1 /* 2 * SH4 emulation 3 * 4 * Copyright (c) 2005 Samuel Tardieu 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "exec/log.h" 24 #include "sysemu/sysemu.h" 25 26 #if !defined(CONFIG_USER_ONLY) 27 #include "hw/sh4/sh_intc.h" 28 #endif 29 30 #define MMU_OK 0 31 #define MMU_ITLB_MISS (-1) 32 #define MMU_ITLB_MULTIPLE (-2) 33 #define MMU_ITLB_VIOLATION (-3) 34 #define MMU_DTLB_MISS_READ (-4) 35 #define MMU_DTLB_MISS_WRITE (-5) 36 #define MMU_DTLB_INITIAL_WRITE (-6) 37 #define MMU_DTLB_VIOLATION_READ (-7) 38 #define MMU_DTLB_VIOLATION_WRITE (-8) 39 #define MMU_DTLB_MULTIPLE (-9) 40 #define MMU_DTLB_MISS (-10) 41 #define MMU_IADDR_ERROR (-11) 42 #define MMU_DADDR_ERROR_READ (-12) 43 #define MMU_DADDR_ERROR_WRITE (-13) 44 45 #if defined(CONFIG_USER_ONLY) 46 47 void superh_cpu_do_interrupt(CPUState *cs) 48 { 49 cs->exception_index = -1; 50 } 51 52 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr) 53 { 54 /* For user mode, only U0 area is cacheable. */ 55 return !(addr & 0x80000000); 56 } 57 58 #else /* !CONFIG_USER_ONLY */ 59 60 void superh_cpu_do_interrupt(CPUState *cs) 61 { 62 SuperHCPU *cpu = SUPERH_CPU(cs); 63 CPUSH4State *env = &cpu->env; 64 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD; 65 int do_exp, irq_vector = cs->exception_index; 66 67 /* prioritize exceptions over interrupts */ 68 69 do_exp = cs->exception_index != -1; 70 do_irq = do_irq && (cs->exception_index == -1); 71 72 if (env->sr & (1u << SR_BL)) { 73 if (do_exp && cs->exception_index != 0x1e0) { 74 /* In theory a masked exception generates a reset exception, 75 which in turn jumps to the reset vector. However this only 76 works when using a bootloader. When using a kernel and an 77 initrd, they need to be reloaded and the program counter 78 should be loaded with the kernel entry point. 79 qemu_system_reset_request takes care of that. */ 80 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 81 return; 82 } 83 if (do_irq && !env->in_sleep) { 84 return; /* masked */ 85 } 86 } 87 env->in_sleep = 0; 88 89 if (do_irq) { 90 irq_vector = sh_intc_get_pending_vector(env->intc_handle, 91 (env->sr >> 4) & 0xf); 92 if (irq_vector == -1) { 93 return; /* masked */ 94 } 95 } 96 97 if (qemu_loglevel_mask(CPU_LOG_INT)) { 98 const char *expname; 99 switch (cs->exception_index) { 100 case 0x0e0: 101 expname = "addr_error"; 102 break; 103 case 0x040: 104 expname = "tlb_miss"; 105 break; 106 case 0x0a0: 107 expname = "tlb_violation"; 108 break; 109 case 0x180: 110 expname = "illegal_instruction"; 111 break; 112 case 0x1a0: 113 expname = "slot_illegal_instruction"; 114 break; 115 case 0x800: 116 expname = "fpu_disable"; 117 break; 118 case 0x820: 119 expname = "slot_fpu"; 120 break; 121 case 0x100: 122 expname = "data_write"; 123 break; 124 case 0x060: 125 expname = "dtlb_miss_write"; 126 break; 127 case 0x0c0: 128 expname = "dtlb_violation_write"; 129 break; 130 case 0x120: 131 expname = "fpu_exception"; 132 break; 133 case 0x080: 134 expname = "initial_page_write"; 135 break; 136 case 0x160: 137 expname = "trapa"; 138 break; 139 default: 140 expname = do_irq ? "interrupt" : "???"; 141 break; 142 } 143 qemu_log("exception 0x%03x [%s] raised\n", 144 irq_vector, expname); 145 log_cpu_state(cs, 0); 146 } 147 148 env->ssr = cpu_read_sr(env); 149 env->spc = env->pc; 150 env->sgr = env->gregs[15]; 151 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB); 152 env->lock_addr = -1; 153 154 if (env->flags & DELAY_SLOT_MASK) { 155 /* Branch instruction should be executed again before delay