xref: /openbmc/qemu/target/sparc/ldst_helper.c (revision 06831001)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28 
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71 
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75  * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77                                        const SparcV9MMU *mmu, const int idx)
78 {
79     uint64_t tsb_register;
80     int page_size;
81     if (cpu_has_hypervisor(env)) {
82         int tsb_index = 0;
83         int ctx = mmu->tag_access & 0x1fffULL;
84         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85         tsb_index = idx;
86         tsb_index |= ctx ? 2 : 0;
87         page_size = idx ? ctx_register >> 8 : ctx_register;
88         page_size &= 7;
89         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90     } else {
91         page_size = idx;
92         tsb_register = mmu->tsb;
93     }
94     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95     int tsb_size  = tsb_register & 0xf;
96 
97     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98 
99     /* move va bits to correct position,
100      * the context bits will be masked out later */
101     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102 
103     /* calculate tsb_base mask and adjust va if split is in use */
104     if (tsb_split) {
105         if (idx == 0) {
106             va &= ~(1ULL << (13 + tsb_size));
107         } else {
108             va |= (1ULL << (13 + tsb_size));
109         }
110         tsb_base_mask <<= 1;
111     }
112 
113     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115 
116 /* Calculates tag target register value by reordering bits
117    in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122 
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124                               uint64_t tlb_tag, uint64_t tlb_tte,
125                               CPUSPARCState *env)
126 {
127     target_ulong mask, size, va, offset;
128 
129     /* flush page range if translation is valid */
130     if (TTE_IS_VALID(tlb->tte)) {
131         CPUState *cs = env_cpu(env);
132 
133         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134         mask = 1ULL + ~size;
135 
136         va = tlb->tag & mask;
137 
138         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139             tlb_flush_page(cs, va + offset);
140         }
141     }
142 
143     tlb->tag = tlb_tag;
144     tlb->tte = tlb_tte;
145 }
146 
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148                       const char *strmmu, CPUSPARCState *env1)
149 {
150     unsigned int i;
151     target_ulong mask;
152     uint64_t context;
153 
154     int is_demap_context = (demap_addr >> 6) & 1;
155 
156     /* demap context */
157     switch ((demap_addr >> 4) & 3) {
158     case 0: /* primary */
159         context = env1->dmmu.mmu_primary_context;
160         break;
161     case 1: /* secondary */
162         context = env1->dmmu.mmu_secondary_context;
163         break;
164     case 2: /* nucleus */
165         context = 0;
166         break;
167     case 3: /* reserved */
168     default:
169         return;
170     }
171 
172     for (i = 0; i < 64; i++) {
173         if (TTE_IS_VALID(tlb[i].tte)) {
174 
175             if (is_demap_context) {
176                 /* will remove non-global entries matching context value */
177                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178                     !tlb_compare_context(&tlb[i], context)) {
179                     continue;
180                 }
181             } else {
182                 /* demap page
183                    will remove any entry matching VA */
184                 mask = 0xffffffffffffe000ULL;
185                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186 
187                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188                     continue;
189                 }
190 
191                 /* entry should be global or matching context value */
192                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193                     !tlb_compare_context(&tlb[i], context)) {
194                     continue;
195                 }
196             }
197 
198             replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201             dump_mmu(env1);
202 #endif
203         }
204     }
205 }
206 
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208                                    uint64_t sun4v_tte)
209 {
210     uint64_t sun4u_tte;
211     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212         /* is already in the sun4u format */
213         return sun4v_tte;
214     }
215     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221                              TTE_SIDEEFFECT_BIT);
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224     return sun4u_tte;
225 }
226 
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228                                  uint64_t tlb_tag, uint64_t tlb_tte,
229                                  const char *strmmu, CPUSPARCState *env1,
230                                  uint64_t addr)
231 {
232     unsigned int i, replace_used;
233 
234     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235     if (cpu_has_hypervisor(env1)) {
236         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238         uint32_t new_ctx = tlb_tag & 0x1fffU;
239         for (i = 0; i < 64; i++) {
240             uint32_t ctx = tlb[i].tag & 0x1fffU;
241             /* check if new mapping overlaps an existing one */
242             if (new_ctx == ctx) {
243                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245                 if (new_vaddr == vaddr
246                     || (new_vaddr < vaddr + size
247                         && vaddr < new_vaddr + new_size)) {
248                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249                                 new_vaddr);
250                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251                     return;
252                 }
253             }
254 
255         }
256     }
257     /* Try replacing invalid entry */
258     for (i = 0; i < 64; i++) {
259         if (!TTE_IS_VALID(tlb[i].tte)) {
260             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263             dump_mmu(env1);
264 #endif
265             return;
266         }
267     }
268 
269     /* All entries are valid, try replacing unlocked entry */
270 
271     for (replace_used = 0; replace_used < 2; ++replace_used) {
272 
273         /* Used entries are not replaced on first pass */
274 
275         for (i = 0; i < 64; i++) {
276             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277 
278                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281                             strmmu, (replace_used ? "used" : "unused"), i);
282                 dump_mmu(env1);
283 #endif
284                 return;
285             }
286         }
287 
288         /* Now reset used bit and search for unused entries again */
289 
290         for (i = 0; i < 64; i++) {
291             TTE_SET_UNUSED(tlb[i].tte);
292         }
293     }
294 
295 #ifdef DEBUG_MMU
296     DPRINTF_MMU("%s lru replacement: no free entries available, "
297                 "replacing the last one\n", strmmu);
298 #endif
299     /* corner case: the last entry is replaced anyway */
300     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302 
303 #endif
304 
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307    otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311     /* Ultrasparc IIi translating asi
312        - note this list is defined by cpu implementation
313     */
314     switch (asi) {
315     case 0x04 ... 0x11:
316     case 0x16 ... 0x19:
317     case 0x1E ... 0x1F:
318     case 0x24 ... 0x2C:
319     case 0x70 ... 0x73:
320     case 0x78 ... 0x79:
321     case 0x80 ... 0xFF:
322         return 1;
323 
324     default:
325         return 0;
326     }
327 }
328 
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331     if (AM_CHECK(env1)) {
332         addr &= 0xffffffffULL;
333     }
334     return addr;
335 }
336 
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338                                             int asi, target_ulong addr)
339 {
340     if (is_translating_asi(asi)) {
341         addr = address_mask(env, addr);
342     }
343     return addr;
344 }
345 
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349     /* ASIs >= 0x80 are user mode.
350      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351      * ASIs <= 0x2f are super mode.
