1 /* 2 * SH4 emulation 3 * 4 * Copyright (c) 2005 Samuel Tardieu 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "exec/helper-proto.h" 22 #include "exec/exec-all.h" 23 #include "exec/cpu_ldst.h" 24 #include "fpu/softfloat.h" 25 26 #ifndef CONFIG_USER_ONLY 27 28 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 29 MMUAccessType access_type, 30 int mmu_idx, uintptr_t retaddr) 31 { 32 switch (access_type) { 33 case MMU_INST_FETCH: 34 case MMU_DATA_LOAD: 35 cs->exception_index = 0x0e0; 36 break; 37 case MMU_DATA_STORE: 38 cs->exception_index = 0x100; 39 break; 40 } 41 cpu_loop_exit_restore(cs, retaddr); 42 } 43 44 void tlb_fill(CPUState *cs, target_ulong addr, int size, 45 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 46 { 47 int ret; 48 49 ret = superh_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx); 50 if (ret) { 51 /* now we have a real cpu fault */ 52 cpu_loop_exit_restore(cs, retaddr); 53 } 54 } 55 56 #endif 57 58 void helper_ldtlb(CPUSH4State *env) 59 { 60 #ifdef CONFIG_USER_ONLY 61 SuperHCPU *cpu = sh_env_get_cpu(env); 62 63 /* XXXXX */ 64 cpu_abort(CPU(cpu), "Unhandled ldtlb"); 65 #else 66 cpu_load_tlb(env); 67 #endif 68 } 69 70 static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index, 71 uintptr_t retaddr) 72 { 73 CPUState *cs = CPU(sh_env_get_cpu(env)); 74 75 cs->exception_index = index; 76 cpu_loop_exit_restore(cs, retaddr); 77 } 78 79 void helper_raise_illegal_instruction(CPUSH4State *env) 80 { 81 raise_exception(env, 0x180, 0); 82 } 83 84 void helper_raise_slot_illegal_instruction(CPUSH4State *env) 85 { 86 raise_exception(env, 0x1a0, 0); 87 } 88 89 void helper_raise_fpu_disable(CPUSH4State *env) 90 { 91 raise_exception(env, 0x800, 0); 92 } 93 94 void helper_raise_slot_fpu_disable(CPUSH4State *env) 95 { 96 raise_exception(env, 0x820, 0); 97 } 98 99 void helper_debug(CPUSH4State *env) 100 { 101 raise_exception(env, EXCP_DEBUG, 0); 102 } 103 104 void helper_sleep(CPUSH4State *env) 105 { 106 CPUState *cs = CPU(sh_env_get_cpu(env)); 107 108 cs->halted = 1; 109 env->in_sleep = 1; 110 raise_exception(env, EXCP_HLT, 0); 111 } 112 113 void helper_trapa(CPUSH4State *env, uint32_t tra) 114 { 115 env->tra = tra << 2; 116 raise_exception(env, 0x160, 0); 117 } 118 119 void helper_exclusive(CPUSH4State *env) 120 { 121 /* We do not want cpu_restore_state to run. */ 122 cpu_loop_exit_atomic(ENV_GET_CPU(env), 0); 123 } 124 125 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value) 126 { 127 if (cpu_sh4_is_cached (env, address)) 128 { 129 memory_content *r = g_new(memory_content, 1); 130 131 r->address = address; 132 r->value = value; 133 r->next = NULL; 134 135 *(env->movcal_backup_tail) = r; 136 env->movcal_backup_tail = &(r->next); 137 } 138 } 139 140 void helper_discard_movcal_backup(CPUSH4State *env) 141 { 142 memory_content *current = env->movcal_backup; 143 144 while(current) 145 { 146 memory_content *next = current->next; 147 g_free(current); 148 env->movcal_backup = current = next; 149 if (current == NULL) 150 env->movcal_backup_tail = &(env->movcal_backup); 151 } 152 } 153 154 void helper_ocbi(CPUSH4State *env, uint32_t address) 155 { 156 memory_content **current = &(env->movcal_backup); 157 while (*current) 158 { 159 uint32_t a = (*current)->address; 160 if ((a & ~0x1F) == (address & ~0x1F)) 161 { 162 memory_content *next = (*current)->next; 163 cpu_stl_data(env, a, (*current)->value); 164 165 if (next == NULL) 166 { 167 env->movcal_backup_tail = current; 168 } 169 170 g_free(*current); 171 *current = next; 172 break; 173 } 174 } 175 } 176 177 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1) 178 { 179 int64_t res; 180 181 res = ((uint64_t) env->mach << 32) | env->macl; 182 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1; 183 env->mach = (res >> 32) & 0xffffffff; 184 env->macl = res & 0xffffffff; 185 if (env->sr & (1u << SR_S)) { 186 if (res < 0) 187 env->mach |= 0xffff0000; 188 else 189 env->mach &= 0x00007fff; 190 } 191 } 192 193 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1) 194 { 195 int64_t res; 196 197 res = ((uint64_t) env->mach << 32) | env->macl; 198 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1; 199 env->mach = (res >> 32) & 0xffffffff; 200 env->macl = res & 0xffffffff; 201 if (env->sr & (1u << SR_S)) { 202 if (res < -0x80000000) { 203 env->mach = 1; 204 env->macl = 0x80000000; 205 } else if (res > 0x000000007fffffff) { 206 env->mach = 1; 207 env->macl = 0x7fffffff; 208 } 209 } 210 } 211 212 void helper_ld_fpscr(CPUSH4State *env, uint32_t val) 213 { 214 env->fpscr = val & FPSCR_MASK; 215 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) { 216 set_float_rounding_mode(float_round_to_zero, &env->fp_status); 217 } else { 218 set_float_rounding_mode(float_round_nearest_even, &env->fp_status); 219 } 220 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status); 221 } 222 223 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr) 224 { 225 int xcpt, cause, enable; 226 227 xcpt = get_float_exception_flags(&env->fp_status); 228 229 /* Clear the cause entries */ 230 env->fpscr &= ~FPSCR_CAUSE_MASK; 231 232 if (unlikely(xcpt)) { 233 if (xcpt & float_flag_invalid) { 234 env->fpscr |= FPSCR_CAUSE_V; 235 } 236 if (xcpt & float_flag_divbyzero) { 237 env->fpscr |= FPSCR_CAUSE_Z; 238 } 239 if (xcpt & float_flag_overflow) { 240 env->fpscr |= FPSCR_CAUSE_O; 241 } 242 if (xcpt & float_flag_underflow) { 243 env->fpscr |= FPSCR_CAUSE_U; 244 } 245 if (xcpt & float_flag_inexact) { 246 env->fpscr |= FPSCR_CAUSE_I; 247 } 248 249 /* Accumulate in flag entries */ 250 env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK) 251 >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT); 252 253 /* Generate an exception if enabled */ 254 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT; 255 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT; 256 if (cause & enable) { 257 raise_exception(env, 0x120, retaddr); 258 } 259 } 260 } 261 262 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1) 263 { 264 set_float_exception_flags(0, &env->fp_status); 265 t0 = float32_add(t0, t1, &env->fp_status); 266 update_fpscr(env, GETPC()); 267 return t0; 268 } 269 270 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1) 271 { 272 set_float_exception_flags(0, &env->fp_status); 273 t0 = float64_add(t0, t1, &env->fp_status); 274 update_fpscr(env, GETPC()); 275 return t0; 276 } 277 278 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1) 279 { 280 int relation; 281 282 set_float_exception_flags(0, &env->fp_status); 283 relation = float32_compare(t0, t1, &env->fp_status); 284 update_fpscr(env, GETPC()); 285 return relation == float_relation_equal; 286 } 287 288 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1) 289 { 290 int relation; 291 292 set_float_exception_flags(0, &env->fp_status); 293 relation = float64_compare(t0, t1, &env->fp_status); 294 update_fpscr(env, GETPC()); 295 return relation == float_relation_equal; 296 } 297 298 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1) 299 { 300 int relation; 301 302 set_float_exception_flags(0, &env->fp_status); 303 relation = float32_compare(t0, t1, &env->fp_status); 304 update_fpscr(env, GETPC()); 305 return relation == float_relation_greater; 306 } 307 308 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1) 309 { 310 int relation; 311 312 set_float_exception_flags(0, &env->fp_status); 313 relation = float64_compare(t0, t1, &env->fp_status); 314 update_fpscr(env, GETPC()); 315 return relation == float_relation_greater; 316 } 317 318 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0) 319 { 320 float64 ret; 321 set_float_exception_flags(0, &env->fp_status); 322 ret = float32_to_float64(t0, &env->fp_status); 323 update_fpscr(env, GETPC()); 324 return ret; 325 } 326 327 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0) 328 { 329 float32 ret; 330 set_float_exception_flags(0, &env->fp_status); 331 ret = float64_to_float32(t0, &env->fp_status); 332 update_fpscr(env, GETPC()); 333 return ret; 334 } 335 336 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1) 337 { 338 set_float_exception_flags(0, &env->fp_status); 339 t0 = float32_div(t0, t1, &env->fp_status); 340 update_fpscr(env, GETPC()); 341 return t0; 342 } 343 344 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1) 345 { 346 set_float_exception_flags(0, &env->fp_status); 347 t0 = float64_div(t0, t1, &env->fp_status); 348 update_fpscr(env, GETPC()); 349 return t0; 350 } 351 352 float32 helper_float_FT(CPUSH4State *env, uint32_t t0) 353 { 354 float32 ret; 355 set_float_exception_flags(0, &env->fp_status); 