xref: /openbmc/qemu/target/sh4/op_helper.c (revision ba632924)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "fpu/softfloat.h"
25 
26 #ifndef CONFIG_USER_ONLY
27 
28 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
29                                     MMUAccessType access_type,
30                                     int mmu_idx, uintptr_t retaddr)
31 {
32     switch (access_type) {
33     case MMU_INST_FETCH:
34     case MMU_DATA_LOAD:
35         cs->exception_index = 0x0e0;
36         break;
37     case MMU_DATA_STORE:
38         cs->exception_index = 0x100;
39         break;
40     }
41     cpu_loop_exit_restore(cs, retaddr);
42 }
43 
44 void tlb_fill(CPUState *cs, target_ulong addr, int size,
45               MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
46 {
47     int ret;
48 
49     ret = superh_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
50     if (ret) {
51         /* now we have a real cpu fault */
52         cpu_loop_exit_restore(cs, retaddr);
53     }
54 }
55 
56 #endif
57 
58 void helper_ldtlb(CPUSH4State *env)
59 {
60 #ifdef CONFIG_USER_ONLY
61     SuperHCPU *cpu = sh_env_get_cpu(env);
62 
63     /* XXXXX */
64     cpu_abort(CPU(cpu), "Unhandled ldtlb");
65 #else
66     cpu_load_tlb(env);
67 #endif
68 }
69 
70 static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
71                                                  uintptr_t retaddr)
72 {
73     CPUState *cs = CPU(sh_env_get_cpu(env));
74 
75     cs->exception_index = index;
76     cpu_loop_exit_restore(cs, retaddr);
77 }
78 
79 void helper_raise_illegal_instruction(CPUSH4State *env)
80 {
81     raise_exception(env, 0x180, 0);
82 }
83 
84 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
85 {
86     raise_exception(env, 0x1a0, 0);
87 }
88 
89 void helper_raise_fpu_disable(CPUSH4State *env)
90 {
91     raise_exception(env, 0x800, 0);
92 }
93 
94 void helper_raise_slot_fpu_disable(CPUSH4State *env)
95 {
96     raise_exception(env, 0x820, 0);
97 }
98 
99 void helper_debug(CPUSH4State *env)
100 {
101     raise_exception(env, EXCP_DEBUG, 0);
102 }
103 
104 void helper_sleep(CPUSH4State *env)
105 {
106     CPUState *cs = CPU(sh_env_get_cpu(env));
107 
108     cs->halted = 1;
109     env->in_sleep = 1;
110     raise_exception(env, EXCP_HLT, 0);
111 }
112 
113 void helper_trapa(CPUSH4State *env, uint32_t tra)
114 {
115     env->tra = tra << 2;
116     raise_exception(env, 0x160, 0);
117 }
118 
119 void helper_exclusive(CPUSH4State *env)
120 {
121     /* We do not want cpu_restore_state to run.  */
122     cpu_loop_exit_atomic(ENV_GET_CPU(env), 0);
123 }
124 
125 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
126 {
127     if (cpu_sh4_is_cached (env, address))
128     {
129         memory_content *r = g_new(memory_content, 1);
130 
131 	r->address = address;
132 	r->value = value;
133 	r->next = NULL;
134 
135 	*(env->movcal_backup_tail) = r;
136 	env->movcal_backup_tail = &(r->next);
137     }
138 }
139 
140 void helper_discard_movcal_backup(CPUSH4State *env)
141 {
142     memory_content *current = env->movcal_backup;
143 
144     while(current)
145     {
146 	memory_content *next = current->next;
147         g_free(current);
148 	env->movcal_backup = current = next;
149 	if (current == NULL)
150 	    env->movcal_backup_tail = &(env->movcal_backup);
151     }
152 }
153 
154 void helper_ocbi(CPUSH4State *env, uint32_t address)
155 {
156     memory_content **current = &(env->movcal_backup);
157     while (*current)
158     {
159 	uint32_t a = (*current)->address;
160 	if ((a & ~0x1F) == (address & ~0x1F))
161 	{
162 	    memory_content *next = (*current)->next;
163             cpu_stl_data(env, a, (*current)->value);
164 
165 	    if (next == NULL)
166 	    {
167 		env->movcal_backup_tail = current;
168 	    }
169 
170             g_free(*current);
171 	    *current = next;
172 	    break;
173 	}
174     }
175 }
176 
177 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
178 {
179     int64_t res;
180 
181     res = ((uint64_t) env->mach << 32) | env->macl;
182     res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
183     env->mach = (res >> 32) & 0xffffffff;
184     env->macl = res & 0xffffffff;
185     if (env->sr & (1u << SR_S)) {
186 	if (res < 0)
187 	    env->mach |= 0xffff0000;
188 	else
189 	    env->mach &= 0x00007fff;
190     }
191 }
192 
193 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
194 {
195     int64_t res;
196 
197     res = ((uint64_t) env->mach << 32) | env->macl;
198     res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
199     env->mach = (res >> 32) & 0xffffffff;
200     env->macl = res & 0xffffffff;
201     if (env->sr & (1u << SR_S)) {
202 	if (res < -0x80000000) {
203 	    env->mach = 1;