352      */
353     if (asi < 0x80
354         && !cpu_hypervisor_mode(env)
355         && (!cpu_supervisor_mode(env)
356             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358     }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362 
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364                            uint32_t align, uintptr_t ra)
365 {
366     if (addr & align) {
367         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
368     }
369 }
370 
371 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
372 {
373     do_check_align(env, addr, align, GETPC());
374 }
375 
376 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
377     defined(DEBUG_MXCC)
378 static void dump_mxcc(CPUSPARCState *env)
379 {
380     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381            "\n",
382            env->mxccdata[0], env->mxccdata[1],
383            env->mxccdata[2], env->mxccdata[3]);
384     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385            "\n"
386            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
387            "\n",
388            env->mxccregs[0], env->mxccregs[1],
389            env->mxccregs[2], env->mxccregs[3],
390            env->mxccregs[4], env->mxccregs[5],
391            env->mxccregs[6], env->mxccregs[7]);
392 }
393 #endif
394 
395 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
396     && defined(DEBUG_ASI)
397 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
398                      uint64_t r1)
399 {
400     switch (size) {
401     case 1:
402         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
403                     addr, asi, r1 & 0xff);
404         break;
405     case 2:
406         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
407                     addr, asi, r1 & 0xffff);
408         break;
409     case 4:
410         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
411                     addr, asi, r1 & 0xffffffff);
412         break;
413     case 8:
414         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
415                     addr, asi, r1);
416         break;
417     }
418 }
419 #endif
420 
421 #ifndef CONFIG_USER_ONLY
422 #ifndef TARGET_SPARC64
423 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
424                                   bool is_write, bool is_exec, int is_asi,
425                                   unsigned size, uintptr_t retaddr)
426 {
427     SPARCCPU *cpu = SPARC_CPU(cs);
428     CPUSPARCState *env = &cpu->env;
429     int fault_type;
430 
431 #ifdef DEBUG_UNASSIGNED
432     if (is_asi) {
433         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
434                " asi 0x%02x from " TARGET_FMT_lx "\n",
435                is_exec ? "exec" : is_write ? "write" : "read", size,
436                size == 1 ? "" : "s", addr, is_asi, env->pc);
437     } else {
438         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
439                " from " TARGET_FMT_lx "\n",
440                is_exec ? "exec" : is_write ? "write" : "read", size,
441                size == 1 ? "" : "s", addr, env->pc);
442     }
443 #endif
444     /* Don't overwrite translation and access faults */
445     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
446     if ((fault_type > 4) || (fault_type == 0)) {
447         env->mmuregs[3] = 0; /* Fault status register */
448         if (is_asi) {
449             env->mmuregs[3] |= 1 << 16;
450         }
451         if (env->psrs) {
452             env->mmuregs[3] |= 1 << 5;
453         }
454         if (is_exec) {
455             env->mmuregs[3] |= 1 << 6;
456         }
457         if (is_write) {
458             env->mmuregs[3] |= 1 << 7;
459         }
460         env->mmuregs[3] |= (5 << 2) | 2;
461         /* SuperSPARC will never place instruction fault addresses in the FAR */
462         if (!is_exec) {
463             env->mmuregs[4] = addr; /* Fault address register */
464         }
465     }
466     /* overflow (same type fault was not read before another fault) */
467     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
468         env->mmuregs[3] |= 1;
469     }
470 
471     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
472         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
473         cpu_raise_exception_ra(env, tt, retaddr);
474     }
475 
476     /*
477      * flush neverland mappings created during no-fault mode,
478      * so the sequential MMU faults report proper fault types
479      */
480     if (env->mmuregs[0] & MMU_NF) {
481         tlb_flush(cs);
482     }
483 }
484 #else
485 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
486                                   bool is_write, bool is_exec, int is_asi,
487                                   unsigned size, uintptr_t retaddr)
488 {
489     SPARCCPU *cpu = SPARC_CPU(cs);
490     CPUSPARCState *env = &cpu->env;
491 
492 #ifdef DEBUG_UNASSIGNED
493     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
494            "\n", addr, env->pc);
495 #endif
496 
497     if (is_exec) { /* XXX has_hypervisor */
498         if (env->lsu & (IMMU_E)) {
499             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
500         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
501             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
502         }
503     } else {
504         if (env->lsu & (DMMU_E)) {
505             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
506         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
507             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
508         }
509     }
510 }
511 #endif
512 #endif
513 
514 #ifndef TARGET_SPARC64
515 #ifndef CONFIG_USER_ONLY
516 
517 
518 /* Leon3 cache control */
519 
520 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
521                                    uint64_t val, int size)
522 {
523     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
524                           addr, val, size);
525 
526     if (size != 4) {
527         DPRINTF_CACHE_CONTROL("32bits only\n");
528         return;
529     }
530 
531     switch (addr) {
532     case 0x00:              /* Cache control */
533 
534         /* These values must always be read as zeros */
535         val &= ~CACHE_CTRL_FD;
536         val &= ~CACHE_CTRL_FI;
537         val &= ~CACHE_CTRL_IB;
538         val &= ~CACHE_CTRL_IP;
539         val &= ~CACHE_CTRL_DP;
540 
541         env->cache_control = val;
542         break;
543     case 0x04:              /* Instruction cache configuration */
544     case 0x08:              /* Data cache configuration */
545         /* Read Only */
546         break;
547     default:
548         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
549         break;
550     };
551 }
552 
553 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
554                                        int size)
555 {
556     uint64_t ret = 0;
557 
558     if (size != 4) {
559         DPRINTF_CACHE_CONTROL("32bits only\n");
560         return 0;
561     }
562 
563     switch (addr) {
564     case 0x00:              /* Cache control */
565         ret = env->cache_control;
566         break;
567 
568         /* Configuration registers are read and only always keep those
569            predefined values */
570 
571     case 0x04:              /* Instruction cache configuration */
572         ret = 0x10220000;
573         break;
574     case 0x08:              /* Data cache configuration */
575         ret = 0x18220000;
576         break;
577     default:
578         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
579         break;
580     };
581     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
582                           addr, ret, size);
583     return ret;
584 }
585 
586 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
587                        int asi, uint32_t memop)
588 {
589     int size = 1 << (memop & MO_SIZE);
590     int sign = memop & MO_SIGN;
591     CPUState *cs = env_cpu(env);
592     uint64_t ret = 0;
593 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
594     uint32_t last_addr = addr;
595 #endif
596     MemOpIdx oi;
597 
598     do_check_align(env, addr, size - 1, GETPC());
599     switch (asi) {
600     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
601     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
602         switch (addr) {
603         case 0x00:          /* Leon3 Cache Control */
604         case 0x08:          /* Leon3 Instruction Cache config */
605         case 0x0C:          /* Leon3 Date Cache config */
606             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
607                 ret = leon3_cache_control_ld(env, addr, size);
608             }
