xref: /openbmc/qemu/target/sh4/op_helper.c (revision f723f626)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "fpu/softfloat.h"
25 
26 #ifndef CONFIG_USER_ONLY
27 
28 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
29                                     MMUAccessType access_type,
30                                     int mmu_idx, uintptr_t retaddr)
31 {
32     CPUSH4State *env = cs->env_ptr;
33 
34     env->tea = addr;
35     switch (access_type) {
36     case MMU_INST_FETCH:
37     case MMU_DATA_LOAD:
38         cs->exception_index = 0x0e0;
39         break;
40     case MMU_DATA_STORE:
41         cs->exception_index = 0x100;
42         break;
43     default:
44         g_assert_not_reached();
45     }
46     cpu_loop_exit_restore(cs, retaddr);
47 }
48 
49 #endif
50 
51 void helper_ldtlb(CPUSH4State *env)
52 {
53 #ifdef CONFIG_USER_ONLY
54     cpu_abort(env_cpu(env), "Unhandled ldtlb");
55 #else
56     cpu_load_tlb(env);
57 #endif
58 }
59 
60 static inline G_NORETURN
61 void raise_exception(CPUSH4State *env, int index,
62                      uintptr_t retaddr)
63 {
64     CPUState *cs = env_cpu(env);
65 
66     cs->exception_index = index;
67     cpu_loop_exit_restore(cs, retaddr);
68 }
69 
70 void helper_raise_illegal_instruction(CPUSH4State *env)
71 {
72     raise_exception(env, 0x180, 0);
73 }
74 
75 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
76 {
77     raise_exception(env, 0x1a0, 0);
78 }
79 
80 void helper_raise_fpu_disable(CPUSH4State *env)
81 {
82     raise_exception(env, 0x800, 0);
83 }
84 
85 void helper_raise_slot_fpu_disable(CPUSH4State *env)
86 {
87     raise_exception(env, 0x820, 0);
88 }
89 
90 void helper_sleep(CPUSH4State *env)
91 {
92     CPUState *cs = env_cpu(env);
93 
94     cs->halted = 1;
95     env->in_sleep = 1;
96     raise_exception(env, EXCP_HLT, 0);
97 }
98 
99 void helper_trapa(CPUSH4State *env, uint32_t tra)
100 {
101     env->tra = tra << 2;
102     raise_exception(env, 0x160, 0);
103 }
104 
105 void helper_exclusive(CPUSH4State *env)
106 {
107     /* We do not want cpu_restore_state to run.  */
108     cpu_loop_exit_atomic(env_cpu(env), 0);
109 }
110 
111 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
112 {
113     if (cpu_sh4_is_cached (env, address))
114     {
115         memory_content *r = g_new(memory_content, 1);
116 
117 	r->address = address;
118 	r->value = value;
119 	r->next = NULL;
120 
121 	*(env->movcal_backup_tail) = r;
122 	env->movcal_backup_tail = &(r->next);
123     }
124 }
125 
126 void helper_discard_movcal_backup(CPUSH4State *env)
127 {
128     memory_content *current = env->movcal_backup;
129 
130     while(current)
131     {
132 	memory_content *next = current->next;
133         g_free(current);
134 	env->movcal_backup = current = next;
135 	if (current == NULL)
136 	    env->movcal_backup_tail = &(env->movcal_backup);
137     }
138 }
139 
140 void helper_ocbi(CPUSH4State *env, uint32_t address)
141 {
142     memory_content **current = &(env->movcal_backup);
143     while (*current)
144     {
145 	uint32_t a = (*current)->address;
146 	if ((a & ~0x1F) == (address & ~0x1F))
147 	{
148 	    memory_content *next = (*current)->next;
149             cpu_stl_data(env, a, (*current)->value);
150 
151 	    if (next == NULL)
152 	    {
153 		env->movcal_backup_tail = current;
154 	    }
155 
156             g_free(*current);
157 	    *current = next;
158 	    break;
159 	}
160     }
161 }
162 
163 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
164 {
165     int64_t res;
166 
167     res = ((uint64_t) env->mach << 32) | env->macl;
168     res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
169     env->mach = (res >> 32) & 0xffffffff;
170     env->macl = res & 0xffffffff;
171     if (env->sr & (1u << SR_S)) {
172 	if (res < 0)
173 	    env->mach |= 0xffff0000;
174 	else
175 	    env->mach &= 0x00007fff;
176     }
177 }
178 
179 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
180 {
181     int64_t res;
182 
183     res = ((uint64_t) env->mach << 32) | env->macl;
184     res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
185     env->mach = (res >> 32) & 0xffffffff;
186     env->macl = res & 0xffffffff;
187     if (env->sr & (1u << SR_S)) {
188 	if (res < -0x80000000) {
189 	    env->mach = 1;
190 	    env->macl = 0x80000000;
191 	} else if (res > 0x000000007fffffff) {
192 	    env->mach = 1;
193 	    env->macl = 0x7fffffff;
194 	}
195     }
196 }
197 
198 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
199 {
200     env->fpscr = val & FPSCR_MASK;
201     if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