slot. */ 156 env->spc -= 2; 157 /* Clear flags for exception/interrupt routine. */ 158 env->flags &= ~DELAY_SLOT_MASK; 159 } 160 161 if (do_exp) { 162 env->expevt = cs->exception_index; 163 switch (cs->exception_index) { 164 case 0x000: 165 case 0x020: 166 case 0x140: 167 env->sr &= ~(1u << SR_FD); 168 env->sr |= 0xf << 4; /* IMASK */ 169 env->pc = 0xa0000000; 170 break; 171 case 0x040: 172 case 0x060: 173 env->pc = env->vbr + 0x400; 174 break; 175 case 0x160: 176 env->spc += 2; /* special case for TRAPA */ 177 /* fall through */ 178 default: 179 env->pc = env->vbr + 0x100; 180 break; 181 } 182 return; 183 } 184 185 if (do_irq) { 186 env->intevt = irq_vector; 187 env->pc = env->vbr + 0x600; 188 return; 189 } 190 } 191 192 static void update_itlb_use(CPUSH4State * env, int itlbnb) 193 { 194 uint8_t or_mask = 0, and_mask = (uint8_t) - 1; 195 196 switch (itlbnb) { 197 case 0: 198 and_mask = 0x1f; 199 break; 200 case 1: 201 and_mask = 0xe7; 202 or_mask = 0x80; 203 break; 204 case 2: 205 and_mask = 0xfb; 206 or_mask = 0x50; 207 break; 208 case 3: 209 or_mask = 0x2c; 210 break; 211 } 212 213 env->mmucr &= (and_mask << 24) | 0x00ffffff; 214 env->mmucr |= (or_mask << 24); 215 } 216 217 static int itlb_replacement(CPUSH4State * env) 218 { 219 SuperHCPU *cpu = sh_env_get_cpu(env); 220 221 if ((env->mmucr & 0xe0000000) == 0xe0000000) { 222 return 0; 223 } 224 if ((env->mmucr & 0x98000000) == 0x18000000) { 225 return 1; 226 } 227 if ((env->mmucr & 0x54000000) == 0x04000000) { 228 return 2; 229 } 230 if ((env->mmucr & 0x2c000000) == 0x00000000) { 231 return 3; 232 } 233 cpu_abort(CPU(cpu), "Unhandled itlb_replacement"); 234 } 235 236 /* Find the corresponding entry in the right TLB 237 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE 238 */ 239 static int find_tlb_entry(CPUSH4State * env, target_ulong address, 240 tlb_t * entries, uint8_t nbtlb, int use_asid) 241 { 242 int match = MMU_DTLB_MISS; 243 uint32_t start, end; 244 uint8_t asid; 245 int i; 246 247 asid = env->pteh & 0xff; 248 249 for (i = 0; i < nbtlb; i++) { 250 if (!entries[i].v) 251 continue; /* Invalid entry */ 252 if (!entries[i].sh && use_asid && entries[i].asid != asid) 253 continue; /* Bad ASID */ 254 start = (entries[i].vpn << 10) & ~(entries[i].size - 1); 255 end = start + entries[i].size - 1; 256 if (address >= start && address <= end) { /* Match */ 257 if (match != MMU_DTLB_MISS) 258 return MMU_DTLB_MULTIPLE; /* Multiple match */ 259 match = i; 260 } 261 } 262 return match; 263 } 264 265 static void increment_urc(CPUSH4State * env) 266 { 267 uint8_t urb, urc; 268 269 /* Increment URC */ 270 urb = ((env->mmucr) >> 18) & 0x3f; 271 urc = ((env->mmucr) >> 10) & 0x3f; 272 urc++; 273 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1)) 274 urc = 0; 275 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10); 276 } 277 278 /* Copy and utlb entry into itlb 279 Return entry 280 */ 281 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb) 282 { 283 int itlb; 284 285 tlb_t * ientry; 286 itlb = itlb_replacement(env); 287 ientry = &env->itlb[itlb]; 288 if (ientry->v) { 289 tlb_flush_page(CPU(sh_env_get_cpu(env)), ientry->vpn << 10); 290 } 291 *ientry = env->utlb[utlb]; 292 update_itlb_use(env, itlb); 293 return itlb; 294 } 295 296 /* Find itlb entry 297 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE 298 */ 299 static int find_itlb_entry(CPUSH4State * env, target_ulong address, 300 int use_asid) 301 { 302 int e; 303 304 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid); 305 