204 	    env->macl = 0x80000000;
205 	} else if (res > 0x000000007fffffff) {
206 	    env->mach = 1;
207 	    env->macl = 0x7fffffff;
208 	}
209     }
210 }
211 
212 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
213 {
214     env->fpscr = val & FPSCR_MASK;
215     if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
216 	set_float_rounding_mode(float_round_to_zero, &env->fp_status);
217     } else {
218 	set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
219     }
220     set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
221 }
222 
223 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
224 {
225     int xcpt, cause, enable;
226 
227     xcpt = get_float_exception_flags(&env->fp_status);
228 
229     /* Clear the cause entries */
230     env->fpscr &= ~FPSCR_CAUSE_MASK;
231 
232     if (unlikely(xcpt)) {
233         if (xcpt & float_flag_invalid) {
234             env->fpscr |= FPSCR_CAUSE_V;
235         }
236         if (xcpt & float_flag_divbyzero) {
237             env->fpscr |= FPSCR_CAUSE_Z;
238         }
239         if (xcpt & float_flag_overflow) {
240             env->fpscr |= FPSCR_CAUSE_O;
241         }
242         if (xcpt & float_flag_underflow) {
243             env->fpscr |= FPSCR_CAUSE_U;
244         }
245         if (xcpt & float_flag_inexact) {
246             env->fpscr |= FPSCR_CAUSE_I;
247         }
248 
249         /* Accumulate in flag entries */
250         env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
251                       >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
252 
253         /* Generate an exception if enabled */
254         cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
255         enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
256         if (cause & enable) {
257             raise_exception(env, 0x120, retaddr);
258         }
259     }
260 }
261 
262 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
263 {
264     set_float_exception_flags(0, &env->fp_status);
265     t0 = float32_add(t0, t1, &env->fp_status);
266     update_fpscr(env, GETPC());
267     return t0;
268 }
269 
270 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
271 {
272     set_float_exception_flags(0, &env->fp_status);
273     t0 = float64_add(t0, t1, &env->fp_status);
274     update_fpscr(env, GETPC());
275     return t0;
276 }
277 
278 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
279 {
280     int relation;
281 
282     set_float_exception_flags(0, &env->fp_status);
283     relation = float32_compare(t0, t1, &env->fp_status);
284     update_fpscr(env, GETPC());
285     return relation == float_relation_equal;
286 }
287 
288 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
289 {
290     int relation;
291 
292     set_float_exception_flags(0, &env->fp_status);
293     relation = float64_compare(t0, t1, &env->fp_status);
294     update_fpscr(env, GETPC());
295     return relation == float_relation_equal;
296 }
297 
298 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
299 {
300     int relation;
301 
302     set_float_exception_flags(0, &env->fp_status);
303     relation = float32_compare(t0, t1, &env->fp_status);
304     update_fpscr(env, GETPC());
305     return relation == float_relation_greater;
306 }
307 
308 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
309 {
310     int relation;
311 
312     set_float_exception_flags(0, &env->fp_status);
313     relation = float64_compare(t0, t1, &env->fp_status);
314     update_fpscr(env, GETPC());
315     return relation == float_relation_greater;
316 }
317 
318 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
319 {
320     float64 ret;
321     set_float_exception_flags(0, &env->fp_status);
322     ret = float32_to_float64(t0, &env->fp_status);
323     update_fpscr(env, GETPC());
324     return ret;
325 }
326 
327 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
328 {
329     float32 ret;
330     set_float_exception_flags(0, &env->fp_status);
331     ret = float64_to_float32(t0, &env->fp_status);
332     update_fpscr(env, GETPC());
333     return ret;
334 }
335 
336 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
337 {
338     set_float_exception_flags(0, &env->fp_status);
339     t0 = float32_div(t0, t1, &env->fp_status);
340     update_fpscr(env, GETPC());
341     return t0;
342 }
343 
344 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
345 {
346     set_float_exception_flags(0, &env->fp_status);
347     t0 = float64_div(t0, t1, &env->fp_status);
348     update_fpscr(env, GETPC());
349     return t0;
350 }
351 
352 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
353 {
354     float32 ret;
355     set_float_exception_flags(0, &env->fp_status);