202 	set_float_rounding_mode(float_round_to_zero, &env->fp_status);
203     } else {
204 	set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
205     }
206     set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
207 }
208 
209 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
210 {
211     int xcpt, cause, enable;
212 
213     xcpt = get_float_exception_flags(&env->fp_status);
214 
215     /* Clear the cause entries */
216     env->fpscr &= ~FPSCR_CAUSE_MASK;
217 
218     if (unlikely(xcpt)) {
219         if (xcpt & float_flag_invalid) {
220             env->fpscr |= FPSCR_CAUSE_V;
221         }
222         if (xcpt & float_flag_divbyzero) {
223             env->fpscr |= FPSCR_CAUSE_Z;
224         }
225         if (xcpt & float_flag_overflow) {
226             env->fpscr |= FPSCR_CAUSE_O;
227         }
228         if (xcpt & float_flag_underflow) {
229             env->fpscr |= FPSCR_CAUSE_U;
230         }
231         if (xcpt & float_flag_inexact) {
232             env->fpscr |= FPSCR_CAUSE_I;
233         }
234 
235         /* Accumulate in flag entries */
236         env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
237                       >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
238 
239         /* Generate an exception if enabled */
240         cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
241         enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
242         if (cause & enable) {
243             raise_exception(env, 0x120, retaddr);
244         }
245     }
246 }
247 
248 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
249 {
250     set_float_exception_flags(0, &env->fp_status);
251     t0 = float32_add(t0, t1, &env->fp_status);
252     update_fpscr(env, GETPC());
253     return t0;
254 }
255 
256 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
257 {
258     set_float_exception_flags(0, &env->fp_status);
259     t0 = float64_add(t0, t1, &env->fp_status);
260     update_fpscr(env, GETPC());
261     return t0;
262 }
263 
264 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
265 {
266     int relation;
267 
268     set_float_exception_flags(0, &env->fp_status);
269     relation = float32_compare(t0, t1, &env->fp_status);
270     update_fpscr(env, GETPC());
271     return relation == float_relation_equal;
272 }
273 
274 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
275 {
276     int relation;
277 
278     set_float_exception_flags(0, &env->fp_status);
279     relation = float64_compare(t0, t1, &env->fp_status);
280     update_fpscr(env, GETPC());
281     return relation == float_relation_equal;
282 }
283 
284 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
285 {
286     int relation;
287 
288     set_float_exception_flags(0, &env->fp_status);
289     relation = float32_compare(t0, t1, &env->fp_status);
290     update_fpscr(env, GETPC());
291     return relation == float_relation_greater;
292 }
293 
294 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
295 {
296     int relation;
297 
298     set_float_exception_flags(0, &env->fp_status);
299     relation = float64_compare(t0, t1, &env->fp_status);
300     update_fpscr(env, GETPC());
301     return relation == float_relation_greater;
302 }
303 
304 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
305 {
306     float64 ret;
307     set_float_exception_flags(0, &env->fp_status);
308     ret = float32_to_float64(t0, &env->fp_status);
309     update_fpscr(env, GETPC());
310     return ret;
311 }
312 
313 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
314 {
315     float32 ret;
316     set_float_exception_flags(0, &env->fp_status);
317     ret = float64_to_float32(t0, &env->fp_status);
318     update_fpscr(env, GETPC());
319     return ret;
320 }
321 
322 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
323 {
324     set_float_exception_flags(0, &env->fp_status);
325     t0 = float32_div(t0, t1, &env->fp_status);
326     update_fpscr(env, GETPC());
327     return t0;
328 }
329 
330 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
331 {
332     set_float_exception_flags(0, &env->fp_status);
333     t0 = float64_div(t0, t1, &env->fp_status);
334     update_fpscr(env, GETPC());
335     return t0;
336 }
337 
338 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
339 {
340     float32 ret;
341     set_float_exception_flags(0, &env->fp_status);
342     ret = int32_to_float32(t0, &env->fp_status);
343     update_fpscr(env, GETPC());
344     return ret;
345 }
346 
347 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
348 {