609             break;
610         case 0x01c00a00: /* MXCC control register */
611             if (size == 8) {
612                 ret = env->mxccregs[3];
613             } else {
614                 qemu_log_mask(LOG_UNIMP,
615                               "%08x: unimplemented access size: %d\n", addr,
616                               size);
617             }
618             break;
619         case 0x01c00a04: /* MXCC control register */
620             if (size == 4) {
621                 ret = env->mxccregs[3];
622             } else {
623                 qemu_log_mask(LOG_UNIMP,
624                               "%08x: unimplemented access size: %d\n", addr,
625                               size);
626             }
627             break;
628         case 0x01c00c00: /* Module reset register */
629             if (size == 8) {
630                 ret = env->mxccregs[5];
631                 /* should we do something here? */
632             } else {
633                 qemu_log_mask(LOG_UNIMP,
634                               "%08x: unimplemented access size: %d\n", addr,
635                               size);
636             }
637             break;
638         case 0x01c00f00: /* MBus port address register */
639             if (size == 8) {
640                 ret = env->mxccregs[7];
641             } else {
642                 qemu_log_mask(LOG_UNIMP,
643                               "%08x: unimplemented access size: %d\n", addr,
644                               size);
645             }
646             break;
647         default:
648             qemu_log_mask(LOG_UNIMP,
649                           "%08x: unimplemented address, size: %d\n", addr,
650                           size);
651             break;
652         }
653         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
654                      "addr = %08x -> ret = %" PRIx64 ","
655                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
656 #ifdef DEBUG_MXCC
657         dump_mxcc(env);
658 #endif
659         break;
660     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
661     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
662         {
663             int mmulev;
664 
665             mmulev = (addr >> 8) & 15;
666             if (mmulev > 4) {
667                 ret = 0;
668             } else {
669                 ret = mmu_probe(env, addr, mmulev);
670             }
671             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
672                         addr, mmulev, ret);
673         }
674         break;
675     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
676     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
677         {
678             int reg = (addr >> 8) & 0x1f;
679 
680             ret = env->mmuregs[reg];
681             if (reg == 3) { /* Fault status cleared on read */
682                 env->mmuregs[3] = 0;
683             } else if (reg == 0x13) { /* Fault status read */
684                 ret = env->mmuregs[3];
685             } else if (reg == 0x14) { /* Fault address read */
686                 ret = env->mmuregs[4];
687             }
688             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
689         }
690         break;
691     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
692     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
693     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
694         break;
695     case ASI_KERNELTXT: /* Supervisor code access */
696         oi = make_memop_idx(memop, cpu_mmu_index(env, true));
697         switch (size) {
698         case 1:
699             ret = cpu_ldb_code_mmu(env, addr, oi, GETPC());
700             break;
701         case 2:
702             ret = cpu_ldw_code_mmu(env, addr, oi, GETPC());
703             break;
704         default:
705         case 4:
706             ret = cpu_ldl_code_mmu(env, addr, oi, GETPC());
707             break;
708         case 8:
709             ret = cpu_ldq_code_mmu(env, addr, oi, GETPC());
710             break;
711         }
712         break;
713     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
714     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
715     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
716     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
717         break;
718     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
719     {
720         MemTxResult result;
721         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
722 
723         switch (size) {
724         case 1:
725             ret = address_space_ldub(cs->as, access_addr,
726                                      MEMTXATTRS_UNSPECIFIED, &result);
727             break;
728         case 2:
729             ret = address_space_lduw(cs->as, access_addr,
730                                      MEMTXATTRS_UNSPECIFIED, &result);
731             break;
732         default:
733         case 4:
734             ret = address_space_ldl(cs->as, access_addr,
735                                     MEMTXATTRS_UNSPECIFIED, &result);
736             break;
737         case 8:
738             ret = address_space_ldq(cs->as, access_addr,
739                                     MEMTXATTRS_UNSPECIFIED, &result);
740             break;
741         }
742 
743         if (result != MEMTX_OK) {
744             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
745                                   size, GETPC());
746         }
747         break;
748     }
749     case 0x30: /* Turbosparc secondary cache diagnostic */
750     case 0x31: /* Turbosparc RAM snoop */
751     case 0x32: /* Turbosparc page table descriptor diagnostic */
752     case 0x39: /* data cache diagnostic register */
753         ret = 0;
754         break;
755     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
756         {
757             int reg = (addr >> 8) & 3;
758 
759             switch (reg) {
760             case 0: /* Breakpoint Value (Addr) */
761                 ret = env->mmubpregs[reg];
762                 break;
763             case 1: /* Breakpoint Mask */
764                 ret = env->mmubpregs[reg];
765                 break;
766             case 2: /* Breakpoint Control */
767                 ret = env->mmubpregs[reg];
768                 break;
769             case 3: /* Breakpoint Status */
770                 ret = env->mmubpregs[reg];
771                 env->mmubpregs[reg] = 0ULL;
772                 break;
773             }
774             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
775                         ret);
776         }
777         break;
778     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
779         ret = env->mmubpctrv;
780         break;
781     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
782         ret = env->mmubpctrc;
783         break;
784     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
785         ret = env->mmubpctrs;
786         break;
787     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
788         ret = env->mmubpaction;
789         break;
790     case ASI_USERTXT: /* User code access, XXX */
791     default:
792         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
793         ret = 0;
794         break;
795 
796     case ASI_USERDATA: /* User data access */
797     case ASI_KERNELDATA: /* Supervisor data access */
798     case ASI_P: /* Implicit primary context data access (v9 only?) */
799     case ASI_M_BYPASS:    /* MMU passthrough */
800     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
801         /* These are always handled inline.  */
802         g_assert_not_reached();
803     }
804     if (sign) {
805         switch (size) {
806         case 1:
807             ret = (int8_t) ret;
808             break;
809         case 2:
810             ret = (int16_t) ret;
811             break;
812         case 4:
813             ret = (int32_t) ret;
814             break;
815         default:
816             break;
817         }
818     }
819 #ifdef DEBUG_ASI
820     dump_asi("read ", last_addr, asi, size, ret);
821 #endif
822     return ret;
823 }
824 
825 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
826                    int asi, uint32_t memop)
827 {
828     int size = 1 << (memop & MO_SIZE);
829     CPUState *cs = env_cpu(env);
830 
831     do_check_align(env, addr, size - 1, GETPC());
832     switch (asi) {
833     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
834     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
835         switch (addr) {
836         case 0x00:          /* Leon3 Cache Control */
837         case 0x08:          /* Leon3 Instruction Cache config */
838         case 0x0C:          /* Leon3 Date Cache config */
