1 /*
2 * Helpers for loads and stores
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/range.h"
23 #include "cpu.h"
24 #include "tcg/tcg.h"
25 #include "exec/helper-proto.h"
26 #include "exec/exec-all.h"
27 #include "exec/page-protection.h"
28 #include "exec/cpu_ldst.h"
29 #include "asi.h"
30
31 //#define DEBUG_MMU
32 //#define DEBUG_MXCC
33 //#define DEBUG_UNASSIGNED
34 //#define DEBUG_ASI
35 //#define DEBUG_CACHE_CONTROL
36
37 #ifdef DEBUG_MMU
38 #define DPRINTF_MMU(fmt, ...) \
39 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF_MMU(fmt, ...) do {} while (0)
42 #endif
43
44 #ifdef DEBUG_MXCC
45 #define DPRINTF_MXCC(fmt, ...) \
46 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
47 #else
48 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
49 #endif
50
51 #ifdef DEBUG_ASI
52 #define DPRINTF_ASI(fmt, ...) \
53 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
54 #endif
55
56 #ifdef DEBUG_CACHE_CONTROL
57 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
58 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
61 #endif
62
63 #ifdef TARGET_SPARC64
64 #ifndef TARGET_ABI32
65 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
66 #else
67 #define AM_CHECK(env1) (1)
68 #endif
69 #endif
70
71 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
72 /* Calculates TSB pointer value for fault page size
73 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
74 * UA2005 holds the page size configuration in mmu_ctx registers */
ultrasparc_tsb_pointer(CPUSPARCState * env,const SparcV9MMU * mmu,const int idx)75 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
76 const SparcV9MMU *mmu, const int idx)
77 {
78 uint64_t tsb_register;
79 int page_size;
80 if (cpu_has_hypervisor(env)) {
81 int tsb_index = 0;
82 int ctx = mmu->tag_access & 0x1fffULL;
83 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
84 tsb_index = idx;
85 tsb_index |= ctx ? 2 : 0;
86 page_size = idx ? ctx_register >> 8 : ctx_register;
87 page_size &= 7;
88 tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
89 } else {
90 page_size = idx;
91 tsb_register = mmu->tsb;
92 }
93 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
94 int tsb_size = tsb_register & 0xf;
95
96 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
97
98 /* move va bits to correct position,
99 * the context bits will be masked out later */
100 uint64_t va = mmu->tag_access >> (3 * page_size + 9);
101
102 /* calculate tsb_base mask and adjust va if split is in use */
103 if (tsb_split) {
104 if (idx == 0) {
105 va &= ~(1ULL << (13 + tsb_size));
106 } else {
107 va |= (1ULL << (13 + tsb_size));
108 }
109 tsb_base_mask <<= 1;
110 }
111
112 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
113 }
114
115 /* Calculates tag target register value by reordering bits
116 in tag access register */
ultrasparc_tag_target(uint64_t tag_access_register)117 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
118 {
119 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
120 }
121
replace_tlb_entry(SparcTLBEntry * tlb,uint64_t tlb_tag,uint64_t tlb_tte,CPUSPARCState * env)122 static void replace_tlb_entry(SparcTLBEntry *tlb,
123 uint64_t tlb_tag, uint64_t tlb_tte,
124 CPUSPARCState *env)
125 {
126 target_ulong mask, size, va, offset;
127
128 /* flush page range if translation is valid */
129 if (TTE_IS_VALID(tlb->tte)) {
130 CPUState *cs = env_cpu(env);
131
132 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
133 mask = 1ULL + ~size;
134
135 va = tlb->tag & mask;
136
137 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
138 tlb_flush_page(cs, va + offset);
139 }
140 }
141
142 tlb->tag = tlb_tag;
143 tlb->tte = tlb_tte;
144 }
145
demap_tlb(SparcTLBEntry * tlb,target_ulong demap_addr,const char * strmmu,CPUSPARCState * env1)146 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
147 const char *strmmu, CPUSPARCState *env1)
148 {
149 unsigned int i;
150 target_ulong mask;
151 uint64_t context;
152
153 int is_demap_context = (demap_addr >> 6) & 1;
154
155 /* demap context */
156 switch ((demap_addr >> 4) & 3) {
157 case 0: /* primary */
158 context = env1->dmmu.mmu_primary_context;
159 break;
160 case 1: /* secondary */
161 context = env1->dmmu.mmu_secondary_context;
162 break;
163 case 2: /* nucleus */
164 context = 0;
165 break;
166 case 3: /* reserved */
167 default:
168 return;
169 }
170
171 for (i = 0; i < 64; i++) {
172 if (TTE_IS_VALID(tlb[i].tte)) {
173
174 if (is_demap_context) {
175 /* will remove non-global entries matching context value */
176 if (TTE_IS_GLOBAL(tlb[i].tte) ||
177 !tlb_compare_context(&tlb[i], context)) {
178 continue;
179 }
180 } else {
181 /* demap page
182 will remove any entry matching VA */
183 mask = 0xffffffffffffe000ULL;
184 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
185
186 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
187 continue;
188 }
189
190 /* entry should be global or matching context value */
191 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
192 !tlb_compare_context(&tlb[i], context)) {
193 continue;
194 }
195 }
196
197 replace_tlb_entry(&tlb[i], 0, 0, env1);
198 #ifdef DEBUG_MMU
199 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
200 dump_mmu(env1);
201 #endif
202 }
203 }
204 }
205
sun4v_tte_to_sun4u(CPUSPARCState * env,uint64_t tag,uint64_t sun4v_tte)206 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
207 uint64_t sun4v_tte)
208 {
209 uint64_t sun4u_tte;
210 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
211 /* is already in the sun4u format */
212 return sun4v_tte;
213 }
214 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
215 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
216 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
218 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
220 TTE_SIDEEFFECT_BIT);
221 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
222 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
223 return sun4u_tte;
224 }
225
replace_tlb_1bit_lru(SparcTLBEntry * tlb,uint64_t tlb_tag,uint64_t tlb_tte,const char * strmmu,CPUSPARCState * env1,uint64_t addr)226 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
227 uint64_t tlb_tag, uint64_t tlb_tte,
228 const char *strmmu, CPUSPARCState *env1,
229 uint64_t addr)
230 {
231 unsigned int i, replace_used;
232
233 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
234 if (cpu_has_hypervisor(env1)) {
235 uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
236 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
237 uint32_t new_ctx = tlb_tag & 0x1fffU;
238 for (i = 0; i < 64; i++) {
239 uint32_t ctx = tlb[i].tag & 0x1fffU;
240 /* check if new mapping overlaps an existing one */
241 if (new_ctx == ctx) {
242 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
243 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
244 if (ranges_overlap(new_vaddr, new_size, vaddr, size)) {
245 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
246 new_vaddr);
247 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248 return;
249 }
250 }
251
252 }
253 }
254 /* Try replacing invalid entry */
255 for (i = 0; i < 64; i++) {
256 if (!TTE_IS_VALID(tlb[i].tte)) {
257 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
258 #ifdef DEBUG_MMU
259 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
260 dump_mmu(env1);
261 #endif
262 return;
263 }
264 }
265
266 /* All entries are valid, try replacing unlocked entry */
267
268 for (replace_used = 0; replace_used < 2; ++replace_used) {
269
270 /* Used entries are not replaced on first pass */
271
272 for (i = 0; i < 64; i++) {
273 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
274
275 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
276 #ifdef DEBUG_MMU
277 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
278 strmmu, (replace_used ? "used" : "unused"), i);
279 dump_mmu(env1);
280 #endif
281 return;
282 }
283 }
284
285 /* Now reset used bit and search for unused entries again */
286
287 for (i = 0; i < 64; i++) {
288 TTE_SET_UNUSED(tlb[i].tte);
289 }
290 }
291
292 #ifdef DEBUG_MMU
293 DPRINTF_MMU("%s lru replacement: no free entries available, "
294 "replacing the last one\n", strmmu);
295 #endif
296 /* corner case: the last entry is replaced anyway */
297 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
298 }
299
300 #endif
301
302 #ifdef TARGET_SPARC64
303 /* returns true if access using this ASI is to have address translated by MMU
304 otherwise access is to raw physical address */
305 /* TODO: check sparc32 bits */
is_translating_asi(int asi)306 static inline int is_translating_asi(int asi)
307 {
308 /* Ultrasparc IIi translating asi
309 - note this list is defined by cpu implementation
310 */
311 switch (asi) {
312 case 0x04 ... 0x11:
313 case 0x16 ... 0x19:
314 case 0x1E ... 0x1F:
315 case 0x24 ... 0x2C:
316 case 0x70 ... 0x73:
317 case 0x78 ... 0x79:
318 case 0x80 ... 0xFF:
319 return 1;
320
321 default:
322 return 0;
323 }
324 }
325
address_mask(CPUSPARCState * env1,target_ulong addr)326 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
327 {
328 if (AM_CHECK(env1)) {
329 addr &= 0xffffffffULL;
330 }
331 return addr;
332 }
333
asi_address_mask(CPUSPARCState * env,int asi,target_ulong addr)334 static inline target_ulong asi_address_mask(CPUSPARCState *env,
335 int asi, target_ulong addr)
336 {
337 if (is_translating_asi(asi)) {
338 addr = address_mask(env, addr);
339 }
340 return addr;
341 }
342
343 #ifndef CONFIG_USER_ONLY
do_check_asi(CPUSPARCState * env,int asi,uintptr_t ra)344 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
345 {
346 /* ASIs >= 0x80 are user mode.
