xref: /openbmc/qemu/target/sh4/op_helper.c (revision 3df4c288)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "fpu/softfloat.h"
25 
26 #ifndef CONFIG_USER_ONLY
27 
28 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
29                                     MMUAccessType access_type,
30                                     int mmu_idx, uintptr_t retaddr)
31 {
32     cpu_env(cs)->tea = addr;
33     switch (access_type) {
34     case MMU_INST_FETCH:
35     case MMU_DATA_LOAD:
36         cs->exception_index = 0x0e0;
37         break;
38     case MMU_DATA_STORE:
39         cs->exception_index = 0x100;
40         break;
41     default:
42         g_assert_not_reached();
43     }
44     cpu_loop_exit_restore(cs, retaddr);
45 }
46 
47 #endif
48 
49 void helper_ldtlb(CPUSH4State *env)
50 {
51 #ifdef CONFIG_USER_ONLY
52     cpu_abort(env_cpu(env), "Unhandled ldtlb");
53 #else
54     cpu_load_tlb(env);
55 #endif
56 }
57 
58 static inline G_NORETURN
59 void raise_exception(CPUSH4State *env, int index,
60                      uintptr_t retaddr)
61 {
62     CPUState *cs = env_cpu(env);
63 
64     cs->exception_index = index;
65     cpu_loop_exit_restore(cs, retaddr);
66 }
67 
68 void helper_raise_illegal_instruction(CPUSH4State *env)
69 {
70     raise_exception(env, 0x180, 0);
71 }
72 
73 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
74 {
75     raise_exception(env, 0x1a0, 0);
76 }
77 
78 void helper_raise_fpu_disable(CPUSH4State *env)
79 {
80     raise_exception(env, 0x800, 0);
81 }
82 
83 void helper_raise_slot_fpu_disable(CPUSH4State *env)
84 {
85     raise_exception(env, 0x820, 0);
86 }
87 
88 void helper_sleep(CPUSH4State *env)
89 {
90     CPUState *cs = env_cpu(env);
91 
92     cs->halted = 1;
93     env->in_sleep = 1;
94     raise_exception(env, EXCP_HLT, 0);
95 }
96 
97 void helper_trapa(CPUSH4State *env, uint32_t tra)
98 {
99     env->tra = tra << 2;
100     raise_exception(env, 0x160, 0);
101 }
102 
103 void helper_exclusive(CPUSH4State *env)
104 {
105     /* We do not want cpu_restore_state to run.  */
106     cpu_loop_exit_atomic(env_cpu(env), 0);
107 }
108 
109 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
110 {
111     if (cpu_sh4_is_cached (env, address))
112     {
113         memory_content *r = g_new(memory_content, 1);
114 
115         r->address = address;
116         r->value = value;
117         r->next = NULL;
118 
119         *(env->movcal_backup_tail) = r;
120         env->movcal_backup_tail = &(r->next);
121     }
122 }
123 
124 void helper_discard_movcal_backup(CPUSH4State *env)
125 {
126     memory_content *current = env->movcal_backup;
127 
128     while(current)
129     {
130         memory_content *next = current->next;
131         g_free(current);
132         env->movcal_backup = current = next;
133         if (current == NULL)
134             env->movcal_backup_tail = &(env->movcal_backup);
135     }
136 }
137 
138 void helper_ocbi(CPUSH4State *env, uint32_t address)
139 {
140     memory_content **current = &(env->movcal_backup);
141     while (*current)
142     {
143         uint32_t a = (*current)->address;
144         if ((a & ~0x1F) == (address & ~0x1F))
145         {
146             memory_content *next = (*current)->next;
147             cpu_stl_data(env, a, (*current)->value);
148 
149             if (next == NULL)
150             {
151                 env->movcal_backup_tail = current;
152             }
153 
154             g_free(*current);
155             *current = next;
156             break;
157         }
158     }
159 }
160 
161 void helper_macl(CPUSH4State *env, int32_t arg0, int32_t arg1)
162 {
163     const int64_t min = -(1ll << 47);
164     const int64_t max = (1ll << 47) - 1;
165     int64_t mul = (int64_t)arg0 * arg1;
166     int64_t mac = env->mac;
167     int64_t res;
168 
169     if (!(env->sr & (1u << SR_S))) {
170         res = mac + mul;
171     } else if (sadd64_overflow(mac, mul, &res)) {
172         res = mac < 0 ? min : max;
173     } else {
174         res = MIN(MAX(res, min), max);
175     }
176 
177     env->mac = res;
178 }
179 
180 void helper_macw(CPUSH4State *env, int32_t arg0, int32_t arg1)
181 {
182     /* Inputs are already sign-extended from 16 bits. */
183     int32_t mul = arg0 * arg1;
184 
185     if (env->sr & (1u << SR_S)) {
186         /*
187          * In saturation arithmetic mode, the accumulator is 32-bit
188          * with carry. MACH is not considered during the addition
189          * operation nor the 32-bit saturation logic.