839             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
840                 leon3_cache_control_st(env, addr, val, size);
841             }
842             break;
843 
844         case 0x01c00000: /* MXCC stream data register 0 */
845             if (size == 8) {
846                 env->mxccdata[0] = val;
847             } else {
848                 qemu_log_mask(LOG_UNIMP,
849                               "%08x: unimplemented access size: %d\n", addr,
850                               size);
851             }
852             break;
853         case 0x01c00008: /* MXCC stream data register 1 */
854             if (size == 8) {
855                 env->mxccdata[1] = val;
856             } else {
857                 qemu_log_mask(LOG_UNIMP,
858                               "%08x: unimplemented access size: %d\n", addr,
859                               size);
860             }
861             break;
862         case 0x01c00010: /* MXCC stream data register 2 */
863             if (size == 8) {
864                 env->mxccdata[2] = val;
865             } else {
866                 qemu_log_mask(LOG_UNIMP,
867                               "%08x: unimplemented access size: %d\n", addr,
868                               size);
869             }
870             break;
871         case 0x01c00018: /* MXCC stream data register 3 */
872             if (size == 8) {
873                 env->mxccdata[3] = val;
874             } else {
875                 qemu_log_mask(LOG_UNIMP,
876                               "%08x: unimplemented access size: %d\n", addr,
877                               size);
878             }
879             break;
880         case 0x01c00100: /* MXCC stream source */
881         {
882             int i;
883 
884             if (size == 8) {
885                 env->mxccregs[0] = val;
886             } else {
887                 qemu_log_mask(LOG_UNIMP,
888                               "%08x: unimplemented access size: %d\n", addr,
889                               size);
890             }
891 
892             for (i = 0; i < 4; i++) {
893                 MemTxResult result;
894                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
895 
896                 env->mxccdata[i] = address_space_ldq(cs->as,
897                                                      access_addr,
898                                                      MEMTXATTRS_UNSPECIFIED,
899                                                      &result);
900                 if (result != MEMTX_OK) {
901                     /* TODO: investigate whether this is the right behaviour */
902                     sparc_raise_mmu_fault(cs, access_addr, false, false,
903                                           false, size, GETPC());
904                 }
905             }
906             break;
907         }
908         case 0x01c00200: /* MXCC stream destination */
909         {
910             int i;
911 
912             if (size == 8) {
913                 env->mxccregs[1] = val;
914             } else {
915                 qemu_log_mask(LOG_UNIMP,
916                               "%08x: unimplemented access size: %d\n", addr,
917                               size);
918             }
919 
920             for (i = 0; i < 4; i++) {
921                 MemTxResult result;
922                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
923 
924                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
925                                   MEMTXATTRS_UNSPECIFIED, &result);
926 
927                 if (result != MEMTX_OK) {
928                     /* TODO: investigate whether this is the right behaviour */
929                     sparc_raise_mmu_fault(cs, access_addr, true, false,
930                                           false, size, GETPC());
931                 }
932             }
933             break;
934         }
935         case 0x01c00a00: /* MXCC control register */
936             if (size == 8) {
937                 env->mxccregs[3] = val;
938             } else {
939                 qemu_log_mask(LOG_UNIMP,
940                               "%08x: unimplemented access size: %d\n", addr,
941                               size);
942             }
943             break;
944         case 0x01c00a04: /* MXCC control register */
945             if (size == 4) {
946                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
947                     | val;
948             } else {
949                 qemu_log_mask(LOG_UNIMP,
950                               "%08x: unimplemented access size: %d\n", addr,
951                               size);
952             }
953             break;
954         case 0x01c00e00: /* MXCC error register  */
955             /* writing a 1 bit clears the error */
956             if (size == 8) {
957                 env->mxccregs[6] &= ~val;
958             } else {
959                 qemu_log_mask(LOG_UNIMP,
960                               "%08x: unimplemented access size: %d\n", addr,
961                               size);
962             }
963             break;
964         case 0x01c00f00: /* MBus port address register */
965             if (size == 8) {
966                 env->mxccregs[7] = val;
967             } else {
968                 qemu_log_mask(LOG_UNIMP,
969                               "%08x: unimplemented access size: %d\n", addr,
970                               size);
971             }
972             break;
973         default:
974             qemu_log_mask(LOG_UNIMP,
975                           "%08x: unimplemented address, size: %d\n", addr,
976                           size);
977             break;
978         }
979         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
980                      asi, size, addr, val);
981 #ifdef DEBUG_MXCC
982         dump_mxcc(env);
983 #endif
984         break;
985     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
986     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
987         {
988             int mmulev;
989 
990             mmulev = (addr >> 8) & 15;
991             DPRINTF_MMU("mmu flush level %d\n", mmulev);
992             switch (mmulev) {
993             case 0: /* flush page */
994                 tlb_flush_page(cs, addr & 0xfffff000);
995                 break;
996             case 1: /* flush segment (256k) */
997             case 2: /* flush region (16M) */
998             case 3: /* flush context (4G) */
999             case 4: /* flush entire */
1000                 tlb_flush(cs);
1001                 break;
1002             default:
1003                 break;
1004             }
1005 #ifdef DEBUG_MMU
1006             dump_mmu(env);
1007 #endif
1008         }
1009         break;
1010     case ASI_M_MMUREGS: /* write MMU regs */
1011     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1012         {
1013             int reg = (addr >> 8) & 0x1f;
1014             uint32_t oldreg;
1015 
1016             oldreg = env->mmuregs[reg];
1017             switch (reg) {
1018             case 0: /* Control Register */
1019                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1020                     (val & 0x00ffffff);
1021                 /* Mappings generated during no-fault mode
1022                    are invalid in normal mode.  */
1023                 if ((oldreg ^ env->mmuregs[reg])
1024                     & (MMU_NF | env->def.mmu_bm)) {
1025                     tlb_flush(cs);
1026                 }
1027                 break;
1028             case 1: /* Context Table Pointer Register */
1029                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1030                 break;
1031             case 2: /* Context Register */
1032                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1033                 if (oldreg != env->mmuregs[reg]) {
1034                     /* we flush when the MMU context changes because
1035                        QEMU has no MMU context support */
1036                     tlb_flush(cs);
1037                 }
1038                 break;
1039             case 3: /* Synchronous Fault Status Register with Clear */
1040             case 4: /* Synchronous Fault Address Register */
1041                 break;
1042             case 0x10: /* TLB Replacement Control Register */
1043                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1044                 break;
1045             case 0x13: /* Synchronous Fault Status Register with Read
1046                           and Clear */
1047                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1048                 break;
1049             case 0x14: /* Synchronous Fault Address Register */
1050                 env->mmuregs[4] = val;
