 } 1245 } 1246 1247 /* Convert to signed number */ 1248 if (sign) { 1249 switch (size) { 1250 case 1: 1251 ret = (int8_t) ret; 1252 break; 1253 case 2: 1254 ret = (int16_t) ret; 1255 break; 1256 case 4: 1257 ret = (int32_t) ret; 1258 break; 1259 } 1260 } 1261 #ifdef DEBUG_ASI 1262 dump_asi("read", addr, asi, size, ret); 1263 #endif 1264 return ret; 1265 } 1266 1267 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, 1268 int asi, uint32_t memop) 1269 { 1270 int size = 1 << (memop & MO_SIZE); 1271 #ifdef DEBUG_ASI 1272 dump_asi("write", addr, asi, size, val); 1273 #endif 1274 if (asi < 0x80) { 1275 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); 1276 } 1277 do_check_align(env, addr, size - 1, GETPC()); 1278 1279 switch (asi) { 1280 case ASI_P: /* Primary */ 1281 case ASI_PL: /* Primary LE */ 1282 case ASI_S: /* Secondary */ 1283 case ASI_SL: /* Secondary LE */ 1284 /* These are always handled inline. */ 1285 g_assert_not_reached(); 1286 1287 case ASI_PNF: /* Primary no-fault, RO */ 1288 case ASI_SNF: /* Secondary no-fault, RO */ 1289 case ASI_PNFL: /* Primary no-fault LE, RO */ 1290 case ASI_SNFL: /* Secondary no-fault LE, RO */ 1291 default: 1292 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); 1293 } 1294 } 1295 1296 #else /* CONFIG_USER_ONLY */ 1297 1298 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, 1299 int asi, uint32_t memop) 1300 { 1301 int size = 1 << (memop & MO_SIZE); 1302 int sign = memop & MO_SIGN; 1303 CPUState *cs = env_cpu(env); 1304 uint64_t ret = 0; 1305 #if defined(DEBUG_ASI) 1306 target_ulong last_addr = addr; 1307 #endif 1308 1309 asi &= 0xff; 1310 1311 do_check_asi(env, asi, GETPC()); 1312 do_check_align(env, addr, size - 1, GETPC()); 1313 addr = asi_address_mask(env, asi, addr); 1314 1315 switch (asi) { 1316 case ASI_PNF: 1317 case ASI_PNFL: 1318 case ASI_SNF: 1319 case ASI_SNFL: 1320 { 1321 TCGMemOpIdx oi; 1322 int idx = (env->pstate & PS_PRIV 1323 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX) 1324 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX)); 1325 1326 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) { 1327 #ifdef DEBUG_ASI 1328 dump_asi("read ", last_addr, asi, size, ret); 1329 #endif 1330 /* exception_index is set in get_physical_address_data. */ 1331 cpu_raise_exception_ra(env, cs->exception_index, GETPC()); 1332 } 1333 oi = make_memop_idx(memop, idx); 1334 switch (size) { 1335 case 1: 1336 ret = helper_ret_ldub_mmu(env, addr, oi, GETPC()); 1337 break; 1338 case 2: 1339 if (asi & 8) { 1340 ret = helper_le_lduw_mmu(env, addr, oi, GETPC()); 1341 } else { 1342 ret = helper_be_lduw_mmu(env, addr, oi, GETPC()); 1343 } 1344 break; 1345 case 4: 1346 if (asi & 8) { 1347 ret = helper_le_ldul_mmu(env, addr, oi, GETPC()); 1348 } else { 1349 ret = helper_be_ldul_mmu(env, addr, oi, GETPC()); 1350 } 1351 break; 1352 case 8: 1353 if (asi & 8) { 1354 ret = helper_le_ldq_mmu(env, addr, oi, GETPC()); 1355 } else { 1356 ret = helper_be_ldq_mmu(env, addr, oi, GETPC()); 1357 } 1358 break; 1359 default: 1360 g_assert_not_reached(); 1361 } 1362 } 1363 break; 1364 1365 case ASI_AIUP: /* As if user primary */ 1366 case ASI_AIUS: /* As if user secondary */ 1367 case ASI_AIUPL: /* As if user primary LE */ 1368 case ASI_AIUSL: /* As if user secondary LE */ 1369 case ASI_P: /* Primary */ 1370 case ASI_S: /* Secondary */ 1371 case ASI_PL: /* Primary LE */ 1372 case ASI_SL: /* Secondary LE */ 1373 case ASI_REAL: /* Bypass */ 1374 case ASI_REAL_IO: /* Bypass, non-cacheable */ 1375 case ASI_REAL_L: /* Bypass LE */ 1376 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ 1377 case ASI_N: /* Nucleus */ 1378 case ASI_NL: /* Nucleus Little Endian (LE) */ 1379 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ 1380 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ 1381 case ASI_TWINX_AIUP: /* As if user primary, twinx */ 1382 case ASI_TWINX_AIUS: /* As if user secondary, twinx */ 1383 case ASI_TWINX_REAL: /* Real address, twinx */ 1384 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ 1385 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ 1386 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ 1387 case ASI_TWINX_N: /* Nucleus, twinx */ 1388 case ASI_TWINX_NL: /* Nucleus, twinx, LE */ 1389 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ 1390 case ASI_TWINX_P: /* Primary, twinx */ 1391 case ASI_TWINX_PL: /* Primary, twinx, LE */ 1392 case ASI_TWINX_S: /* Secondary, twinx */ 1393 case ASI_TWINX_SL: /* Secondary, twinx, LE */ 1394 /* These are always handled inline. */ 1395 g_assert_not_reached(); 1396 1397 case ASI_UPA_CONFIG: /* UPA config */ 1398 /* XXX */ 1399 break; 1400 case ASI_LSU_CONTROL: /* LSU */ 1401 ret = env->lsu; 1402 break; 1403 case ASI_IMMU: /* I-MMU regs */ 1404 { 1405 int reg = (addr >> 3) & 0xf; 1406 switch (reg) { 1407 case 0: 1408 /* 0x00 I-TSB Tag Target register */ 1409 ret = ultrasparc_tag_target(env->immu.tag_access); 1410 break; 1411 case 3: /* SFSR */ 1412 ret = env->immu.sfsr; 1413 break; 1414 case 5: /* TSB access */ 1415 ret = env->immu.tsb; 1416 break; 1417 case 6: 1418 /* 0x30 I-TSB Tag Access register */ 1419 ret = env->immu.tag_access; 1420 break; 1421 default: 1422 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1423 ret = 0; 1424 } 1425 break; 1426 } 1427 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */ 1428 { 1429 /* env->immuregs[5] holds I-MMU TSB register value 1430 env->immuregs[6] holds I-MMU Tag Access register value */ 1431 ret = ultrasparc_tsb_pointer(env, &env->immu, 0); 1432 break; 1433 } 1434 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */ 1435 { 1436 /* env->immuregs[5] holds I-MMU TSB register value 1437 env->immuregs[6] holds I-MMU Tag Access register value */ 1438 ret = ultrasparc_tsb_pointer(env, &env->immu, 1); 1439 break; 1440 } 1441 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ 1442 { 1443 int reg = (addr >> 3) & 0x3f; 1444 1445 ret = env->itlb[reg].tte; 1446 break; 1447 } 1448 case ASI_ITLB_TAG_READ: /* I-MMU tag read */ 1449 { 1450 int reg = (addr >> 3) & 0x3f; 1451 1452 ret = env->itlb[reg].tag; 1453 break; 1454 } 1455 case ASI_DMMU: /* D-MMU regs */ 1456 { 1457 int reg = (addr >> 3) & 0xf; 1458 switch (reg) { 1459 case 0: 1460 /* 0x00 D-TSB Tag Target register */ 1461 ret = ultrasparc_tag_target(env->dmmu.tag_access); 1462 break; 1463 case 1: /* 0x08 Primary Context */ 1464 ret = env->dmmu.mmu_primary_context; 1465 break; 1466 case 2: /* 0x10 Secondary Context */ 1467 ret = env->dmmu.mmu_secondary_context; 1468 break; 1469 case 3: /* SFSR */ 1470 ret = env->dmmu.sfsr; 1471 break; 1472 case 4: /* 0x20 SFAR */ 1473 ret = env->dmmu.sfar; 1474 break; 1475 case 5: /* 0x28 TSB access */ 1476 ret = env->dmmu.tsb; 1477 break; 1478 case 6: /* 0x30 D-TSB Tag Access register */ 1479 ret = env->dmmu.tag_access; 1480 break; 1481 case 7: 1482 ret = env->dmmu.virtual_watchpoint; 1483 break; 1484 case 8: 1485 ret = env->dmmu.physical_watchpoint; 1486 break; 1487 default: 1488 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1489 ret = 0; 1490 } 1491 break; 1492 } 1493 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */ 1494 { 1495 /* env->dmmuregs[5] holds D-MMU TSB register value 1496 env->dmmuregs[6] holds D-MMU Tag Access register value */ 1497 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0); 1498 break; 1499 } 1500 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */ 1501 { 1502 /* env->dmmuregs[5] holds D-MMU TSB register