347 * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
348 * ASIs <= 0x2f are super mode.
349 */
350 if (asi < 0x80
351 && !cpu_hypervisor_mode(env)
352 && (!cpu_supervisor_mode(env)
353 || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
354 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
355 }
356 }
357 #endif /* !CONFIG_USER_ONLY */
358 #endif
359
360 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
do_check_align(CPUSPARCState * env,target_ulong addr,uint32_t align,uintptr_t ra)361 static void do_check_align(CPUSPARCState *env, target_ulong addr,
362 uint32_t align, uintptr_t ra)
363 {
364 if (addr & align) {
365 cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
366 }
367 }
368 #endif
369
370 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
371 defined(DEBUG_MXCC)
dump_mxcc(CPUSPARCState * env)372 static void dump_mxcc(CPUSPARCState *env)
373 {
374 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
375 "\n",
376 env->mxccdata[0], env->mxccdata[1],
377 env->mxccdata[2], env->mxccdata[3]);
378 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
379 "\n"
380 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381 "\n",
382 env->mxccregs[0], env->mxccregs[1],
383 env->mxccregs[2], env->mxccregs[3],
384 env->mxccregs[4], env->mxccregs[5],
385 env->mxccregs[6], env->mxccregs[7]);
386 }
387 #endif
388
389 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
390 && defined(DEBUG_ASI)
dump_asi(const char * txt,target_ulong addr,int asi,int size,uint64_t r1)391 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
392 uint64_t r1)
393 {
394 switch (size) {
395 case 1:
396 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
397 addr, asi, r1 & 0xff);
398 break;
399 case 2:
400 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
401 addr, asi, r1 & 0xffff);
402 break;
403 case 4:
404 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
405 addr, asi, r1 & 0xffffffff);
406 break;
407 case 8:
408 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
409 addr, asi, r1);
410 break;
411 }
412 }
413 #endif
414
415 #ifndef CONFIG_USER_ONLY
416 #ifndef TARGET_SPARC64
sparc_raise_mmu_fault(CPUState * cs,hwaddr addr,bool is_write,bool is_exec,int is_asi,unsigned size,uintptr_t retaddr)417 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
418 bool is_write, bool is_exec, int is_asi,
419 unsigned size, uintptr_t retaddr)
420 {
421 CPUSPARCState *env = cpu_env(cs);
422 int fault_type;
423
424 #ifdef DEBUG_UNASSIGNED
425 if (is_asi) {
426 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
427 " asi 0x%02x from " TARGET_FMT_lx "\n",
428 is_exec ? "exec" : is_write ? "write" : "read", size,
429 size == 1 ? "" : "s", addr, is_asi, env->pc);
430 } else {
431 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
432 " from " TARGET_FMT_lx "\n",
433 is_exec ? "exec" : is_write ? "write" : "read", size,
434 size == 1 ? "" : "s", addr, env->pc);
435 }
436 #endif
437 /* Don't overwrite translation and access faults */
438 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
439 if ((fault_type > 4) || (fault_type == 0)) {
440 env->mmuregs[3] = 0; /* Fault status register */
441 if (is_asi) {
442 env->mmuregs[3] |= 1 << 16;
443 }
444 if (env->psrs) {
445 env->mmuregs[3] |= 1 << 5;
446 }
447 if (is_exec) {
448 env->mmuregs[3] |= 1 << 6;
449 }
450 if (is_write) {
451 env->mmuregs[3] |= 1 << 7;
452 }
453 env->mmuregs[3] |= (5 << 2) | 2;
454 /* SuperSPARC will never place instruction fault addresses in the FAR */
455 if (!is_exec) {
456 env->mmuregs[4] = addr; /* Fault address register */
457 }
458 }
459 /* overflow (same type fault was not read before another fault) */
460 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
461 env->mmuregs[3] |= 1;
462 }
463
464 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
465 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
466 cpu_raise_exception_ra(env, tt, retaddr);
467 }
468
469 /*
470 * flush neverland mappings created during no-fault mode,
471 * so the sequential MMU faults report proper fault types
472 */
473 if (env->mmuregs[0] & MMU_NF) {
474 tlb_flush(cs);
475 }
476 }
477 #else
sparc_raise_mmu_fault(CPUState * cs,hwaddr addr,bool is_write,bool is_exec,int is_asi,unsigned size,uintptr_t retaddr)478 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
479 bool is_write, bool is_exec, int is_asi,
480 unsigned size, uintptr_t retaddr)
481 {
482 CPUSPARCState *env = cpu_env(cs);
483
484 #ifdef DEBUG_UNASSIGNED
485 printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
486 "\n", addr, env->pc);
487 #endif
488
489 if (is_exec) { /* XXX has_hypervisor */
490 if (env->lsu & (IMMU_E)) {
491 cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
492 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
493 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
494 }
495 } else {
496 if (env->lsu & (DMMU_E)) {
497 cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
498 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
499 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
500 }
501 }
502 }
503 #endif
504 #endif
505
506 #ifndef TARGET_SPARC64
507 #ifndef CONFIG_USER_ONLY
508
509
510 /* Leon3 cache control */
511
leon3_cache_control_st(CPUSPARCState * env,target_ulong addr,uint64_t val,int size)512 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
513 uint64_t val, int size)
514 {
515 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
516 addr, val, size);
517
518 if (size != 4) {
519 DPRINTF_CACHE_CONTROL("32bits only\n");
520 return;
521 }
522
523 switch (addr) {
524 case 0x00: /* Cache control */
525
526 /* These values must always be read as zeros */
527 val &= ~CACHE_CTRL_FD;
528 val &= ~CACHE_CTRL_FI;
529 val &= ~CACHE_CTRL_IB;
530 val &= ~CACHE_CTRL_IP;
531 val &= ~CACHE_CTRL_DP;
532
533 env->cache_control = val;
534 break;
535 case 0x04: /* Instruction cache configuration */
536 case 0x08: /* Data cache configuration */
537 /* Read Only */
538 break;
539 default:
540 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
541 break;
542 };
543 }
544
leon3_cache_control_ld(CPUSPARCState * env,target_ulong addr,int size)545 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
546 int size)
547 {
548 uint64_t ret = 0;
549
550 if (size != 4) {
551 DPRINTF_CACHE_CONTROL("32bits only\n");
552 return 0;
553 }
554
555 switch (addr) {
556 case 0x00: /* Cache control */
557 ret = env->cache_control;
558 break;
559
560 /* Configuration registers are read and only always keep those
561 predefined values */
562
563 case 0x04: /* Instruction cache configuration */
564 ret = 0x10220000;
565 break;
566 case 0x08: /* Data cache configuration */
567 ret = 0x18220000;
568 break;
569 default:
570 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
571 break;
572 };
573 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
574 addr, ret, size);
575 return ret;