1051                 break;
1052             default:
1053                 env->mmuregs[reg] = val;
1054                 break;
1055             }
1056             if (oldreg != env->mmuregs[reg]) {
1057                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1058                             reg, oldreg, env->mmuregs[reg]);
1059             }
1060 #ifdef DEBUG_MMU
1061             dump_mmu(env);
1062 #endif
1063         }
1064         break;
1065     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1066     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1067     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1068         break;
1069     case ASI_M_TXTC_TAG:   /* I-cache tag */
1070     case ASI_M_TXTC_DATA:  /* I-cache data */
1071     case ASI_M_DATAC_TAG:  /* D-cache tag */
1072     case ASI_M_DATAC_DATA: /* D-cache data */
1073     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1074     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1075     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1076     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1077     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1078         break;
1079     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1080         {
1081             MemTxResult result;
1082             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1083 
1084             switch (size) {
1085             case 1:
1086                 address_space_stb(cs->as, access_addr, val,
1087                                   MEMTXATTRS_UNSPECIFIED, &result);
1088                 break;
1089             case 2:
1090                 address_space_stw(cs->as, access_addr, val,
1091                                   MEMTXATTRS_UNSPECIFIED, &result);
1092                 break;
1093             case 4:
1094             default:
1095                 address_space_stl(cs->as, access_addr, val,
1096                                   MEMTXATTRS_UNSPECIFIED, &result);
1097                 break;
1098             case 8:
1099                 address_space_stq(cs->as, access_addr, val,
1100                                   MEMTXATTRS_UNSPECIFIED, &result);
1101                 break;
1102             }
1103             if (result != MEMTX_OK) {
1104                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1105                                       size, GETPC());
1106             }
1107         }
1108         break;
1109     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1110     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1111                   Turbosparc snoop RAM */
1112     case 0x32: /* store buffer control or Turbosparc page table
1113                   descriptor diagnostic */
1114     case 0x36: /* I-cache flash clear */
1115     case 0x37: /* D-cache flash clear */
1116         break;
1117     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1118         {
1119             int reg = (addr >> 8) & 3;
1120 
1121             switch (reg) {
1122             case 0: /* Breakpoint Value (Addr) */
1123                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1124                 break;
1125             case 1: /* Breakpoint Mask */
1126                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1127                 break;
1128             case 2: /* Breakpoint Control */
1129                 env->mmubpregs[reg] = (val & 0x7fULL);
1130                 break;
1131             case 3: /* Breakpoint Status */
1132                 env->mmubpregs[reg] = (val & 0xfULL);
1133                 break;
1134             }
1135             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1136                         env->mmuregs[reg]);
1137         }
1138         break;
1139     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1140         env->mmubpctrv = val & 0xffffffff;
1141         break;
1142     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1143         env->mmubpctrc = val & 0x3;
1144         break;
1145     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1146         env->mmubpctrs = val & 0x3;
1147         break;
1148     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1149         env->mmubpaction = val & 0x1fff;
1150         break;
1151     case ASI_USERTXT: /* User code access, XXX */
1152     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1153     default:
1154         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1155         break;
1156 
1157     case ASI_USERDATA: /* User data access */
1158     case ASI_KERNELDATA: /* Supervisor data access */
1159     case ASI_P:
1160     case ASI_M_BYPASS:    /* MMU passthrough */
1161     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1162     case ASI_M_BCOPY: /* Block copy, sta access */
1163     case ASI_M_BFILL: /* Block fill, stda access */
1164         /* These are always handled inline.  */
1165         g_assert_not_reached();
1166     }
1167 #ifdef DEBUG_ASI
1168     dump_asi("write", addr, asi, size, val);
1169 #endif
1170 }
1171 
1172 #endif /* CONFIG_USER_ONLY */
1173 #else /* TARGET_SPARC64 */
1174 
1175 #ifdef CONFIG_USER_ONLY
1176 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1177                        int asi, uint32_t memop)
1178 {
1179     int size = 1 << (memop & MO_SIZE);
1180     int sign = memop & MO_SIGN;
1181     uint64_t ret = 0;
1182 
1183     if (asi < 0x80) {
1184         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1185     }
1186     do_check_align(env, addr, size - 1, GETPC());
1187     addr = asi_address_mask(env, asi, addr);
1188 
1189     switch (asi) {
1190     case ASI_PNF:  /* Primary no-fault */
1191     case ASI_PNFL: /* Primary no-fault LE */
1192     case ASI_SNF:  /* Secondary no-fault */
1193     case ASI_SNFL: /* Secondary no-fault LE */
1194         if (page_check_range(addr, size, PAGE_READ) == -1) {
1195             ret = 0;
1196             break;
1197         }
1198         switch (size) {
1199         case 1:
1200             ret = cpu_ldub_data(env, addr);
1201             break;
1202         case 2:
1203             ret = cpu_lduw_data(env, addr);
1204             break;
1205         case 4:
1206             ret = cpu_ldl_data(env, addr);
1207             break;
1208         case 8:
1209             ret = cpu_ldq_data(env, addr);
1210             break;
1211         default:
1212             g_assert_not_reached();
1213         }
1214         break;
1215         break;
1216 
1217     case ASI_P: /* Primary */
1218     case ASI_PL: /* Primary LE */
1219     case ASI_S:  /* Secondary */
1220     case ASI_SL: /* Secondary LE */
1221         /* These are always handled inline.  */
1222         g_assert_not_reached();
1223 
1224     default:
1225         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1226     }
1227 
1228     /* Convert from little endian */
1229     switch (asi) {
1230     case ASI_PNFL: /* Primary no-fault LE */
1231     case ASI_SNFL: /* Secondary no-fault LE */
1232         switch (size) {
1233         case 2:
1234             ret = bswap16(ret);
1235             break;
1236         case 4:
1237             ret = bswap32(ret);
1238             break;
1239         case 8:
1240             ret = bswap64(ret);
1241             break;
1242         }
1243     }
1244 
1245     /* Convert to signed number */
1246     if (sign) {
1247         switch (size) {
1248         case 1:
1249             ret = (int8_t) ret;
1250             break;
1251         case 2:
1252             ret = (int16_t) ret;
1253             break;
1254         case 4:
1255             ret = (int32_t) ret;
1256             break;
1257         }
1258     }
1259 #ifdef DEBUG_ASI
1260     dump_asi("read", addr, asi, size, ret);
1261 #endif
1262     return ret;
1263 }
1264 
1265 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1266                    int asi, uint32_t memop)
1267 {
1268     int size = 1 << (memop & MO_SIZE);
1269 #ifdef DEBUG_ASI
1270     dump_asi("write", addr, asi, size, val);
1271 #endif
1272     if (asi < 0x80) {
1273         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1274     }
1275     do_check_align(env, addr, size - 1, GETPC());
1276 
1277     switch (asi) {
1278     case ASI_P:  /* Primary */
1279     case ASI_PL: /* Primary LE */
1280     case ASI_S:  /* Secondary */
1281     case ASI_SL: /* Secondary LE */
1282         /* These are always handled inline.  */
1283         g_assert_not_reached();
1284 
1285     case ASI_PNF:  /* Primary no-fault, RO */
1286     case ASI_SNF:  /* Secondary no-fault, RO */
1287     case ASI_PNFL: /* Primary no-fault LE, RO */
1288     case ASI_SNFL: /* Secondary no-fault LE, RO */
1289     default:
1290         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1291     }