value 1503 env->dmmuregs[6] holds D-MMU Tag Access register value */ 1504 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1); 1505 break; 1506 } 1507 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ 1508 { 1509 int reg = (addr >> 3) & 0x3f; 1510 1511 ret = env->dtlb[reg].tte; 1512 break; 1513 } 1514 case ASI_DTLB_TAG_READ: /* D-MMU tag read */ 1515 { 1516 int reg = (addr >> 3) & 0x3f; 1517 1518 ret = env->dtlb[reg].tag; 1519 break; 1520 } 1521 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ 1522 break; 1523 case ASI_INTR_RECEIVE: /* Interrupt data receive */ 1524 ret = env->ivec_status; 1525 break; 1526 case ASI_INTR_R: /* Incoming interrupt vector, RO */ 1527 { 1528 int reg = (addr >> 4) & 0x3; 1529 if (reg < 3) { 1530 ret = env->ivec_data[reg]; 1531 } 1532 break; 1533 } 1534 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ 1535 if (unlikely((addr >= 0x20) && (addr < 0x30))) { 1536 /* Hyperprivileged access only */ 1537 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1538 } 1539 /* fall through */ 1540 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ 1541 { 1542 unsigned int i = (addr >> 3) & 0x7; 1543 ret = env->scratch[i]; 1544 break; 1545 } 1546 case ASI_MMU: /* UA2005 Context ID registers */ 1547 switch ((addr >> 3) & 0x3) { 1548 case 1: 1549 ret = env->dmmu.mmu_primary_context; 1550 break; 1551 case 2: 1552 ret = env->dmmu.mmu_secondary_context; 1553 break; 1554 default: 1555 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1556 } 1557 break; 1558 case ASI_DCACHE_DATA: /* D-cache data */ 1559 case ASI_DCACHE_TAG: /* D-cache tag access */ 1560 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ 1561 case ASI_AFSR: /* E-cache asynchronous fault status */ 1562 case ASI_AFAR: /* E-cache asynchronous fault address */ 1563 case ASI_EC_TAG_DATA: /* E-cache tag data */ 1564 case ASI_IC_INSTR: /* I-cache instruction access */ 1565 case ASI_IC_TAG: /* I-cache tag access */ 1566 case ASI_IC_PRE_DECODE: /* I-cache predecode */ 1567 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ 1568 case ASI_EC_W: /* E-cache tag */ 1569 case ASI_EC_R: /* E-cache tag */ 1570 break; 1571 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */ 1572 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */ 1573 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */ 1574 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */ 1575 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */ 1576 case ASI_INTR_W: /* Interrupt vector, WO */ 1577 default: 1578 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); 1579 ret = 0; 1580 break; 1581 } 1582 1583 /* Convert to signed number */ 1584 if (sign) { 1585 switch (size) { 1586 case 1: 1587 ret = (int8_t) ret; 1588 break; 1589 case 2: 1590 ret = (int16_t) ret; 1591 break; 1592 case 4: 1593 ret = (int32_t) ret; 1594 break; 1595 default: 1596 break; 1597 } 1598 } 1599 #ifdef DEBUG_ASI 1600 dump_asi("read ", last_addr, asi, size, ret); 1601 #endif 1602 return ret; 1603 } 1604 1605 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, 1606 int asi, uint32_t memop) 1607 { 1608 int size = 1 << (memop & MO_SIZE); 1609 CPUState *cs = env_cpu(env); 1610 1611 #ifdef DEBUG_ASI 1612 dump_asi("write", addr, asi, size, val); 1613 #endif 1614 1615 asi &= 0xff; 1616 1617 do_check_asi(env, asi, GETPC()); 1618 do_check_align(env, addr, size - 1, GETPC()); 1619 addr = asi_address_mask(env, asi, addr); 1620 1621 switch (asi) { 1622 case ASI_AIUP: /* As if user primary */ 1623 case ASI_AIUS: /* As if user secondary */ 1624 case ASI_AIUPL: /* As if user primary LE */ 1625 case ASI_AIUSL: /* As if user secondary LE */ 1626 case ASI_P: /* Primary */ 1627 case ASI_S: /* Secondary */ 1628 case ASI_PL: /* Primary