190          */
191         int32_t res, macl = env->macl;
192 
193         if (sadd32_overflow(macl, mul, &res)) {
194             res = macl < 0 ? INT32_MIN : INT32_MAX;
195             /* If overflow occurs, the MACH register is set to 1. */
196             env->mach = 1;
197         }
198         env->macl = res;
199     } else {
200         /* In non-saturation arithmetic mode, the accumulator is 64-bit */
201         env->mac += mul;
202     }
203 }
204 
205 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
206 {
207     env->fpscr = val & FPSCR_MASK;
208     if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
209         set_float_rounding_mode(float_round_to_zero, &env->fp_status);
210     } else {
211         set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
212     }
213     set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
214 }
215 
216 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
217 {
218     int xcpt, cause, enable;
219 
220     xcpt = get_float_exception_flags(&env->fp_status);
221 
222     /* Clear the cause entries */
223     env->fpscr &= ~FPSCR_CAUSE_MASK;
224 
225     if (unlikely(xcpt)) {
226         if (xcpt & float_flag_invalid) {
227             env->fpscr |= FPSCR_CAUSE_V;
228         }
229         if (xcpt & float_flag_divbyzero) {
230             env->fpscr |= FPSCR_CAUSE_Z;
231         }
232         if (xcpt & float_flag_overflow) {
233             env->fpscr |= FPSCR_CAUSE_O;
234         }
235         if (xcpt & float_flag_underflow) {
236             env->fpscr |= FPSCR_CAUSE_U;
237         }
238         if (xcpt & float_flag_inexact) {
239             env->fpscr |= FPSCR_CAUSE_I;
240         }
241 
242         /* Accumulate in flag entries */
243         env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
244                       >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
245 
246         /* Generate an exception if enabled */
247         cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
248         enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
249         if (cause & enable) {
250             raise_exception(env, 0x120, retaddr);
251         }
252     }
253 }
254 
255 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
256 {
257     set_float_exception_flags(0, &env->fp_status);
258     t0 = float32_add(t0, t1, &env->fp_status);
259     update_fpscr(env, GETPC());
260     return t0;
261 }
262 
263 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
264 {
265     set_float_exception_flags(0, &env->fp_status);
266     t0 = float64_add(t0, t1, &env->fp_status);
267     update_fpscr(env, GETPC());
268     return t0;
269 }
270 
271 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
272 {
273     int relation;
274 
275     set_float_exception_flags(0, &env->fp_status);
276     relation = float32_compare(t0, t1, &env->fp_status);
277     update_fpscr(env, GETPC());
278     return relation == float_relation_equal;
279 }
280 
281 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
282 {
283     int relation;
284 
285     set_float_exception_flags(0, &env->fp_status);
286     relation = float64_compare(t0, t1, &env->fp_status);
287     update_fpscr(env, GETPC());
288     return relation == float_relation_equal;
289 }
290 
291 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
292 {
293     int relation;
294 
295     set_float_exception_flags(0, &env->fp_status);
296     relation = float32_compare(t0, t1, &env->fp_status);
297     update_fpscr(env, GETPC());
298     return relation == float_relation_greater;
299 }
300 
301 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
302 {
303     int relation;
304 
305     set_float_exception_flags(0, &env->fp_status);
306     relation = float64_compare(t0, t1, &env->fp_status);
307     update_fpscr(env, GETPC());
308     return relation == float_relation_greater;
309 }
310 
311 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
312 {
313     float64 ret;
314     set_float_exception_flags(0, &env->fp_status);
315     ret = float32_to_float64(t0, &env->fp_status);
316     update_fpscr(env, GETPC());
317     return ret;
318 }
319 
320 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
321 {
322     float32 ret;
323     set_float_exception_flags(0, &env->fp_status);
324     ret = float64_to_float32(t0, &env->fp_status);
325     update_fpscr(env, GETPC());
326     return ret;
327 }
328 
329 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
330 {
331     set_float_exception_flags(0, &env->fp_status);
332     t0 = float32_div(t0, t1, &env->fp_status);
333     update_fpscr(env, GETPC());
334     return t0;
335 }
336 
337 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
338 {
339     set_float_exception_flags(0, &env->fp_status);
340     t0 = float64_div(t0, t1, &env->fp_status);
341     update_fpscr(env, GETPC());
342     return t0;
343 }
344 