if (e == MMU_DTLB_MULTIPLE) { 306 e = MMU_ITLB_MULTIPLE; 307 } else if (e == MMU_DTLB_MISS) { 308 e = MMU_ITLB_MISS; 309 } else if (e >= 0) { 310 update_itlb_use(env, e); 311 } 312 return e; 313 } 314 315 /* Find utlb entry 316 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */ 317 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid) 318 { 319 /* per utlb access */ 320 increment_urc(env); 321 322 /* Return entry */ 323 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid); 324 } 325 326 /* Match address against MMU 327 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE, 328 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ, 329 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS, 330 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION, 331 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE. 332 */ 333 static int get_mmu_address(CPUSH4State * env, target_ulong * physical, 334 int *prot, target_ulong address, 335 int rw, int access_type) 336 { 337 int use_asid, n; 338 tlb_t *matching = NULL; 339 340 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 341 342 if (rw == 2) { 343 n = find_itlb_entry(env, address, use_asid); 344 if (n >= 0) { 345 matching = &env->itlb[n]; 346 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 347 n = MMU_ITLB_VIOLATION; 348 } else { 349 *prot = PAGE_EXEC; 350 } 351 } else { 352 n = find_utlb_entry(env, address, use_asid); 353 if (n >= 0) { 354 n = copy_utlb_entry_itlb(env, n); 355 matching = &env->itlb[n]; 356 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 357 n = MMU_ITLB_VIOLATION; 358 } else { 359 *prot = PAGE_READ | PAGE_EXEC; 360 if ((matching->pr & 1) && matching->d) { 361 *prot |= PAGE_WRITE; 362 } 363 } 364 } else if (n == MMU_DTLB_MULTIPLE) { 365 n = MMU_ITLB_MULTIPLE; 366 } else if (n == MMU_DTLB_MISS) { 367 n = MMU_ITLB_MISS; 368 } 369 } 370 } else { 371 n = find_utlb_entry(env, address, use_asid); 372 if (n >= 0) { 373 matching = &env->utlb[n]; 374 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 375 n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE : 376 MMU_DTLB_VIOLATION_READ; 377 } else if ((rw == 1) && !(matching->pr & 1)) { 378 n = MMU_DTLB_VIOLATION_WRITE; 379 } else if ((rw == 1) && !matching->d) { 380 n = MMU_DTLB_INITIAL_WRITE; 381 } else { 382 *prot = PAGE_READ; 383 if ((matching->pr & 1) && matching->d) { 384 *prot |= PAGE_WRITE; 385 } 386 } 387 } else if (n == MMU_DTLB_MISS) { 388 n = (rw == 1) ? MMU_DTLB_MISS_WRITE : 389 MMU_DTLB_MISS_READ; 390 } 391 } 392 if (n >= 0) { 393 n = MMU_OK; 394 *physical = ((matching->ppn << 10) & ~(matching->size - 1)) | 395 (address & (matching->size - 1)); 396 } 397 return n; 398 } 399 400 static int get_physical_address(CPUSH4State * env, target_ulong * physical, 401 int *prot, target_ulong address, 402 int rw, int access_type) 403 { 404 /* P1, P2 and P4 areas do not use translation */ 405 if ((address >= 0x80000000 && address < 0xc0000000) || 406 address >= 0xe0000000) { 407 if (!(env->sr & (1u << SR_MD)) 408 && (address < 0xe0000000 || address >= 0xe4000000)) { 409 /* Unauthorized access in user mode (only store queues are available) */ 410 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n"); 411 if (rw == 0) 412 return MMU_DADDR_ERROR_READ; 413 else if (rw == 1) 414 return MMU_DADDR_ERROR_WRITE; 415 else 416 return MMU_IADDR_ERROR; 417 } 418 if (address >= 0x80000000 && address < 0xc0000000) { 419 /* Mask upper 3 bits for P1 and P2 areas */ 420 *physical = address & 0x1fffffff; 421 } else { 422 *physical = address; 423 } 424 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 425 return MMU_OK; 426 } 427 428 /* If MMU is disabled, return the corresponding physical page */ 429 if (!