576 }
577
helper_ld_asi(CPUSPARCState * env,target_ulong addr,int asi,uint32_t memop)578 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
579 int asi, uint32_t memop)
580 {
581 int size = 1 << (memop & MO_SIZE);
582 int sign = memop & MO_SIGN;
583 CPUState *cs = env_cpu(env);
584 uint64_t ret = 0;
585 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
586 uint32_t last_addr = addr;
587 #endif
588
589 do_check_align(env, addr, size - 1, GETPC());
590 switch (asi) {
591 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
592 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
593 switch (addr) {
594 case 0x00: /* Leon3 Cache Control */
595 case 0x08: /* Leon3 Instruction Cache config */
596 case 0x0C: /* Leon3 Date Cache config */
597 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
598 ret = leon3_cache_control_ld(env, addr, size);
599 }
600 break;
601 case 0x01c00a00: /* MXCC control register */
602 if (size == 8) {
603 ret = env->mxccregs[3];
604 } else {
605 qemu_log_mask(LOG_UNIMP,
606 "%08x: unimplemented access size: %d\n", addr,
607 size);
608 }
609 break;
610 case 0x01c00a04: /* MXCC control register */
611 if (size == 4) {
612 ret = env->mxccregs[3];
613 } else {
614 qemu_log_mask(LOG_UNIMP,
615 "%08x: unimplemented access size: %d\n", addr,
616 size);
617 }
618 break;
619 case 0x01c00c00: /* Module reset register */
620 if (size == 8) {
621 ret = env->mxccregs[5];
622 /* should we do something here? */
623 } else {
624 qemu_log_mask(LOG_UNIMP,
625 "%08x: unimplemented access size: %d\n", addr,
626 size);
627 }
628 break;
629 case 0x01c00f00: /* MBus port address register */
630 if (size == 8) {
631 ret = env->mxccregs[7];
632 } else {
633 qemu_log_mask(LOG_UNIMP,
634 "%08x: unimplemented access size: %d\n", addr,
635 size);
636 }
637 break;
638 default:
639 qemu_log_mask(LOG_UNIMP,
640 "%08x: unimplemented address, size: %d\n", addr,
641 size);
642 break;
643 }
644 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
645 "addr = %08x -> ret = %" PRIx64 ","
646 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
647 #ifdef DEBUG_MXCC
648 dump_mxcc(env);
649 #endif
650 break;
651 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
652 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
653 {
654 int mmulev;
655
656 mmulev = (addr >> 8) & 15;
657 if (mmulev > 4) {
658 ret = 0;
659 } else {
660 ret = mmu_probe(env, addr, mmulev);
661 }
662 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
663 addr, mmulev, ret);
664 }
665 break;
666 case ASI_M_MMUREGS: /* SuperSparc MMU regs */
667 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
668 {
669 int reg = (addr >> 8) & 0x1f;
670
671 ret = env->mmuregs[reg];
672 if (reg == 3) { /* Fault status cleared on read */
673 env->mmuregs[3] = 0;
674 } else if (reg == 0x13) { /* Fault status read */
675 ret = env->mmuregs[3];
676 } else if (reg == 0x14) { /* Fault address read */
677 ret = env->mmuregs[4];
678 }
679 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
680 }
681 break;
682 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
683 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
684 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
685 break;
686 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */
687 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */
688 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */
689 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
690 break;
691 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
692 {
693 MemTxResult result;
694 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
695
696 switch (size) {
697 case 1:
698 ret = address_space_ldub(cs->as, access_addr,
699 MEMTXATTRS_UNSPECIFIED, &result);
700 break;
701 case 2:
702 ret = address_space_lduw(cs->as, access_addr,
703 MEMTXATTRS_UNSPECIFIED, &result);
704 break;
705 default:
706 case 4:
707 ret = address_space_ldl(cs->as, access_addr,
708 MEMTXATTRS_UNSPECIFIED, &result);
709 break;
710 case 8:
711 ret = address_space_ldq(cs->as, access_addr,
712 MEMTXATTRS_UNSPECIFIED, &result);
713 break;
714 }
715
716 if (result != MEMTX_OK) {
717 sparc_raise_mmu_fault(cs, access_addr, false, false, false,
718 size, GETPC());
719 }
720 break;
721 }
722 case 0x30: /* Turbosparc secondary cache diagnostic */
723 case 0x31: /* Turbosparc RAM snoop */
724 case 0x32: /* Turbosparc page table descriptor diagnostic */
725 case 0x39: /* data cache diagnostic register */
726 ret = 0;
727 break;
728 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
729 {
730 int reg = (addr >> 8) & 3;
731
732 switch (reg) {
733 case 0: /* Breakpoint Value (Addr) */
734 ret = env->mmubpregs[reg];
735 break;
736 case 1: /* Breakpoint Mask */
737 ret = env->mmubpregs[reg];
738 break;
739 case 2: /* Breakpoint Control */
740 ret = env->mmubpregs[reg];
741 break;
742 case 3: /* Breakpoint Status */
743 ret = env->mmubpregs[reg];
744 env->mmubpregs[reg] = 0ULL;
745 break;
746 }
747 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
748 ret);
749 }
750 break;
751 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
752 ret = env->mmubpctrv;
753 break;
754 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
755 ret = env->mmubpctrc;
756 break;
757 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
758 ret = env->mmubpctrs;
759 break;
760 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
761 ret = env->mmubpaction;
762 break;
763 default:
764 sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
765 ret = 0;
766 break;
767
768 case ASI_USERDATA: /* User data access */
769 case ASI_KERNELDATA: /* Supervisor data access */
770 case ASI_USERTXT: /* User code access */
771 case ASI_KERNELTXT: /* Supervisor code access */
772 case ASI_P: /* Implicit primary context data access (v9 only?) */
773 case ASI_M_BYPASS: /* MMU passthrough */
774 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
775 /* These are always handled inline. */
776 g_assert_not_reached();
777 }
778 if (sign) {
779 switch (size) {
780 case 1:
781 ret = (int8_t) ret;
782 break;
783 case 2:
784 ret = (int16_t) ret;
785 break;
786 case 4:
787 ret = (int32_t) ret;
788 break;
789 default:
790 break;
791 }
792 }
793 #ifdef DEBUG_ASI
794 dump_asi("read ", last_addr, asi, size, ret);
795 #endif
796 return ret;
797 }
798
helper_st_asi(CPUSPARCState * env,target_ulong addr,uint64_t val,int asi,uint32_t memop)799 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
800 int asi, uint32_t memop)
801 {
802 int size = 1 << (memop & MO_SIZE);
803 CPUState *cs = env_cpu(env);
804
805 do_check_align(env, addr, size - 1, GETPC());
806 switch (asi) {
807 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
808 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
809 switch (addr) {
810 case 0x00: /* Leon3 Cache Control */
811 case 0x08: /* Leon3 Instruction Cache config */
812 case 0x0C: /* Leon3 Date Cache config */