356 ret = int32_to_float32(t0, &env->fp_status); 357 update_fpscr(env, GETPC()); 358 return ret; 359 } 360 361 float64 helper_float_DT(CPUSH4State *env, uint32_t t0) 362 { 363 float64 ret; 364 set_float_exception_flags(0, &env->fp_status); 365 ret = int32_to_float64(t0, &env->fp_status); 366 update_fpscr(env, GETPC()); 367 return ret; 368 } 369 370 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2) 371 { 372 set_float_exception_flags(0, &env->fp_status); 373 t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status); 374 update_fpscr(env, GETPC()); 375 return t0; 376 } 377 378 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1) 379 { 380 set_float_exception_flags(0, &env->fp_status); 381 t0 = float32_mul(t0, t1, &env->fp_status); 382 update_fpscr(env, GETPC()); 383 return t0; 384 } 385 386 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1) 387 { 388 set_float_exception_flags(0, &env->fp_status); 389 t0 = float64_mul(t0, t1, &env->fp_status); 390 update_fpscr(env, GETPC()); 391 return t0; 392 } 393 394 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0) 395 { 396 set_float_exception_flags(0, &env->fp_status); 397 t0 = float32_sqrt(t0, &env->fp_status); 398 update_fpscr(env, GETPC()); 399 return t0; 400 } 401 402 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0) 403 { 404 set_float_exception_flags(0, &env->fp_status); 405 t0 = float64_sqrt(t0, &env->fp_status); 406 update_fpscr(env, GETPC()); 407 return t0; 408 } 409 410 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0) 411 { 412 set_float_exception_flags(0, &env->fp_status); 413 /* "Approximate" 1/sqrt(x) via actual computation. */ 414 t0 = float32_sqrt(t0, &env->fp_status); 415 t0 = float32_div(float32_one, t0, &env->fp_status); 416 /* Since this is supposed to be an approximation, an imprecision 417 exception is required. One supposes this also follows the usual 418 IEEE rule that other exceptions take precidence. */ 419 if (get_float_exception_flags(&env->fp_status) == 0) { 420 set_float_exception_flags(float_flag_inexact, &env->fp_status); 421 } 422 update_fpscr(env, GETPC()); 423 return t0; 424 } 425 426 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1) 427 { 428 set_float_exception_flags(0, &env->fp_status); 429 t0 = float32_sub(t0, t1, &env->fp_status); 430 update_fpscr(env, GETPC()); 431 return t0; 432 } 433 434 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1) 435 { 436 set_float_exception_flags(0, &env->fp_status); 437 t0 = float64_sub(t0, t1, &env->fp_status); 438 update_fpscr(env, GETPC()); 439 return t0; 440 } 441 442 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0) 443 { 444 uint32_t ret; 445 set_float_exception_flags(0, &env->fp_status); 446 ret = float32_to_int32_round_to_zero(t0, &env->fp_status); 447 update_fpscr(env, GETPC()); 448 return ret; 449 } 450 451 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0) 452 { 453 uint32_t ret; 454 set_float_exception_flags(0, &env->fp_status); 455 ret = float64_to_int32_round_to_zero(t0, &env->fp_status); 456 update_fpscr(env, GETPC()); 457 return ret; 458 } 459 460 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n) 461 { 462 int bank, i; 463 float32 r, p; 464 465 bank = (env->sr & FPSCR_FR) ? 16 : 0; 466 r = float32_zero; 467 set_float_exception_flags(0, &env->fp_status); 468 469 for (i = 0 ; i < 4 ; i++) { 470 p = float32_mul(env->fregs[bank + m + i], 471 env->fregs[bank + n + i], 472 &env->fp_status); 473 r = float32_add(r, p, &env->fp_status); 474 } 475 update_fpscr(env, GETPC()); 476 477 env->fregs[bank + n + 3] = r; 478 } 479 480 void helper_ftrv(CPUSH4State *env, uint32_t n) 481 { 482 int bank_matrix, bank_vector; 483 int i, j; 484 float32 r[4]; 485 float32 p; 486 487 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16; 488 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0; 489 set_float_exception_flags(0, &env->fp_status); 490 for (i = 0 ; i < 4 ; i++) { 491 r[i] = float32_zero; 492 for (j = 0 ; j < 4 ; j++) { 493 p = float32_mul(env->fregs[bank_matrix + 4 * j + i], 494 env->fregs[bank_vector + j], 495 &env->fp_status); 496 r[i] = float32_add(r[i], p, &env->fp_status); 497 } 498 } 499 update_fpscr(env, GETPC()); 500 501 for (i = 0 ; i < 4 ; i++) { 502 env->fregs[bank_vector + i] = r[i]; 503 } 504 } 505