(env->mmucr & MMUCR_AT)) { 430 *physical = address & 0x1FFFFFFF; 431 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 432 return MMU_OK; 433 } 434 435 /* We need to resort to the MMU */ 436 return get_mmu_address(env, physical, prot, address, rw, access_type); 437 } 438 439 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 440 { 441 SuperHCPU *cpu = SUPERH_CPU(cs); 442 target_ulong physical; 443 int prot; 444 445 get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0); 446 return physical; 447 } 448 449 void cpu_load_tlb(CPUSH4State * env) 450 { 451 SuperHCPU *cpu = sh_env_get_cpu(env); 452 int n = cpu_mmucr_urc(env->mmucr); 453 tlb_t * entry = &env->utlb[n]; 454 455 if (entry->v) { 456 /* Overwriting valid entry in utlb. */ 457 target_ulong address = entry->vpn << 10; 458 tlb_flush_page(CPU(cpu), address); 459 } 460 461 /* Take values into cpu status from registers. */ 462 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh); 463 entry->vpn = cpu_pteh_vpn(env->pteh); 464 entry->v = (uint8_t)cpu_ptel_v(env->ptel); 465 entry->ppn = cpu_ptel_ppn(env->ptel); 466 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel); 467 switch (entry->sz) { 468 case 0: /* 00 */ 469 entry->size = 1024; /* 1K */ 470 break; 471 case 1: /* 01 */ 472 entry->size = 1024 * 4; /* 4K */ 473 break; 474 case 2: /* 10 */ 475 entry->size = 1024 * 64; /* 64K */ 476 break; 477 case 3: /* 11 */ 478 entry->size = 1024 * 1024; /* 1M */ 479 break; 480 default: 481 cpu_abort(CPU(cpu), "Unhandled load_tlb"); 482 break; 483 } 484 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel); 485 entry->c = (uint8_t)cpu_ptel_c(env->ptel); 486 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel); 487 entry->d = (uint8_t)cpu_ptel_d(env->ptel); 488 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel); 489 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea); 490 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea); 491 } 492 493 void cpu_sh4_invalidate_tlb(CPUSH4State *s) 494 { 495 int i; 496 497 /* UTLB */ 498 for (i = 0; i < UTLB_SIZE; i++) { 499 tlb_t * entry = &s->utlb[i]; 500 entry->v = 0; 501 } 502 /* ITLB */ 503 for (i = 0; i < ITLB_SIZE; i++) { 504 tlb_t * entry = &s->itlb[i]; 505 entry->v = 0; 506 } 507 508 tlb_flush(CPU(sh_env_get_cpu(s))); 509 } 510 511 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, 512 hwaddr addr) 513 { 514 int index = (addr & 0x00000300) >> 8; 515 tlb_t * entry = &s->itlb[index]; 516 517 return (entry->vpn << 10) | 518 (entry->v << 8) | 519 (entry->asid); 520 } 521 522 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, 523 uint32_t mem_value) 524 { 525 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 526 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 527 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 528 529 int index = (addr & 0x00000300) >> 8; 530 tlb_t * entry = &s->itlb[index]; 531 if (entry->v) { 532 /* Overwriting valid entry in itlb. */ 533 target_ulong address = entry->vpn << 10; 534 tlb_flush_page(CPU(sh_env_get_cpu(s)), address); 535 } 536 entry->asid = asid; 537 entry->vpn = vpn; 538 entry->v = v; 539 } 540 541 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, 542 hwaddr addr) 543 { 544 int array = (addr & 0x00800000) >> 23; 545 int index = (addr & 0x00000300) >> 8; 546 tlb_t * entry = &s->itlb[index]; 