349     float64 ret;
350     set_float_exception_flags(0, &env->fp_status);
351     ret = int32_to_float64(t0, &env->fp_status);
352     update_fpscr(env, GETPC());
353     return ret;
354 }
355 
356 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
357 {
358     set_float_exception_flags(0, &env->fp_status);
359     t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
360     update_fpscr(env, GETPC());
361     return t0;
362 }
363 
364 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
365 {
366     set_float_exception_flags(0, &env->fp_status);
367     t0 = float32_mul(t0, t1, &env->fp_status);
368     update_fpscr(env, GETPC());
369     return t0;
370 }
371 
372 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
373 {
374     set_float_exception_flags(0, &env->fp_status);
375     t0 = float64_mul(t0, t1, &env->fp_status);
376     update_fpscr(env, GETPC());
377     return t0;
378 }
379 
380 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
381 {
382     set_float_exception_flags(0, &env->fp_status);
383     t0 = float32_sqrt(t0, &env->fp_status);
384     update_fpscr(env, GETPC());
385     return t0;
386 }
387 
388 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
389 {
390     set_float_exception_flags(0, &env->fp_status);
391     t0 = float64_sqrt(t0, &env->fp_status);
392     update_fpscr(env, GETPC());
393     return t0;
394 }
395 
396 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
397 {
398     set_float_exception_flags(0, &env->fp_status);
399     /* "Approximate" 1/sqrt(x) via actual computation.  */
400     t0 = float32_sqrt(t0, &env->fp_status);
401     t0 = float32_div(float32_one, t0, &env->fp_status);
402     /*
403      * Since this is supposed to be an approximation, an imprecision
404      * exception is required.  One supposes this also follows the usual
405      * IEEE rule that other exceptions take precedence.
406      */
407     if (get_float_exception_flags(&env->fp_status) == 0) {
408         set_float_exception_flags(float_flag_inexact, &env->fp_status);
409     }
410     update_fpscr(env, GETPC());
411     return t0;
412 }
413 
414 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
415 {
416     set_float_exception_flags(0, &env->fp_status);
417     t0 = float32_sub(t0, t1, &env->fp_status);
418     update_fpscr(env, GETPC());
419     return t0;
420 }
421 
422 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
423 {
424     set_float_exception_flags(0, &env->fp_status);
425     t0 = float64_sub(t0, t1, &env->fp_status);
426     update_fpscr(env, GETPC());
427     return t0;
428 }
429 
430 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
431 {
432     uint32_t ret;
433     set_float_exception_flags(0, &env->fp_status);
434     ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
435     update_fpscr(env, GETPC());
436     return ret;
437 }
438 
439 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
440 {
441     uint32_t ret;
442     set_float_exception_flags(0, &env->fp_status);
443     ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
444     update_fpscr(env, GETPC());
445     return ret;
446 }
447 
448 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
449 {
450     int bank, i;
451     float32 r, p;
452 
453     bank = (env->sr & FPSCR_FR) ? 16 : 0;
454     r = float32_zero;
455     set_float_exception_flags(0, &env->fp_status);
456 
457     for (i = 0 ; i < 4 ; i++) {
458         p = float32_mul(env->fregs[bank + m + i],
459                         env->fregs[bank + n + i],
460                         &env->fp_status);
461         r = float32_add(r, p, &env->fp_status);
462     }
463     update_fpscr(env, GETPC());
464 
465     env->fregs[bank + n + 3] = r;
466 }
467 
468 void helper_ftrv(CPUSH4State *env, uint32_t n)
469 {
470     int bank_matrix, bank_vector;
471     int i, j;
472     float32 r[4];
473     float32 p;
474 
475     bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
476     bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
477     set_float_exception_flags(0, &env->fp_status);
478     for (i = 0 ; i < 4 ; i++) {
479         r[i] = float32_zero;
480         for (j = 0 ; j < 4 ; j++) {
481             p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
482                             env->fregs[bank_vector + j],
483                             &env->fp_status);
484             r[i] = float32_add(r[i], p, &env->fp_status);
485         }
486     }
487     update_fpscr(env, GETPC());
488 
489     for (i = 0 ; i < 4 ; i++) {
490         env->fregs[bank_vector + i] = r[i];
491     }
492 }
493