813 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
814 leon3_cache_control_st(env, addr, val, size);
815 }
816 break;
817
818 case 0x01c00000: /* MXCC stream data register 0 */
819 if (size == 8) {
820 env->mxccdata[0] = val;
821 } else {
822 qemu_log_mask(LOG_UNIMP,
823 "%08x: unimplemented access size: %d\n", addr,
824 size);
825 }
826 break;
827 case 0x01c00008: /* MXCC stream data register 1 */
828 if (size == 8) {
829 env->mxccdata[1] = val;
830 } else {
831 qemu_log_mask(LOG_UNIMP,
832 "%08x: unimplemented access size: %d\n", addr,
833 size);
834 }
835 break;
836 case 0x01c00010: /* MXCC stream data register 2 */
837 if (size == 8) {
838 env->mxccdata[2] = val;
839 } else {
840 qemu_log_mask(LOG_UNIMP,
841 "%08x: unimplemented access size: %d\n", addr,
842 size);
843 }
844 break;
845 case 0x01c00018: /* MXCC stream data register 3 */
846 if (size == 8) {
847 env->mxccdata[3] = val;
848 } else {
849 qemu_log_mask(LOG_UNIMP,
850 "%08x: unimplemented access size: %d\n", addr,
851 size);
852 }
853 break;
854 case 0x01c00100: /* MXCC stream source */
855 {
856 int i;
857
858 if (size == 8) {
859 env->mxccregs[0] = val;
860 } else {
861 qemu_log_mask(LOG_UNIMP,
862 "%08x: unimplemented access size: %d\n", addr,
863 size);
864 }
865
866 for (i = 0; i < 4; i++) {
867 MemTxResult result;
868 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
869
870 env->mxccdata[i] = address_space_ldq(cs->as,
871 access_addr,
872 MEMTXATTRS_UNSPECIFIED,
873 &result);
874 if (result != MEMTX_OK) {
875 /* TODO: investigate whether this is the right behaviour */
876 sparc_raise_mmu_fault(cs, access_addr, false, false,
877 false, size, GETPC());
878 }
879 }
880 break;
881 }
882 case 0x01c00200: /* MXCC stream destination */
883 {
884 int i;
885
886 if (size == 8) {
887 env->mxccregs[1] = val;
888 } else {
889 qemu_log_mask(LOG_UNIMP,
890 "%08x: unimplemented access size: %d\n", addr,
891 size);
892 }
893
894 for (i = 0; i < 4; i++) {
895 MemTxResult result;
896 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
897
898 address_space_stq(cs->as, access_addr, env->mxccdata[i],
899 MEMTXATTRS_UNSPECIFIED, &result);
900
901 if (result != MEMTX_OK) {
902 /* TODO: investigate whether this is the right behaviour */
903 sparc_raise_mmu_fault(cs, access_addr, true, false,
904 false, size, GETPC());
905 }
906 }
907 break;
908 }
909 case 0x01c00a00: /* MXCC control register */
910 if (size == 8) {
911 env->mxccregs[3] = val;
912 } else {
913 qemu_log_mask(LOG_UNIMP,
914 "%08x: unimplemented access size: %d\n", addr,
915 size);
916 }
917 break;
918 case 0x01c00a04: /* MXCC control register */
919 if (size == 4) {
920 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
921 | val;
922 } else {
923 qemu_log_mask(LOG_UNIMP,
924 "%08x: unimplemented access size: %d\n", addr,
925 size);
926 }
927 break;
928 case 0x01c00e00: /* MXCC error register */
929 /* writing a 1 bit clears the error */
930 if (size == 8) {
931 env->mxccregs[6] &= ~val;
932 } else {
933 qemu_log_mask(LOG_UNIMP,
934 "%08x: unimplemented access size: %d\n", addr,
935 size);
936 }
937 break;
938 case 0x01c00f00: /* MBus port address register */
939 if (size == 8) {
940 env->mxccregs[7] = val;
941 } else {
942 qemu_log_mask(LOG_UNIMP,
943 "%08x: unimplemented access size: %d\n", addr,
944 size);
945 }
946 break;
947 default:
948 qemu_log_mask(LOG_UNIMP,
949 "%08x: unimplemented address, size: %d\n", addr,
950 size);
951 break;
952 }
953 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
954 asi, size, addr, val);
955 #ifdef DEBUG_MXCC
956 dump_mxcc(env);
957 #endif
958 break;
959 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
960 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
961 {
962 int mmulev;
963
964 mmulev = (addr >> 8) & 15;
965 DPRINTF_MMU("mmu flush level %d\n", mmulev);
966 switch (mmulev) {
967 case 0: /* flush page */
968 tlb_flush_page(cs, addr & 0xfffff000);
969 break;
970 case 1: /* flush segment (256k) */
971 case 2: /* flush region (16M) */
972 case 3: /* flush context (4G) */
973 case 4: /* flush entire */
974 tlb_flush(cs);
975 break;
976 default:
977 break;
978 }
979 #ifdef DEBUG_MMU
980 dump_mmu(env);
981 #endif
982 }
983 break;
984 case ASI_M_MMUREGS: /* write MMU regs */
985 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
986 {
987 int reg = (addr >> 8) & 0x1f;
988 uint32_t oldreg;
989
990 oldreg = env->mmuregs[reg];
991 switch (reg) {
992 case 0: /* Control Register */
993 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
994 (val & 0x00ffffff);
995 /* Mappings generated during no-fault mode
996 are invalid in normal mode. */
997 if ((oldreg ^ env->mmuregs[reg])
998 & (MMU_NF | env->def.mmu_bm)) {
999 tlb_flush(cs);
1000 }
1001 break;
1002 case 1: /* Context Table Pointer Register */
1003 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1004 break;
1005 case 2: /* Context Register */
1006 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1007 if (oldreg != env->mmuregs[reg]) {
1008 /* we flush when the MMU context changes because
1009 QEMU has no MMU context support */
1010 tlb_flush(cs);
1011 }
1012 break;
1013 case 3: /* Synchronous Fault Status Register with Clear */
1014 case 4: /* Synchronous Fault Address Register */
1015 break;
1016 case 0x10: /* TLB Replacement Control Register */
1017 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1018 break;
1019 case 0x13: /* Synchronous Fault Status Register with Read
1020 and Clear */
1021 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1022 break;
1023 case 0x14: /* Synchronous Fault Address Register */
1024 env->mmuregs[4] = val;
1025 break;
1026 default:
1027 env->mmuregs[reg] = val;
1028 break;
1029 }
1030 if (oldreg != env->mmuregs[reg]) {
1031 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1032 reg, oldreg, env->mmuregs[reg]);
1033 }
1034 #ifdef DEBUG_MMU
1035 dump_mmu(env);
1036 #endif
1037 }
1038 break;
1039 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1040 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
1041 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
1042 break;
1043 case ASI_M_TXTC_TAG: /* I-cache tag */
1044 case ASI_M_TXTC_DATA: /* I-cache data */
1045 case ASI_M_DATAC_TAG: /* D-cache tag */
1046 case ASI_M_DATAC_DATA: /* D-cache data */
1047 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */
1048 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */
1049 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1050 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */
1051 case ASI_M_FLUSH_USER: /* I/D-cache flush user */
1052 break;
1053 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1054 {
1055 MemTxResult result;
1056 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1057
1058 switch (size) {
1059 case 1:
1060 address_space_stb(cs->as, access_addr, val,
1061 MEMTXATTRS_UNSPECIFIED, &result);