LE */ 1629 case ASI_SL: /* Secondary LE */ 1630 case ASI_REAL: /* Bypass */ 1631 case ASI_REAL_IO: /* Bypass, non-cacheable */ 1632 case ASI_REAL_L: /* Bypass LE */ 1633 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ 1634 case ASI_N: /* Nucleus */ 1635 case ASI_NL: /* Nucleus Little Endian (LE) */ 1636 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ 1637 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ 1638 case ASI_TWINX_AIUP: /* As if user primary, twinx */ 1639 case ASI_TWINX_AIUS: /* As if user secondary, twinx */ 1640 case ASI_TWINX_REAL: /* Real address, twinx */ 1641 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ 1642 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ 1643 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ 1644 case ASI_TWINX_N: /* Nucleus, twinx */ 1645 case ASI_TWINX_NL: /* Nucleus, twinx, LE */ 1646 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ 1647 case ASI_TWINX_P: /* Primary, twinx */ 1648 case ASI_TWINX_PL: /* Primary, twinx, LE */ 1649 case ASI_TWINX_S: /* Secondary, twinx */ 1650 case ASI_TWINX_SL: /* Secondary, twinx, LE */ 1651 /* These are always handled inline. */ 1652 g_assert_not_reached(); 1653 /* these ASIs have different functions on UltraSPARC-IIIi 1654 * and UA2005 CPUs. Use the explicit numbers to avoid confusion 1655 */ 1656 case 0x31: 1657 case 0x32: 1658 case 0x39: 1659 case 0x3a: 1660 if (cpu_has_hypervisor(env)) { 1661 /* UA2005 1662 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0 1663 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1 1664 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0 1665 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1 1666 */ 1667 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); 1668 env->dmmu.sun4v_tsb_pointers[idx] = val; 1669 } else { 1670 helper_raise_exception(env, TT_ILL_INSN); 1671 } 1672 break; 1673 case 0x33: 1674 case 0x3b: 1675 if (cpu_has_hypervisor(env)) { 1676 /* UA2005 1677 * ASI_DMMU_CTX_ZERO_CONFIG 1678 * ASI_DMMU_CTX_NONZERO_CONFIG 1679 */ 1680 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val; 1681 } else { 1682 helper_raise_exception(env, TT_ILL_INSN); 1683 } 1684 break; 1685 case 0x35: 1686 case 0x36: 1687 case 0x3d: 1688 case 0x3e: 1689 if (cpu_has_hypervisor(env)) { 1690 /* UA2005 1691 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0 1692 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1 1693 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0 1694 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1 1695 */ 1696 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); 1697 env->immu.sun4v_tsb_pointers[idx] = val; 1698 } else { 1699 helper_raise_exception(env, TT_ILL_INSN); 1700 } 1701 break; 1702 case 0x37: 1703 case 0x3f: 1704 if (cpu_has_hypervisor(env)) { 1705 /* UA2005 1706 * ASI_IMMU_CTX_ZERO_CONFIG 1707 * ASI_IMMU_CTX_NONZERO_CONFIG 1708 */ 1709 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val; 1710 } else { 1711 helper_raise_exception(env, TT_ILL_INSN); 1712 } 1713 break; 1714 case ASI_UPA_CONFIG: /* UPA config */ 1715 /* XXX */ 1716 return; 1717 case ASI_LSU_CONTROL: /* LSU */ 1718 env->lsu = val & (DMMU_E | IMMU_E); 1719 return; 1720 case ASI_IMMU: /* I-MMU regs */ 1721 { 1722 int reg = (addr >> 3) & 0xf; 1723 uint64_t oldreg; 1724 1725 oldreg = env->immu.mmuregs[reg]; 1726 switch (reg) { 1727 case 0: /* RO */ 1728 return; 1729 case 1: /* Not in I-MMU */ 1730 case 2: 1731 return; 1732 case 3: /* SFSR */ 1733 if ((val & 1) == 0) { 1734 val = 0; /* Clear SFSR */ 1735 } 1736 env->immu.sfsr = val; 1737 break; 1738 case 4: /* RO */ 1739 return; 1740 case 5: /* TSB access */ 1741 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" 1742 PRIx64 "\n", env->immu.tsb, val); 1743 env->immu.tsb = val; 1744 break; 1745 case 6: /* Tag access */ 1746 env->immu.tag_access = val; 1747 break; 1748 case 7: 1749 case 8: 1750 return; 1751 default: 1752 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1753 break; 1754 } 1755 1756 if (oldreg != env->immu.mmuregs[reg]) { 1757 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" 1758 PRIx64 "\n", reg, oldreg, env->immuregs[reg]); 1759 } 1760 #ifdef DEBUG_MMU 1761 dump_mmu(env); 1762 #endif 1763 return; 1764 } 1765 case ASI_ITLB_DATA_IN: /* I-MMU data in */ 1766 /* ignore real translation entries */ 1767 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1768 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, 1769 val, "immu", env, addr); 1770 } 1771 return; 1772 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ 1773 { 1774 /* TODO: auto demap */ 1775 1776 unsigned int i = (addr >> 3) & 0x3f; 1777 1778 /* ignore real translation entries */ 1779 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1780 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, 1781 sun4v_tte_to_sun4u(env, addr, val), env); 1782 } 1783 #ifdef DEBUG_MMU 1784 DPRINTF_MMU("immu data access replaced entry [%i]\n", i); 1785 dump_mmu(env); 1786 #endif 1787 return; 1788 } 1789 case ASI_IMMU_DEMAP: /* I-MMU demap */ 1790 demap_tlb(env->itlb, addr, "immu", env); 1791 return; 1792 case ASI_DMMU: /* D-MMU regs */ 1793 { 1794 int reg = (addr >> 3) & 0xf; 1795 uint64_t oldreg; 1796 1797 oldreg = env->dmmu.mmuregs[reg]; 1798 switch (reg) { 1799 case 0: /* RO */ 1800 case 4: 1801 return; 1802 case 3: /* SFSR */ 1803 if ((val & 1) == 0) { 1804 val = 0; /* Clear SFSR, Fault address */ 1805 env->dmmu.sfar = 0; 1806 } 1807 env->dmmu.sfsr = val; 1808 break; 1809 case 1: /* Primary context */ 1810 env->dmmu.mmu_primary_context = val; 1811 /* can be optimized to only flush MMU_USER_IDX 1812 and MMU_KERNEL_IDX entries */ 1813 tlb_flush(cs); 1814 break; 1815 case 2: /* Secondary context */ 1816 env->dmmu.mmu_secondary_context = val; 1817 /* can be optimized to only flush MMU_USER_SECONDARY_IDX 1818 and MMU_KERNEL_SECONDARY_IDX entries */ 1819 tlb_flush(cs); 1820 break; 1821 case 5: /* TSB access */ 1822 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" 1823 PRIx64 "\n", env->dmmu.tsb, val); 1824 env->dmmu.tsb = val; 1825 break; 1826 case 6: /* Tag access */ 1827 env->dmmu.tag_access = val; 1828 break; 1829 case 7: /* Virtual Watchpoint */ 1830 env->dmmu.virtual_watchpoint = val; 1831 break; 1832 case 8: /* Physical Watchpoint */ 1833 env->dmmu.physical_watchpoint = val; 1834 break; 1835 default: 1836 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1837 break; 1838 } 1839 1840 if (oldreg != env->dmmu.mmuregs[reg]) { 1841 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" 1842 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); 1843 } 1844 #ifdef DEBUG_MMU 1845 dump_mmu(env); 1846 #endif 1847 return; 1848 } 1849 case ASI_DTLB_DATA_IN: /* D-MMU data in */ 1850 /* ignore real translation entries */ 1851 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1852 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, 1853 val, "dmmu", env, addr); 1854 } 1855 return; 1856 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ 1857 { 1858 unsigned int i = (addr >> 3) & 0x3f; 1859 1860 /* ignore real translation entries */ 1861 if (!