356     ret = int32_to_float32(t0, &env->fp_status);
357     update_fpscr(env, GETPC());
358     return ret;
359 }
360 
361 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
362 {
363     float64 ret;
364     set_float_exception_flags(0, &env->fp_status);
365     ret = int32_to_float64(t0, &env->fp_status);
366     update_fpscr(env, GETPC());
367     return ret;
368 }
369 
370 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
371 {
372     set_float_exception_flags(0, &env->fp_status);
373     t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
374     update_fpscr(env, GETPC());
375     return t0;
376 }
377 
378 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
379 {
380     set_float_exception_flags(0, &env->fp_status);
381     t0 = float32_mul(t0, t1, &env->fp_status);
382     update_fpscr(env, GETPC());
383     return t0;
384 }
385 
386 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
387 {
388     set_float_exception_flags(0, &env->fp_status);
389     t0 = float64_mul(t0, t1, &env->fp_status);
390     update_fpscr(env, GETPC());
391     return t0;
392 }
393 
394 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
395 {
396     set_float_exception_flags(0, &env->fp_status);
397     t0 = float32_sqrt(t0, &env->fp_status);
398     update_fpscr(env, GETPC());
399     return t0;
400 }
401 
402 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
403 {
404     set_float_exception_flags(0, &env->fp_status);
405     t0 = float64_sqrt(t0, &env->fp_status);
406     update_fpscr(env, GETPC());
407     return t0;
408 }
409 
410 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
411 {
412     set_float_exception_flags(0, &env->fp_status);
413     /* "Approximate" 1/sqrt(x) via actual computation.  */
414     t0 = float32_sqrt(t0, &env->fp_status);
415     t0 = float32_div(float32_one, t0, &env->fp_status);
416     /* Since this is supposed to be an approximation, an imprecision
417        exception is required.  One supposes this also follows the usual
418        IEEE rule that other exceptions take precidence.  */
419     if (get_float_exception_flags(&env->fp_status) == 0) {
420         set_float_exception_flags(float_flag_inexact, &env->fp_status);
421     }
422     update_fpscr(env, GETPC());
423     return t0;
424 }
425 
426 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
427 {
428     set_float_exception_flags(0, &env->fp_status);
429     t0 = float32_sub(t0, t1, &env->fp_status);
430     update_fpscr(env, GETPC());
431     return t0;
432 }
433 
434 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
435 {
436     set_float_exception_flags(0, &env->fp_status);
437     t0 = float64_sub(t0, t1, &env->fp_status);
438     update_fpscr(env, GETPC());
439     return t0;
440 }
441 
442 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
443 {
444     uint32_t ret;
445     set_float_exception_flags(0, &env->fp_status);
446     ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
447     update_fpscr(env, GETPC());
448     return ret;
449 }
450 
451 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
452 {
453     uint32_t ret;
454     set_float_exception_flags(0, &env->fp_status);
455     ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
456     update_fpscr(env, GETPC());
457     return ret;
458 }
459 
460 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
461 {
462     int bank, i;
463     float32 r, p;
464 
465     bank = (env->sr & FPSCR_FR) ? 16 : 0;
466     r = float32_zero;
467     set_float_exception_flags(0, &env->fp_status);
468 
469     for (i = 0 ; i < 4 ; i++) {
470         p = float32_mul(env->fregs[bank + m + i],
471                         env->fregs[bank + n + i],
472                         &env->fp_status);
473         r = float32_add(r, p, &env->fp_status);
474     }
475     update_fpscr(env, GETPC());
476 
477     env->fregs[bank + n + 3] = r;
478 }
479 
480 void helper_ftrv(CPUSH4State *env, uint32_t n)
481 {
482     int bank_matrix, bank_vector;
483     int i, j;
484     float32 r[4];
485     float32 p;
486 
487     bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
488     bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
489     set_float_exception_flags(0, &env->fp_status);
490     for (i = 0 ; i < 4 ; i++) {
491         r[i] = float32_zero;
492         for (j = 0 ; j < 4 ; j++) {
493             p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
494                             env->fregs[bank_vector + j],
495                             &env->fp_status);
496             r[i] = float32_add(r[i], p, &env->fp_status);
497         }
498     }
499     update_fpscr(env, GETPC());
500 
501     for (i = 0 ; i < 4 ; i++) {
502         env->fregs[bank_vector + i] = r[i];
503     }
504 }
505