1062 break;
1063 case 2:
1064 address_space_stw(cs->as, access_addr, val,
1065 MEMTXATTRS_UNSPECIFIED, &result);
1066 break;
1067 case 4:
1068 default:
1069 address_space_stl(cs->as, access_addr, val,
1070 MEMTXATTRS_UNSPECIFIED, &result);
1071 break;
1072 case 8:
1073 address_space_stq(cs->as, access_addr, val,
1074 MEMTXATTRS_UNSPECIFIED, &result);
1075 break;
1076 }
1077 if (result != MEMTX_OK) {
1078 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1079 size, GETPC());
1080 }
1081 }
1082 break;
1083 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1084 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1085 Turbosparc snoop RAM */
1086 case 0x32: /* store buffer control or Turbosparc page table
1087 descriptor diagnostic */
1088 case 0x36: /* I-cache flash clear */
1089 case 0x37: /* D-cache flash clear */
1090 break;
1091 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1092 {
1093 int reg = (addr >> 8) & 3;
1094
1095 switch (reg) {
1096 case 0: /* Breakpoint Value (Addr) */
1097 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1098 break;
1099 case 1: /* Breakpoint Mask */
1100 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1101 break;
1102 case 2: /* Breakpoint Control */
1103 env->mmubpregs[reg] = (val & 0x7fULL);
1104 break;
1105 case 3: /* Breakpoint Status */
1106 env->mmubpregs[reg] = (val & 0xfULL);
1107 break;
1108 }
1109 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1110 env->mmuregs[reg]);
1111 }
1112 break;
1113 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1114 env->mmubpctrv = val & 0xffffffff;
1115 break;
1116 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1117 env->mmubpctrc = val & 0x3;
1118 break;
1119 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1120 env->mmubpctrs = val & 0x3;
1121 break;
1122 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1123 env->mmubpaction = val & 0x1fff;
1124 break;
1125 case ASI_USERTXT: /* User code access, XXX */
1126 case ASI_KERNELTXT: /* Supervisor code access, XXX */
1127 default:
1128 sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1129 break;
1130
1131 case ASI_USERDATA: /* User data access */
1132 case ASI_KERNELDATA: /* Supervisor data access */
1133 case ASI_P:
1134 case ASI_M_BYPASS: /* MMU passthrough */
1135 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1136 case ASI_M_BCOPY: /* Block copy, sta access */
1137 case ASI_M_BFILL: /* Block fill, stda access */
1138 /* These are always handled inline. */
1139 g_assert_not_reached();
1140 }
1141 #ifdef DEBUG_ASI
1142 dump_asi("write", addr, asi, size, val);
1143 #endif
1144 }
1145
helper_ld_code(CPUSPARCState * env,target_ulong addr,uint32_t oi)1146 uint64_t helper_ld_code(CPUSPARCState *env, target_ulong addr, uint32_t oi)
1147 {
1148 MemOp mop = get_memop(oi);
1149 uintptr_t ra = GETPC();
1150 uint64_t ret;
1151
1152 switch (mop & MO_SIZE) {
1153 case MO_8:
1154 ret = cpu_ldb_code_mmu(env, addr, oi, ra);
1155 if (mop & MO_SIGN) {
1156 ret = (int8_t)ret;
1157 }
1158 break;
1159 case MO_16:
1160 ret = cpu_ldw_code_mmu(env, addr, oi, ra);
1161 if ((mop & MO_BSWAP) != MO_TE) {
1162 ret = bswap16(ret);
1163 }
1164 if (mop & MO_SIGN) {
1165 ret = (int16_t)ret;
1166 }
1167 break;
1168 case MO_32:
1169 ret = cpu_ldl_code_mmu(env, addr, oi, ra);
1170 if ((mop & MO_BSWAP) != MO_TE) {
1171 ret = bswap32(ret);
1172 }
1173 if (mop & MO_SIGN) {
1174 ret = (int32_t)ret;
1175 }
1176 break;
1177 case MO_64:
1178 ret = cpu_ldq_code_mmu(env, addr, oi, ra);
1179 if ((mop & MO_BSWAP) != MO_TE) {
1180 ret = bswap64(ret);
1181 }
1182 break;
1183 default:
1184 g_assert_not_reached();
1185 }
1186 return ret;
1187 }
1188
1189 #endif /* CONFIG_USER_ONLY */
1190 #else /* TARGET_SPARC64 */
1191
1192 #ifdef CONFIG_USER_ONLY
helper_ld_asi(CPUSPARCState * env,target_ulong addr,int asi,uint32_t memop)1193 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1194 int asi, uint32_t memop)
1195 {
1196 int size = 1 << (memop & MO_SIZE);
1197 int sign = memop & MO_SIGN;
1198 uint64_t ret = 0;
1199
1200 if (asi < 0x80) {
1201 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1202 }
1203 do_check_align(env, addr, size - 1, GETPC());
1204 addr = asi_address_mask(env, asi, addr);
1205
1206 switch (asi) {
1207 case ASI_PNF: /* Primary no-fault */
1208 case ASI_PNFL: /* Primary no-fault LE */
1209 case ASI_SNF: /* Secondary no-fault */
1210 case ASI_SNFL: /* Secondary no-fault LE */
1211 if (!page_check_range(addr, size, PAGE_READ)) {
1212 ret = 0;
1213 break;
1214 }
1215 switch (size) {
1216 case 1:
1217 ret = cpu_ldub_data(env, addr);
1218 break;
1219 case 2:
1220 ret = cpu_lduw_data(env, addr);
1221 break;
1222 case 4:
1223 ret = cpu_ldl_data(env, addr);
1224 break;
1225 case 8:
1226 ret = cpu_ldq_data(env, addr);
1227 break;
1228 default:
1229 g_assert_not_reached();
1230 }
1231 break;
1232 break;
1233
1234 case ASI_P: /* Primary */
1235 case ASI_PL: /* Primary LE */
1236 case ASI_S: /* Secondary */
1237 case ASI_SL: /* Secondary LE */
1238 /* These are always handled inline. */
1239 g_assert_not_reached();
1240
1241 default:
1242 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1243 }
1244
1245 /* Convert from little endian */
1246 switch (asi) {
1247 case ASI_PNFL: /* Primary no-fault LE */
1248 case ASI_SNFL: /* Secondary no-fault LE */
1249 switch (size) {
1250 case 2:
1251 ret = bswap16(ret);
1252 break;
1253 case 4:
1254 ret = bswap32(ret);
1255 break;
1256 case 8:
1257 ret = bswap64(ret);
1258 break;
1259 }
1260 }
1261
1262 /* Convert to signed number */
1263 if (sign) {
1264 switch (size) {
1265 case 1:
1266 ret = (int8_t) ret;
1267 break;
1268 case 2:
1269 ret = (int16_t) ret;
1270 break;
1271 case 4:
1272 ret = (int32_t) ret;
1273 break;
1274 }
1275 }
1276 #ifdef DEBUG_ASI
1277 dump_asi("read", addr, asi, size, ret);
1278 #endif
1279 return ret;
1280 }
1281
helper_st_asi(CPUSPARCState * env,target_ulong addr,target_ulong val,int asi,uint32_t memop)1282 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1283 int asi, uint32_t memop)
1284 {
1285 int size = 1 << (memop & MO_SIZE);
1286 #ifdef DEBUG_ASI
1287 dump_asi("write", addr, asi, size, val);
1288 #endif
1289 if (asi < 0x80) {
1290 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1291 }
1292 do_check_align(env, addr, size - 1, GETPC());
1293
1294 switch (asi) {
1295 case ASI_P: /* Primary */
1296 case ASI_PL: /* Primary LE */
1297 case ASI_S: /* Secondary */
1298 case ASI_SL: /* Secondary LE */
1299 /* These are always handled inline. */
1300 g_assert_not_reached();
1301
1302 case ASI_PNF: /* Primary no-fault, RO */
1303 case ASI_SNF: /* Secondary no-fault, RO */
1304 case ASI_PNFL: /* Primary no-fault LE, RO */
1305 case ASI_SNFL: /* Secondary no-fault LE, RO */
1306 default:
1307 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1308 }
1309 }
1310
1311 #else /* CONFIG_USER_ONLY */
1312