547 548 if (array == 0) { 549 /* ITLB Data Array 1 */ 550 return (entry->ppn << 10) | 551 (entry->v << 8) | 552 (entry->pr << 5) | 553 ((entry->sz & 1) << 6) | 554 ((entry->sz & 2) << 4) | 555 (entry->c << 3) | 556 (entry->sh << 1); 557 } else { 558 /* ITLB Data Array 2 */ 559 return (entry->tc << 1) | 560 (entry->sa); 561 } 562 } 563 564 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, 565 uint32_t mem_value) 566 { 567 int array = (addr & 0x00800000) >> 23; 568 int index = (addr & 0x00000300) >> 8; 569 tlb_t * entry = &s->itlb[index]; 570 571 if (array == 0) { 572 /* ITLB Data Array 1 */ 573 if (entry->v) { 574 /* Overwriting valid entry in utlb. */ 575 target_ulong address = entry->vpn << 10; 576 tlb_flush_page(CPU(sh_env_get_cpu(s)), address); 577 } 578 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 579 entry->v = (mem_value & 0x00000100) >> 8; 580 entry->sz = (mem_value & 0x00000080) >> 6 | 581 (mem_value & 0x00000010) >> 4; 582 entry->pr = (mem_value & 0x00000040) >> 5; 583 entry->c = (mem_value & 0x00000008) >> 3; 584 entry->sh = (mem_value & 0x00000002) >> 1; 585 } else { 586 /* ITLB Data Array 2 */ 587 entry->tc = (mem_value & 0x00000008) >> 3; 588 entry->sa = (mem_value & 0x00000007); 589 } 590 } 591 592 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, 593 hwaddr addr) 594 { 595 int index = (addr & 0x00003f00) >> 8; 596 tlb_t * entry = &s->utlb[index]; 597 598 increment_urc(s); /* per utlb access */ 599 600 return (entry->vpn << 10) | 601 (entry->v << 8) | 602 (entry->asid); 603 } 604 605 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, 606 uint32_t mem_value) 607 { 608 int associate = addr & 0x0000080; 609 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 610 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9); 611 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 612 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 613 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD)); 614 615 if (associate) { 616 int i; 617 tlb_t * utlb_match_entry = NULL; 618 int needs_tlb_flush = 0; 619 620 /* search UTLB */ 621 for (i = 0; i < UTLB_SIZE; i++) { 622 tlb_t * entry = &s->utlb[i]; 623 if (!entry->v) 624 continue; 625 626 if (entry->vpn == vpn 627 && (!use_asid || entry->asid == asid || entry->sh)) { 628 if (utlb_match_entry) { 629 CPUState *cs = CPU(sh_env_get_cpu(s)); 630 631 /* Multiple TLB Exception */ 632 cs->exception_index = 0x140; 633 s->tea = addr; 634 break; 635 } 636 if (entry->v && !v) 637 needs_tlb_flush = 1; 638 entry->v = v; 639 entry->d = d; 640 utlb_match_entry = entry; 641 } 642 increment_urc(s); /* per utlb access */ 643 } 644 645 /* search ITLB */ 646 for (i = 0; i < ITLB_SIZE; i++) { 647 tlb_t * entry = &s->itlb[i]; 648 if (entry->vpn == vpn 649 && (!use_asid || entry->asid == asid || entry->sh)) { 650 if (entry->v && !v) 651 needs_tlb_flush = 1; 652 if (utlb_match_entry) 653 *entry = *utlb_match_entry; 654 else 655 entry->v = v; 656 break; 657 } 658 } 659 660 if (needs_tlb_flush) { 661 tlb_flush_page(CPU(sh_env_get_cpu(s)), vpn << 10); 662 } 663 } else { 664 int index = (addr & 0x00003f00) >> 8; 665 tlb_t * entry = &s->utlb[index]; 666 if (entry->v) { 667 CPUState *cs = CPU(sh_env_get_cpu(s)); 668 669 /* Overwriting valid entry in utlb. */ 670 target_ulong address = entry->vpn << 10; 671 tlb_flush_page(cs, address); 672 } 673 entry->asid = asid; 674 entry->vpn = vpn; 675 entry->d = d; 676 entry->v = v; 677 increment_urc(s); 678 } 679 } 680 681 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, 