1292 }
1293 
1294 #else /* CONFIG_USER_ONLY */
1295 
1296 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1297                        int asi, uint32_t memop)
1298 {
1299     int size = 1 << (memop & MO_SIZE);
1300     int sign = memop & MO_SIGN;
1301     CPUState *cs = env_cpu(env);
1302     uint64_t ret = 0;
1303 #if defined(DEBUG_ASI)
1304     target_ulong last_addr = addr;
1305 #endif
1306 
1307     asi &= 0xff;
1308 
1309     do_check_asi(env, asi, GETPC());
1310     do_check_align(env, addr, size - 1, GETPC());
1311     addr = asi_address_mask(env, asi, addr);
1312 
1313     switch (asi) {
1314     case ASI_PNF:
1315     case ASI_PNFL:
1316     case ASI_SNF:
1317     case ASI_SNFL:
1318         {
1319             MemOpIdx oi;
1320             int idx = (env->pstate & PS_PRIV
1321                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1322                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1323 
1324             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1325 #ifdef DEBUG_ASI
1326                 dump_asi("read ", last_addr, asi, size, ret);
1327 #endif
1328                 /* exception_index is set in get_physical_address_data. */
1329                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1330             }
1331             oi = make_memop_idx(memop, idx);
1332             switch (size) {
1333             case 1:
1334                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1335                 break;
1336             case 2:
1337                 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1338                 break;
1339             case 4:
1340                 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1341                 break;
1342             case 8:
1343                 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1344                 break;
1345             default:
1346                 g_assert_not_reached();
1347             }
1348         }
1349         break;
1350 
1351     case ASI_AIUP:  /* As if user primary */
1352     case ASI_AIUS:  /* As if user secondary */
1353     case ASI_AIUPL: /* As if user primary LE */
1354     case ASI_AIUSL: /* As if user secondary LE */
1355     case ASI_P:  /* Primary */
1356     case ASI_S:  /* Secondary */
1357     case ASI_PL: /* Primary LE */
1358     case ASI_SL: /* Secondary LE */
1359     case ASI_REAL:      /* Bypass */
1360     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1361     case ASI_REAL_L:    /* Bypass LE */
1362     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1363     case ASI_N:  /* Nucleus */
1364     case ASI_NL: /* Nucleus Little Endian (LE) */
1365     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1366     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1367     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1368     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1369     case ASI_TWINX_REAL:   /* Real address, twinx */
1370     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1371     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1372     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1373     case ASI_TWINX_N:  /* Nucleus, twinx */
1374     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1375     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1376     case ASI_TWINX_P:  /* Primary, twinx */
1377     case ASI_TWINX_PL: /* Primary, twinx, LE */
1378     case ASI_TWINX_S:  /* Secondary, twinx */
1379     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1380         /* These are always handled inline.  */
1381         g_assert_not_reached();
1382 
1383     case ASI_UPA_CONFIG: /* UPA config */
1384         /* XXX */
1385         break;
1386     case ASI_LSU_CONTROL: /* LSU */
1387         ret = env->lsu;
1388         break;
1389     case ASI_IMMU: /* I-MMU regs */
1390         {
1391             int reg = (addr >> 3) & 0xf;
1392             switch (reg) {
1393             case 0:
1394                 /* 0x00 I-TSB Tag Target register */
1395                 ret = ultrasparc_tag_target(env->immu.tag_access);
1396                 break;
1397             case 3: /* SFSR */
1398                 ret = env->immu.sfsr;
1399                 break;
1400             case 5: /* TSB access */
1401                 ret = env->immu.tsb;
1402                 break;
1403             case 6:
1404                 /* 0x30 I-TSB Tag Access register */
1405                 ret = env->immu.tag_access;
1406                 break;
1407             default:
1408                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1409                 ret = 0;
1410             }
1411             break;
1412         }
1413     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1414         {
1415             /* env->immuregs[5] holds I-MMU TSB register value
1416                env->immuregs[6] holds I-MMU Tag Access register value */
1417             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1418             break;
1419         }
1420     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1421         {
1422             /* env->immuregs[5] holds I-MMU TSB register value
1423                env->immuregs[6] holds I-MMU Tag Access register value */
1424             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1425             break;
1426         }
1427     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1428         {
1429             int reg = (addr >> 3) & 0x3f;
1430 
1431             ret = env->itlb[reg].tte;
1432             break;
1433         }
1434     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1435         {
1436             int reg = (addr >> 3) & 0x3f;
1437 
1438             ret = env->itlb[reg].tag;
1439             break;
1440         }
1441     case ASI_DMMU: /* D-MMU regs */
1442         {
1443             int reg = (addr >> 3) & 0xf;
1444             switch (reg) {
1445             case 0:
1446                 /* 0x00 D-TSB Tag Target register */
1447                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1448                 break;
1449             case 1: /* 0x08 Primary Context */
1450                 ret = env->dmmu.mmu_primary_context;
1451                 break;
1452             case 2: /* 0x10 Secondary Context */
1453                 ret = env->dmmu.mmu_secondary_context;
1454                 break;
1455             case 3: /* SFSR */
1456                 ret = env->dmmu.sfsr;
1457                 break;
1458             case 4: /* 0x20 SFAR */
1459                 ret = env->dmmu.sfar;
1460                 break;
1461             case 5: /* 0x28 TSB access */
1462                 ret = env->dmmu.tsb;
1463                 break;
1464             case 6: /* 0x30 D-TSB Tag Access register */
1465                 ret = env->dmmu.tag_access;
1466                 break;
1467             case 7:
1468                 ret = env->dmmu.virtual_watchpoint;
1469                 break;
1470             case 8:
1471                 ret = env->dmmu.physical_watchpoint;
1472                 break;
1473             default:
1474                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1475                 ret = 0;
1476             }
1477             break;
1478         }
1479     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1480         {
1481             /* env->dmmuregs[5] holds D-MMU TSB register value
1482                env->dmmuregs[6] holds D-MMU Tag Access register value */
1483             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1484             break;
1485         }
1486     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1487         {
1488             /* env->dmmuregs[5] holds D-MMU TSB register value
1489                env->dmmuregs[6] holds D-MMU Tag Access register value */
1490             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1491             break;
1492         }
1493     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1494         {
1495             int reg = (addr >> 3) & 0x3f;
1496 
1497             ret = env->dtlb[reg].tte;
1498             break;
1499         }
1500     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1501         {
1502             int reg = (addr >> 3) & 0x3f;
1503 
1504             ret = env->dtlb[reg].tag;
1505             break;
1506         }
1507     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1508         break;
1509     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1510         ret = env->ivec_status;
1511         break;
1512     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1513         {
1514             int reg = (addr >> 4) & 0x3;
1515             if (reg < 3) {
1516                 ret = env->ivec_data[reg];