helper_ld_asi(CPUSPARCState * env,target_ulong addr,int asi,uint32_t memop)1313 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1314 int asi, uint32_t memop)
1315 {
1316 int size = 1 << (memop & MO_SIZE);
1317 int sign = memop & MO_SIGN;
1318 CPUState *cs = env_cpu(env);
1319 uint64_t ret = 0;
1320 #if defined(DEBUG_ASI)
1321 target_ulong last_addr = addr;
1322 #endif
1323
1324 asi &= 0xff;
1325
1326 do_check_asi(env, asi, GETPC());
1327 do_check_align(env, addr, size - 1, GETPC());
1328 addr = asi_address_mask(env, asi, addr);
1329
1330 switch (asi) {
1331 case ASI_PNF:
1332 case ASI_PNFL:
1333 case ASI_SNF:
1334 case ASI_SNFL:
1335 {
1336 MemOpIdx oi;
1337 int idx = (env->pstate & PS_PRIV
1338 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1339 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1340
1341 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1342 #ifdef DEBUG_ASI
1343 dump_asi("read ", last_addr, asi, size, ret);
1344 #endif
1345 /* exception_index is set in get_physical_address_data. */
1346 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1347 }
1348 oi = make_memop_idx(memop, idx);
1349 switch (size) {
1350 case 1:
1351 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1352 break;
1353 case 2:
1354 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1355 break;
1356 case 4:
1357 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1358 break;
1359 case 8:
1360 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1361 break;
1362 default:
1363 g_assert_not_reached();
1364 }
1365 }
1366 break;
1367
1368 case ASI_AIUP: /* As if user primary */
1369 case ASI_AIUS: /* As if user secondary */
1370 case ASI_AIUPL: /* As if user primary LE */
1371 case ASI_AIUSL: /* As if user secondary LE */
1372 case ASI_P: /* Primary */
1373 case ASI_S: /* Secondary */
1374 case ASI_PL: /* Primary LE */
1375 case ASI_SL: /* Secondary LE */
1376 case ASI_REAL: /* Bypass */
1377 case ASI_REAL_IO: /* Bypass, non-cacheable */
1378 case ASI_REAL_L: /* Bypass LE */
1379 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1380 case ASI_N: /* Nucleus */
1381 case ASI_NL: /* Nucleus Little Endian (LE) */
1382 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1383 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1384 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1385 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1386 case ASI_TWINX_REAL: /* Real address, twinx */
1387 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1388 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1389 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1390 case ASI_TWINX_N: /* Nucleus, twinx */
1391 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1392 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1393 case ASI_TWINX_P: /* Primary, twinx */
1394 case ASI_TWINX_PL: /* Primary, twinx, LE */
1395 case ASI_TWINX_S: /* Secondary, twinx */
1396 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1397 case ASI_MON_P:
1398 case ASI_MON_S:
1399 case ASI_MON_AIUP:
1400 case ASI_MON_AIUS:
1401 /* These are always handled inline. */
1402 g_assert_not_reached();
1403
1404 case ASI_UPA_CONFIG: /* UPA config */
1405 /* XXX */
1406 break;
1407 case ASI_LSU_CONTROL: /* LSU */
1408 ret = env->lsu;
1409 break;
1410 case ASI_IMMU: /* I-MMU regs */
1411 {
1412 int reg = (addr >> 3) & 0xf;
1413 switch (reg) {
1414 case 0:
1415 /* 0x00 I-TSB Tag Target register */
1416 ret = ultrasparc_tag_target(env->immu.tag_access);
1417 break;
1418 case 3: /* SFSR */
1419 ret = env->immu.sfsr;
1420 break;
1421 case 5: /* TSB access */
1422 ret = env->immu.tsb;
1423 break;
1424 case 6:
1425 /* 0x30 I-TSB Tag Access register */
1426 ret = env->immu.tag_access;
1427 break;
1428 default:
1429 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1430 ret = 0;
1431 }
1432 break;
1433 }
1434 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1435 {
1436 /* env->immuregs[5] holds I-MMU TSB register value
1437 env->immuregs[6] holds I-MMU Tag Access register value */
1438 ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1439 break;
1440 }
1441 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1442 {
1443 /* env->immuregs[5] holds I-MMU TSB register value
1444 env->immuregs[6] holds I-MMU Tag Access register value */
1445 ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1446 break;
1447 }
1448 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1449 {
1450 int reg = (addr >> 3) & 0x3f;
1451
1452 ret = env->itlb[reg].tte;
1453 break;
1454 }
1455 case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1456 {
1457 int reg = (addr >> 3) & 0x3f;
1458
1459 ret = env->itlb[reg].tag;
1460 break;
1461 }
1462 case ASI_DMMU: /* D-MMU regs */
1463 {
1464 int reg = (addr >> 3) & 0xf;
1465 switch (reg) {
1466 case 0:
1467 /* 0x00 D-TSB Tag Target register */
1468 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1469 break;
1470 case 1: /* 0x08 Primary Context */
1471 ret = env->dmmu.mmu_primary_context;
1472 break;
1473 case 2: /* 0x10 Secondary Context */
1474 ret = env->dmmu.mmu_secondary_context;
1475 break;
1476 case 3: /* SFSR */
1477 ret = env->dmmu.sfsr;
1478 break;
1479 case 4: /* 0x20 SFAR */
1480 ret = env->dmmu.sfar;
1481 break;
1482 case 5: /* 0x28 TSB access */
1483 ret = env->dmmu.tsb;
1484 break;
1485 case 6: /* 0x30 D-TSB Tag Access register */
1486 ret = env->dmmu.tag_access;
1487 break;
1488 case 7:
1489 ret = env->dmmu.virtual_watchpoint;
1490 break;
1491 case 8:
1492 ret = env->dmmu.physical_watchpoint;
1493 break;
1494 default:
1495 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1496 ret = 0;
1497 }
1498 break;
1499 }
1500 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1501 {
1502 /* env->dmmuregs[5] holds D-MMU TSB register value
1503 env->dmmuregs[6] holds D-MMU Tag Access register value */
1504 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1505 break;
1506 }
1507 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1508 {
1509 /* env->dmmuregs[5] holds D-MMU TSB register value
1510 env->dmmuregs[6] holds D-MMU Tag Access register value */
1511 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1512 break;
1513 }
1514 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1515 {
1516 int reg = (addr >> 3) & 0x3f;
1517
1518 ret = env->dtlb[reg].tte;
1519 break;
1520 }
1521 case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1522 {
1523 int reg = (addr >> 3) & 0x3f;
1524
1525 ret = env->dtlb[reg].tag;
1526 break;
1527 }
1528 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1529 break;
1530 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1531 ret = env->ivec_status;
1532 break;
1533 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1534 {
1535 int reg = (addr >> 4) & 0x3;
1536 if (reg < 3) {
1537 ret = env->ivec_data[reg];
1538 }
1539 break;
1540 }