(addr & TLB_UST1_IS_REAL_BIT)) { 1862 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, 1863 sun4v_tte_to_sun4u(env, addr, val), env); 1864 } 1865 #ifdef DEBUG_MMU 1866 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); 1867 dump_mmu(env); 1868 #endif 1869 return; 1870 } 1871 case ASI_DMMU_DEMAP: /* D-MMU demap */ 1872 demap_tlb(env->dtlb, addr, "dmmu", env); 1873 return; 1874 case ASI_INTR_RECEIVE: /* Interrupt data receive */ 1875 env->ivec_status = val & 0x20; 1876 return; 1877 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ 1878 if (unlikely((addr >= 0x20) && (addr < 0x30))) { 1879 /* Hyperprivileged access only */ 1880 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1881 } 1882 /* fall through */ 1883 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ 1884 { 1885 unsigned int i = (addr >> 3) & 0x7; 1886 env->scratch[i] = val; 1887 return; 1888 } 1889 case ASI_MMU: /* UA2005 Context ID registers */ 1890 { 1891 switch ((addr >> 3) & 0x3) { 1892 case 1: 1893 env->dmmu.mmu_primary_context = val; 1894 env->immu.mmu_primary_context = val; 1895 tlb_flush_by_mmuidx(cs, 1896 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX)); 1897 break; 1898 case 2: 1899 env->dmmu.mmu_secondary_context = val; 1900 env->immu.mmu_secondary_context = val; 1901 tlb_flush_by_mmuidx(cs, 1902 (1 << MMU_USER_SECONDARY_IDX) | 1903 (1 << MMU_KERNEL_SECONDARY_IDX)); 1904 break; 1905 default: 1906 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1907 } 1908 } 1909 return; 1910 case ASI_QUEUE: /* UA2005 CPU mondo queue */ 1911 case ASI_DCACHE_DATA: /* D-cache data */ 1912 case ASI_DCACHE_TAG: /* D-cache tag access */ 1913 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ 1914 case ASI_AFSR: /* E-cache asynchronous fault status */ 1915 case ASI_AFAR: /* E-cache asynchronous fault address */ 1916 case ASI_EC_TAG_DATA: /* E-cache tag data */ 1917 case ASI_IC_INSTR: /* I-cache instruction access */ 1918 case ASI_IC_TAG: /* I-cache tag access */ 1919 case ASI_IC_PRE_DECODE: /* I-cache predecode */ 1920 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ 1921 case ASI_EC_W: /* E-cache tag */ 1922 case ASI_EC_R: /* E-cache tag */ 1923 return; 1924 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */ 1925 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */ 1926 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */ 1927 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */ 1928 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */ 1929 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */ 1930 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */ 1931 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ 1932 case ASI_INTR_R: /* Incoming interrupt vector, RO */ 1933 case ASI_PNF: /* Primary no-fault, RO */ 1934 case ASI_SNF: /* Secondary no-fault, RO */ 1935 case ASI_PNFL: /* Primary no-fault LE, RO */ 1936 case ASI_SNFL: /* Secondary no-fault LE, RO */ 1937 default: 1938 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); 1939 return; 1940 } 1941 } 1942 #endif /* CONFIG_USER_ONLY */ 1943 #endif /* TARGET_SPARC64 */ 1944 1945 #if !defined(CONFIG_USER_ONLY) 1946 1947 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1948 vaddr addr, unsigned size, 1949 MMUAccessType access_type, 1950 int mmu_idx, MemTxAttrs attrs, 1951 MemTxResult response, uintptr_t retaddr) 1952 { 1953 bool is_write = access_type == MMU_DATA_STORE; 1954 bool is_exec = access_type == MMU_INST_FETCH; 1955 bool is_asi = false; 1956 1957 sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec, 1958 is_asi, size, retaddr); 1959 } 1960 #endif 1961 1962 #if !defined(CONFIG_USER_ONLY) 1963 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1964 MMUAccessType access_type, 1965 int mmu_idx, 1966 uintptr_t retaddr) 1967 { 1968 SPARCCPU *cpu = SPARC_CPU(cs); 1969 CPUSPARCState *env = &cpu->env; 1970 1971 #ifdef DEBUG_UNALIGNED 1972 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx 1973 "\n", addr, env->pc); 1974 #endif 1975 cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr); 1976 } 1977 #endif 1978