1517             }
1518             break;
1519         }
1520     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1521         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1522             /* Hyperprivileged access only */
1523             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1524         }
1525         /* fall through */
1526     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1527         {
1528             unsigned int i = (addr >> 3) & 0x7;
1529             ret = env->scratch[i];
1530             break;
1531         }
1532     case ASI_MMU: /* UA2005 Context ID registers */
1533         switch ((addr >> 3) & 0x3) {
1534         case 1:
1535             ret = env->dmmu.mmu_primary_context;
1536             break;
1537         case 2:
1538             ret = env->dmmu.mmu_secondary_context;
1539             break;
1540         default:
1541           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1542         }
1543         break;
1544     case ASI_DCACHE_DATA:     /* D-cache data */
1545     case ASI_DCACHE_TAG:      /* D-cache tag access */
1546     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1547     case ASI_AFSR:            /* E-cache asynchronous fault status */
1548     case ASI_AFAR:            /* E-cache asynchronous fault address */
1549     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1550     case ASI_IC_INSTR:        /* I-cache instruction access */
1551     case ASI_IC_TAG:          /* I-cache tag access */
1552     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1553     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1554     case ASI_EC_W:            /* E-cache tag */
1555     case ASI_EC_R:            /* E-cache tag */
1556         break;
1557     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1558     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1559     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1560     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1561     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1562     case ASI_INTR_W:              /* Interrupt vector, WO */
1563     default:
1564         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1565         ret = 0;
1566         break;
1567     }
1568 
1569     /* Convert to signed number */
1570     if (sign) {
1571         switch (size) {
1572         case 1:
1573             ret = (int8_t) ret;
1574             break;
1575         case 2:
1576             ret = (int16_t) ret;
1577             break;
1578         case 4:
1579             ret = (int32_t) ret;
1580             break;
1581         default:
1582             break;
1583         }
1584     }
1585 #ifdef DEBUG_ASI
1586     dump_asi("read ", last_addr, asi, size, ret);
1587 #endif
1588     return ret;
1589 }
1590 
1591 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1592                    int asi, uint32_t memop)
1593 {
1594     int size = 1 << (memop & MO_SIZE);
1595     CPUState *cs = env_cpu(env);
1596 
1597 #ifdef DEBUG_ASI
1598     dump_asi("write", addr, asi, size, val);
1599 #endif
1600 
1601     asi &= 0xff;
1602 
1603     do_check_asi(env, asi, GETPC());
1604     do_check_align(env, addr, size - 1, GETPC());
1605     addr = asi_address_mask(env, asi, addr);
1606 
1607     switch (asi) {
1608     case ASI_AIUP:  /* As if user primary */
1609     case ASI_AIUS:  /* As if user secondary */
1610     case ASI_AIUPL: /* As if user primary LE */
1611     case ASI_AIUSL: /* As if user secondary LE */
1612     case ASI_P:  /* Primary */
1613     case ASI_S:  /* Secondary */
1614     case ASI_PL: /* Primary LE */
1615     case ASI_SL: /* Secondary LE */
1616     case ASI_REAL:      /* Bypass */
1617     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1618     case ASI_REAL_L:    /* Bypass LE */
1619     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1620     case ASI_N:  /* Nucleus */
1621     case ASI_NL: /* Nucleus Little Endian (LE) */
1622     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1623     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1624     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1625     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1626     case ASI_TWINX_REAL:   /* Real address, twinx */
1627     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1628     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1629     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1630     case ASI_TWINX_N:  /* Nucleus, twinx */
1631     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1632     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1633     case ASI_TWINX_P:  /* Primary, twinx */
1634     case ASI_TWINX_PL: /* Primary, twinx, LE */
1635     case ASI_TWINX_S:  /* Secondary, twinx */
1636     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1637         /* These are always handled inline.  */
1638         g_assert_not_reached();
1639     /* these ASIs have different functions on UltraSPARC-IIIi
1640      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1641      */
1642     case 0x31:
1643     case 0x32:
1644     case 0x39:
1645     case 0x3a:
1646         if (cpu_has_hypervisor(env)) {
1647             /* UA2005
1648              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1649              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1650              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1651              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1652              */
1653             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1654             env->dmmu.sun4v_tsb_pointers[idx] = val;
1655         } else {
1656             helper_raise_exception(env, TT_ILL_INSN);
1657         }
1658         break;
1659     case 0x33:
1660     case 0x3b:
1661         if (cpu_has_hypervisor(env)) {
1662             /* UA2005
1663              * ASI_DMMU_CTX_ZERO_CONFIG
1664              * ASI_DMMU_CTX_NONZERO_CONFIG
1665              */
1666             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1667         } else {
1668             helper_raise_exception(env, TT_ILL_INSN);
1669         }
1670         break;
1671     case 0x35:
1672     case 0x36:
1673     case 0x3d:
1674     case 0x3e:
1675         if (cpu_has_hypervisor(env)) {
1676             /* UA2005
1677              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1678              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1679              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1680              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1681              */
1682             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1683             env->immu.sun4v_tsb_pointers[idx] = val;
1684         } else {
1685             helper_raise_exception(env, TT_ILL_INSN);
1686         }
1687       break;
1688     case 0x37:
1689     case 0x3f:
1690         if (cpu_has_hypervisor(env)) {
1691             /* UA2005
1692              * ASI_IMMU_CTX_ZERO_CONFIG
1693              * ASI_IMMU_CTX_NONZERO_CONFIG
1694              */
1695             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1696         } else {
1697           helper_raise_exception(env, TT_ILL_INSN);
1698         }
1699         break;
1700     case ASI_UPA_CONFIG: /* UPA config */
1701         /* XXX */
1702         return;
1703     case ASI_LSU_CONTROL: /* LSU */
1704         env->lsu = val & (DMMU_E | IMMU_E);
1705         return;
1706     case ASI_IMMU: /* I-MMU regs */
1707         {
1708             int reg = (addr >> 3) & 0xf;
1709             uint64_t oldreg;
1710 
1711             oldreg = env->immu.mmuregs[reg];
1712             switch (reg) {
1713             case 0: /* RO */
1714                 return;
1715             case 1: /* Not in I-MMU */
1716             case 2:
1717                 return;
1718             case 3: /* SFSR */
1719                 if ((val & 1) == 0) {
1720                     val = 0; /* Clear SFSR */
1721                 }
1722                 env->immu.sfsr = val;
1723                 break;
1724             case 4: /* RO */
1725                 return;
1726             case 5: /* TSB access */
1727                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1728                             PRIx64 "\n", env->immu.tsb, val);
1729                 env->immu.tsb = val;
1730                 break;
1731             case 6: /* Tag access */
1732                 env->immu.tag_access = val;
1733                 break;
1734             case 7:
1735             case 8:
1736                 return;
1737             default:
1738                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1739                 break;
1740             }
1741 