1541 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1542 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1543 /* Hyperprivileged access only */
1544 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1545 }
1546 /* fall through */
1547 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1548 {
1549 unsigned int i = (addr >> 3) & 0x7;
1550 ret = env->scratch[i];
1551 break;
1552 }
1553 case ASI_MMU: /* UA2005 Context ID registers */
1554 switch ((addr >> 3) & 0x3) {
1555 case 1:
1556 ret = env->dmmu.mmu_primary_context;
1557 break;
1558 case 2:
1559 ret = env->dmmu.mmu_secondary_context;
1560 break;
1561 default:
1562 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1563 }
1564 break;
1565 case ASI_DCACHE_DATA: /* D-cache data */
1566 case ASI_DCACHE_TAG: /* D-cache tag access */
1567 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1568 case ASI_AFSR: /* E-cache asynchronous fault status */
1569 case ASI_AFAR: /* E-cache asynchronous fault address */
1570 case ASI_EC_TAG_DATA: /* E-cache tag data */
1571 case ASI_IC_INSTR: /* I-cache instruction access */
1572 case ASI_IC_TAG: /* I-cache tag access */
1573 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1574 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1575 case ASI_EC_W: /* E-cache tag */
1576 case ASI_EC_R: /* E-cache tag */
1577 break;
1578 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1579 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */
1580 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */
1581 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */
1582 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
1583 case ASI_INTR_W: /* Interrupt vector, WO */
1584 default:
1585 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1586 ret = 0;
1587 break;
1588 }
1589
1590 /* Convert to signed number */
1591 if (sign) {
1592 switch (size) {
1593 case 1:
1594 ret = (int8_t) ret;
1595 break;
1596 case 2:
1597 ret = (int16_t) ret;
1598 break;
1599 case 4:
1600 ret = (int32_t) ret;
1601 break;
1602 default:
1603 break;
1604 }
1605 }
1606 #ifdef DEBUG_ASI
1607 dump_asi("read ", last_addr, asi, size, ret);
1608 #endif
1609 return ret;
1610 }
1611
helper_st_asi(CPUSPARCState * env,target_ulong addr,target_ulong val,int asi,uint32_t memop)1612 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1613 int asi, uint32_t memop)
1614 {
1615 int size = 1 << (memop & MO_SIZE);
1616 CPUState *cs = env_cpu(env);
1617
1618 #ifdef DEBUG_ASI
1619 dump_asi("write", addr, asi, size, val);
1620 #endif
1621
1622 asi &= 0xff;
1623
1624 do_check_asi(env, asi, GETPC());
1625 do_check_align(env, addr, size - 1, GETPC());
1626 addr = asi_address_mask(env, asi, addr);
1627
1628 switch (asi) {
1629 case ASI_AIUP: /* As if user primary */
1630 case ASI_AIUS: /* As if user secondary */
1631 case ASI_AIUPL: /* As if user primary LE */
1632 case ASI_AIUSL: /* As if user secondary LE */
1633 case ASI_P: /* Primary */
1634 case ASI_S: /* Secondary */
1635 case ASI_PL: /* Primary LE */
1636 case ASI_SL: /* Secondary LE */
1637 case ASI_REAL: /* Bypass */
1638 case ASI_REAL_IO: /* Bypass, non-cacheable */
1639 case ASI_REAL_L: /* Bypass LE */
1640 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1641 case ASI_N: /* Nucleus */
1642 case ASI_NL: /* Nucleus Little Endian (LE) */
1643 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1644 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1645 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1646 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1647 case ASI_TWINX_REAL: /* Real address, twinx */
1648 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1649 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1650 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1651 case ASI_TWINX_N: /* Nucleus, twinx */
1652 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1653 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1654 case ASI_TWINX_P: /* Primary, twinx */
1655 case ASI_TWINX_PL: /* Primary, twinx, LE */
1656 case ASI_TWINX_S: /* Secondary, twinx */
1657 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1658 /* These are always handled inline. */
1659 g_assert_not_reached();
1660 /* these ASIs have different functions on UltraSPARC-IIIi
1661 * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1662 */
1663 case 0x31:
1664 case 0x32:
1665 case 0x39:
1666 case 0x3a:
1667 if (cpu_has_hypervisor(env)) {
1668 /* UA2005
1669 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1670 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1671 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1672 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1673 */
1674 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1675 env->dmmu.sun4v_tsb_pointers[idx] = val;
1676 } else {
1677 goto illegal_insn;
1678 }
1679 break;
1680 case 0x33:
1681 case 0x3b:
1682 if (cpu_has_hypervisor(env)) {
1683 /* UA2005
1684 * ASI_DMMU_CTX_ZERO_CONFIG
1685 * ASI_DMMU_CTX_NONZERO_CONFIG
1686 */
1687 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1688 } else {
1689 goto illegal_insn;
1690 }
1691 break;
1692 case 0x35:
1693 case 0x36:
1694 case 0x3d:
1695 case 0x3e:
1696 if (cpu_has_hypervisor(env)) {
1697 /* UA2005
1698 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1699 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1700 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1701 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1702 */
1703 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1704 env->immu.sun4v_tsb_pointers[idx] = val;
1705 } else {
1706 goto illegal_insn;
1707 }
1708 break;
1709 case 0x37:
1710 case 0x3f:
1711 if (cpu_has_hypervisor(env)) {
1712 /* UA2005
1713 * ASI_IMMU_CTX_ZERO_CONFIG
1714 * ASI_IMMU_CTX_NONZERO_CONFIG
1715 */
1716 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1717 } else {
1718 goto illegal_insn;
1719 }
1720 break;
1721 case ASI_UPA_CONFIG: /* UPA config */
1722 /* XXX */
1723 return;
1724 case ASI_LSU_CONTROL: /* LSU */
1725 env->lsu = val & (DMMU_E | IMMU_E);
1726 return;
1727 case ASI_IMMU: /* I-MMU regs */
1728 {
1729 int reg = (addr >> 3) & 0xf;
1730 uint64_t oldreg;
1731
1732 oldreg = env->immu.mmuregs[reg];
1733 switch (reg) {
1734 case 0: /* RO */
1735 return;
1736 case 1: /* Not in I-MMU */
1737 case 2:
1738 return;
1739 case 3: /* SFSR */
1740 if ((val & 1) == 0) {
1741 val = 0; /* Clear SFSR */
1742 }
1743 env->immu.sfsr = val;
1744 break;
1745 case 4: /* RO */
1746 return;
1747 case 5: /* TSB access */
1748 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1749 PRIx64 "\n", env->immu.tsb, val);
1750 env->immu.tsb = val;
1751 break;
1752 case 6: /* Tag access */
1753 env->immu.tag_access = val;
1754 break;
1755 case 7:
1756 case 8:
1757 return;
1758 default:
1759 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1760 break;
1761 }
1762
1763 if (oldreg != env->immu.mmuregs[reg]) {