345 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
346 {
347     float32 ret;
348     set_float_exception_flags(0, &env->fp_status);
349     ret = int32_to_float32(t0, &env->fp_status);
350     update_fpscr(env, GETPC());
351     return ret;
352 }
353 
354 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
355 {
356     float64 ret;
357     set_float_exception_flags(0, &env->fp_status);
358     ret = int32_to_float64(t0, &env->fp_status);
359     update_fpscr(env, GETPC());
360     return ret;
361 }
362 
363 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
364 {
365     set_float_exception_flags(0, &env->fp_status);
366     t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
367     update_fpscr(env, GETPC());
368     return t0;
369 }
370 
371 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
372 {
373     set_float_exception_flags(0, &env->fp_status);
374     t0 = float32_mul(t0, t1, &env->fp_status);
375     update_fpscr(env, GETPC());
376     return t0;
377 }
378 
379 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
380 {
381     set_float_exception_flags(0, &env->fp_status);
382     t0 = float64_mul(t0, t1, &env->fp_status);
383     update_fpscr(env, GETPC());
384     return t0;
385 }
386 
387 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
388 {
389     set_float_exception_flags(0, &env->fp_status);
390     t0 = float32_sqrt(t0, &env->fp_status);
391     update_fpscr(env, GETPC());
392     return t0;
393 }
394 
395 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
396 {
397     set_float_exception_flags(0, &env->fp_status);
398     t0 = float64_sqrt(t0, &env->fp_status);
399     update_fpscr(env, GETPC());
400     return t0;
401 }
402 
403 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
404 {
405     set_float_exception_flags(0, &env->fp_status);
406     /* "Approximate" 1/sqrt(x) via actual computation.  */
407     t0 = float32_sqrt(t0, &env->fp_status);
408     t0 = float32_div(float32_one, t0, &env->fp_status);
409     /*
410      * Since this is supposed to be an approximation, an imprecision
411      * exception is required.  One supposes this also follows the usual
412      * IEEE rule that other exceptions take precedence.
413      */
414     if (get_float_exception_flags(&env->fp_status) == 0) {
415         set_float_exception_flags(float_flag_inexact, &env->fp_status);
416     }
417     update_fpscr(env, GETPC());
418     return t0;
419 }
420 
421 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
422 {
423     set_float_exception_flags(0, &env->fp_status);
424     t0 = float32_sub(t0, t1, &env->fp_status);
425     update_fpscr(env, GETPC());
426     return t0;
427 }
428 
429 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
430 {
431     set_float_exception_flags(0, &env->fp_status);
432     t0 = float64_sub(t0, t1, &env->fp_status);
433     update_fpscr(env, GETPC());
434     return t0;
435 }
436 
437 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
438 {
439     uint32_t ret;
440     set_float_exception_flags(0, &env->fp_status);
441     ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
442     update_fpscr(env, GETPC());
443     return ret;
444 }
445 
446 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
447 {
448     uint32_t ret;
449     set_float_exception_flags(0, &env->fp_status);
450     ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
451     update_fpscr(env, GETPC());
452     return ret;
453 }
454 
455 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
456 {
457     int bank, i;
458     float32 r, p;
459 
460     bank = (env->sr & FPSCR_FR) ? 16 : 0;
461     r = float32_zero;
462     set_float_exception_flags(0, &env->fp_status);
463 
464     for (i = 0 ; i < 4 ; i++) {
465         p = float32_mul(env->fregs[bank + m + i],
466                         env->fregs[bank + n + i],
467                         &env->fp_status);
468         r = float32_add(r, p, &env->fp_status);
469     }
470     update_fpscr(env, GETPC());
471 
472     env->fregs[bank + n + 3] = r;
473 }
474 
475 void helper_ftrv(CPUSH4State *env, uint32_t n)
476 {
477     int bank_matrix, bank_vector;
478     int i, j;
479     float32 r[4];
480     float32 p;
481 
482     bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
483     bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
484     set_float_exception_flags(0, &env->fp_status);
485     for (i = 0 ; i < 4 ; i++) {
486         r[i] = float32_zero;
487         for (j = 0 ; j < 4 ; j++) {
488             p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
489                             env->fregs[bank_vector + j],
490                             &env->fp_status);
491             r[i] = float32_add(r[i], p, &env->fp_status);
492         }
493     }
494     update_fpscr(env, GETPC());
495 
496     for (i = 0 ; i < 4 ; i++) {
497         env->fregs[bank_vector + i] = r[i];
498     }
499 }
500