1742             if (oldreg != env->immu.mmuregs[reg]) {
1743                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1744                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1745             }
1746 #ifdef DEBUG_MMU
1747             dump_mmu(env);
1748 #endif
1749             return;
1750         }
1751     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1752         /* ignore real translation entries */
1753         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1754             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1755                                  val, "immu", env, addr);
1756         }
1757         return;
1758     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1759         {
1760             /* TODO: auto demap */
1761 
1762             unsigned int i = (addr >> 3) & 0x3f;
1763 
1764             /* ignore real translation entries */
1765             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1766                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1767                                   sun4v_tte_to_sun4u(env, addr, val), env);
1768             }
1769 #ifdef DEBUG_MMU
1770             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1771             dump_mmu(env);
1772 #endif
1773             return;
1774         }
1775     case ASI_IMMU_DEMAP: /* I-MMU demap */
1776         demap_tlb(env->itlb, addr, "immu", env);
1777         return;
1778     case ASI_DMMU: /* D-MMU regs */
1779         {
1780             int reg = (addr >> 3) & 0xf;
1781             uint64_t oldreg;
1782 
1783             oldreg = env->dmmu.mmuregs[reg];
1784             switch (reg) {
1785             case 0: /* RO */
1786             case 4:
1787                 return;
1788             case 3: /* SFSR */
1789                 if ((val & 1) == 0) {
1790                     val = 0; /* Clear SFSR, Fault address */
1791                     env->dmmu.sfar = 0;
1792                 }
1793                 env->dmmu.sfsr = val;
1794                 break;
1795             case 1: /* Primary context */
1796                 env->dmmu.mmu_primary_context = val;
1797                 /* can be optimized to only flush MMU_USER_IDX
1798                    and MMU_KERNEL_IDX entries */
1799                 tlb_flush(cs);
1800                 break;
1801             case 2: /* Secondary context */
1802                 env->dmmu.mmu_secondary_context = val;
1803                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1804                    and MMU_KERNEL_SECONDARY_IDX entries */
1805                 tlb_flush(cs);
1806                 break;
1807             case 5: /* TSB access */
1808                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1809                             PRIx64 "\n", env->dmmu.tsb, val);
1810                 env->dmmu.tsb = val;
1811                 break;
1812             case 6: /* Tag access */
1813                 env->dmmu.tag_access = val;
1814                 break;
1815             case 7: /* Virtual Watchpoint */
1816                 env->dmmu.virtual_watchpoint = val;
1817                 break;
1818             case 8: /* Physical Watchpoint */
1819                 env->dmmu.physical_watchpoint = val;
1820                 break;
1821             default:
1822                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1823                 break;
1824             }
1825 
1826             if (oldreg != env->dmmu.mmuregs[reg]) {
1827                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1828                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1829             }
1830 #ifdef DEBUG_MMU
1831             dump_mmu(env);
1832 #endif
1833             return;
1834         }
1835     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1836       /* ignore real translation entries */
1837       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1838           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1839                                val, "dmmu", env, addr);
1840       }
1841       return;
1842     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1843         {
1844             unsigned int i = (addr >> 3) & 0x3f;
1845 
1846             /* ignore real translation entries */
1847             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1848                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1849                                   sun4v_tte_to_sun4u(env, addr, val), env);
1850             }
1851 #ifdef DEBUG_MMU
1852             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1853             dump_mmu(env);
1854 #endif
1855             return;
1856         }
1857     case ASI_DMMU_DEMAP: /* D-MMU demap */
1858         demap_tlb(env->dtlb, addr, "dmmu", env);
1859         return;
1860     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1861         env->ivec_status = val & 0x20;
1862         return;
1863     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1864         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1865             /* Hyperprivileged access only */
1866             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1867         }
1868         /* fall through */
1869     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1870         {
1871             unsigned int i = (addr >> 3) & 0x7;
1872             env->scratch[i] = val;
1873             return;
1874         }
1875     case ASI_MMU: /* UA2005 Context ID registers */
1876         {
1877           switch ((addr >> 3) & 0x3) {
1878           case 1:
1879               env->dmmu.mmu_primary_context = val;
1880               env->immu.mmu_primary_context = val;
1881               tlb_flush_by_mmuidx(cs,
1882                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1883               break;
1884           case 2:
1885               env->dmmu.mmu_secondary_context = val;
1886               env->immu.mmu_secondary_context = val;
1887               tlb_flush_by_mmuidx(cs,
1888                                   (1 << MMU_USER_SECONDARY_IDX) |
1889                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1890               break;
1891           default:
1892               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1893           }
1894         }
1895         return;
1896     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1897     case ASI_DCACHE_DATA: /* D-cache data */
1898     case ASI_DCACHE_TAG: /* D-cache tag access */
1899     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1900     case ASI_AFSR: /* E-cache asynchronous fault status */
1901     case ASI_AFAR: /* E-cache asynchronous fault address */
1902     case ASI_EC_TAG_DATA: /* E-cache tag data */
1903     case ASI_IC_INSTR: /* I-cache instruction access */
1904     case ASI_IC_TAG: /* I-cache tag access */
1905     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1906     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1907     case ASI_EC_W: /* E-cache tag */
1908     case ASI_EC_R: /* E-cache tag */
1909         return;
1910     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1911     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1912     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1913     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1914     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1915     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1916     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1917     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1918     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1919     case ASI_PNF: /* Primary no-fault, RO */
1920     case ASI_SNF: /* Secondary no-fault, RO */
1921     case ASI_PNFL: /* Primary no-fault LE, RO */
1922     case ASI_SNFL: /* Secondary no-fault LE, RO */
1923     default:
1924         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1925         return;
1926     }
1927 }
1928 #endif /* CONFIG_USER_ONLY */
1929 #endif /* TARGET_SPARC64 */
1930 
1931 #if !defined(CONFIG_USER_ONLY)
1932 
1933 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1934                                      vaddr addr, unsigned size,
1935                                      MMUAccessType access_type,
1936                                      int mmu_idx, MemTxAttrs attrs,
1937                                      MemTxResult response, uintptr_t retaddr)
1938 {
1939     bool is_write = access_type == MMU_DATA_STORE;
1940     bool is_exec = access_type == MMU_INST_FETCH;
1941     bool is_asi = false;
1942 
1943     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1944                           is_asi, size, retaddr);
1945 }
1946 #endif
1947