1764 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1765 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1766 }
1767 #ifdef DEBUG_MMU
1768 dump_mmu(env);
1769 #endif
1770 return;
1771 }
1772 case ASI_ITLB_DATA_IN: /* I-MMU data in */
1773 /* ignore real translation entries */
1774 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1775 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1776 val, "immu", env, addr);
1777 }
1778 return;
1779 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1780 {
1781 /* TODO: auto demap */
1782
1783 unsigned int i = (addr >> 3) & 0x3f;
1784
1785 /* ignore real translation entries */
1786 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1787 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1788 sun4v_tte_to_sun4u(env, addr, val), env);
1789 }
1790 #ifdef DEBUG_MMU
1791 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1792 dump_mmu(env);
1793 #endif
1794 return;
1795 }
1796 case ASI_IMMU_DEMAP: /* I-MMU demap */
1797 demap_tlb(env->itlb, addr, "immu", env);
1798 return;
1799 case ASI_DMMU: /* D-MMU regs */
1800 {
1801 int reg = (addr >> 3) & 0xf;
1802 uint64_t oldreg;
1803
1804 oldreg = env->dmmu.mmuregs[reg];
1805 switch (reg) {
1806 case 0: /* RO */
1807 case 4:
1808 return;
1809 case 3: /* SFSR */
1810 if ((val & 1) == 0) {
1811 val = 0; /* Clear SFSR, Fault address */
1812 env->dmmu.sfar = 0;
1813 }
1814 env->dmmu.sfsr = val;
1815 break;
1816 case 1: /* Primary context */
1817 env->dmmu.mmu_primary_context = val;
1818 /* can be optimized to only flush MMU_USER_IDX
1819 and MMU_KERNEL_IDX entries */
1820 tlb_flush(cs);
1821 break;
1822 case 2: /* Secondary context */
1823 env->dmmu.mmu_secondary_context = val;
1824 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1825 and MMU_KERNEL_SECONDARY_IDX entries */
1826 tlb_flush(cs);
1827 break;
1828 case 5: /* TSB access */
1829 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1830 PRIx64 "\n", env->dmmu.tsb, val);
1831 env->dmmu.tsb = val;
1832 break;
1833 case 6: /* Tag access */
1834 env->dmmu.tag_access = val;
1835 break;
1836 case 7: /* Virtual Watchpoint */
1837 env->dmmu.virtual_watchpoint = val;
1838 break;
1839 case 8: /* Physical Watchpoint */
1840 env->dmmu.physical_watchpoint = val;
1841 break;
1842 default:
1843 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1844 break;
1845 }
1846
1847 if (oldreg != env->dmmu.mmuregs[reg]) {
1848 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1849 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1850 }
1851 #ifdef DEBUG_MMU
1852 dump_mmu(env);
1853 #endif
1854 return;
1855 }
1856 case ASI_DTLB_DATA_IN: /* D-MMU data in */
1857 /* ignore real translation entries */
1858 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1859 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1860 val, "dmmu", env, addr);
1861 }
1862 return;
1863 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1864 {
1865 unsigned int i = (addr >> 3) & 0x3f;
1866
1867 /* ignore real translation entries */
1868 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1869 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1870 sun4v_tte_to_sun4u(env, addr, val), env);
1871 }
1872 #ifdef DEBUG_MMU
1873 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1874 dump_mmu(env);
1875 #endif
1876 return;
1877 }
1878 case ASI_DMMU_DEMAP: /* D-MMU demap */
1879 demap_tlb(env->dtlb, addr, "dmmu", env);
1880 return;
1881 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1882 env->ivec_status = val & 0x20;
1883 return;
1884 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1885 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1886 /* Hyperprivileged access only */
1887 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1888 }
1889 /* fall through */
1890 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1891 {
1892 unsigned int i = (addr >> 3) & 0x7;
1893 env->scratch[i] = val;
1894 return;
1895 }
1896 case ASI_MMU: /* UA2005 Context ID registers */
1897 {
1898 switch ((addr >> 3) & 0x3) {
1899 case 1:
1900 env->dmmu.mmu_primary_context = val;
1901 env->immu.mmu_primary_context = val;
1902 tlb_flush_by_mmuidx(cs,
1903 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1904 break;
1905 case 2:
1906 env->dmmu.mmu_secondary_context = val;
1907 env->immu.mmu_secondary_context = val;
1908 tlb_flush_by_mmuidx(cs,
1909 (1 << MMU_USER_SECONDARY_IDX) |
1910 (1 << MMU_KERNEL_SECONDARY_IDX));
1911 break;
1912 default:
1913 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1914 }
1915 }
1916 return;
1917 case ASI_QUEUE: /* UA2005 CPU mondo queue */
1918 case ASI_DCACHE_DATA: /* D-cache data */
1919 case ASI_DCACHE_TAG: /* D-cache tag access */
1920 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1921 case ASI_AFSR: /* E-cache asynchronous fault status */
1922 case ASI_AFAR: /* E-cache asynchronous fault address */
1923 case ASI_EC_TAG_DATA: /* E-cache tag data */
1924 case ASI_IC_INSTR: /* I-cache instruction access */
1925 case ASI_IC_TAG: /* I-cache tag access */
1926 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1927 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1928 case ASI_EC_W: /* E-cache tag */
1929 case ASI_EC_R: /* E-cache tag */
1930 return;
1931 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1932 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1933 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1934 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1935 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1936 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1937 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1938 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1939 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1940 case ASI_PNF: /* Primary no-fault, RO */
1941 case ASI_SNF: /* Secondary no-fault, RO */
1942 case ASI_PNFL: /* Primary no-fault LE, RO */
1943 case ASI_SNFL: /* Secondary no-fault LE, RO */
1944 default:
1945 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1946 return;
1947 illegal_insn:
1948 cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1949 }
1950 }
1951 #endif /* CONFIG_USER_ONLY */
1952 #endif /* TARGET_SPARC64 */
1953
1954 #if !defined(CONFIG_USER_ONLY)
1955
sparc_cpu_do_transaction_failed(CPUState * cs,hwaddr physaddr,vaddr addr,unsigned size,MMUAccessType access_type,int mmu_idx,MemTxAttrs attrs,MemTxResult response,uintptr_t retaddr)1956 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1957 vaddr addr, unsigned size,
1958 MMUAccessType access_type,
1959 int mmu_idx, MemTxAttrs attrs,
1960 MemTxResult response, uintptr_t retaddr)
1961 {
1962 bool is_write = access_type == MMU_DATA_STORE;
1963 bool is_exec = access_type == MMU_INST_FETCH;
1964 bool is_asi = false;
1965
1966 sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1967 is_asi, size, retaddr);
1968 }
1969 #endif
1970