682 hwaddr addr) 683 { 684 int array = (addr & 0x00800000) >> 23; 685 int index = (addr & 0x00003f00) >> 8; 686 tlb_t * entry = &s->utlb[index]; 687 688 increment_urc(s); /* per utlb access */ 689 690 if (array == 0) { 691 /* ITLB Data Array 1 */ 692 return (entry->ppn << 10) | 693 (entry->v << 8) | 694 (entry->pr << 5) | 695 ((entry->sz & 1) << 6) | 696 ((entry->sz & 2) << 4) | 697 (entry->c << 3) | 698 (entry->d << 2) | 699 (entry->sh << 1) | 700 (entry->wt); 701 } else { 702 /* ITLB Data Array 2 */ 703 return (entry->tc << 1) | 704 (entry->sa); 705 } 706 } 707 708 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, 709 uint32_t mem_value) 710 { 711 int array = (addr & 0x00800000) >> 23; 712 int index = (addr & 0x00003f00) >> 8; 713 tlb_t * entry = &s->utlb[index]; 714 715 increment_urc(s); /* per utlb access */ 716 717 if (array == 0) { 718 /* UTLB Data Array 1 */ 719 if (entry->v) { 720 /* Overwriting valid entry in utlb. */ 721 target_ulong address = entry->vpn << 10; 722 tlb_flush_page(CPU(sh_env_get_cpu(s)), address); 723 } 724 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 725 entry->v = (mem_value & 0x00000100) >> 8; 726 entry->sz = (mem_value & 0x00000080) >> 6 | 727 (mem_value & 0x00000010) >> 4; 728 entry->pr = (mem_value & 0x00000060) >> 5; 729 entry->c = (mem_value & 0x00000008) >> 3; 730 entry->d = (mem_value & 0x00000004) >> 2; 731 entry->sh = (mem_value & 0x00000002) >> 1; 732 entry->wt = (mem_value & 0x00000001); 733 } else { 734 /* UTLB Data Array 2 */ 735 entry->tc = (mem_value & 0x00000008) >> 3; 736 entry->sa = (mem_value & 0x00000007); 737 } 738 } 739 740 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) 741 { 742 int n; 743 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 744 745 /* check area */ 746 if (env->sr & (1u << SR_MD)) { 747 /* For privileged mode, P2 and P4 area is not cacheable. */ 748 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr) 749 return 0; 750 } else { 751 /* For user mode, only U0 area is cacheable. */ 752 if (0x80000000 <= addr) 753 return 0; 754 } 755 756 /* 757 * TODO : Evaluate CCR and check if the cache is on or off. 758 * Now CCR is not in CPUSH4State, but in SH7750State. 759 * When you move the ccr into CPUSH4State, the code will be 760 * as follows. 761 */ 762 #if 0 763 /* check if operand cache is enabled or not. */ 764 if (!(env->ccr & 1)) 765 return 0; 766 #endif 767 768 /* if MMU is off, no check for TLB. */ 769 if (env->mmucr & MMUCR_AT) 770 return 1; 771 772 /* check TLB */ 773 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid); 774 if (n >= 0) 775 return env->itlb[n].c; 776 777 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid); 778 if (n >= 0) 779 return env->utlb[n].c; 780 781 return 0; 782 } 783 784 #endif 785 786 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 787 { 788 if (interrupt_request & CPU_INTERRUPT_HARD) { 789 SuperHCPU *cpu = SUPERH_CPU(cs); 790 CPUSH4State *env = &cpu->env; 791 792 /* Delay slots are indivisible, ignore interrupts */ 793 if (env->flags & DELAY_SLOT_MASK) { 794 return false; 795 } else { 796 superh_cpu_do_interrupt(cs); 797 return true; 798 } 799 } 800 return false; 801 } 802 803 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 804 MMUAccessType access_type, int mmu_idx, 805 bool probe, uintptr_t retaddr) 806 { 807 SuperHCPU *cpu = SUPERH_CPU(cs); 808 CPUSH4State *env = &cpu->env; 809 int ret; 810 811 #ifdef CONFIG_USER_ONLY 812 ret = (access_type == MMU_DATA_STORE ? MMU_DTLB_VIOLATION_WRITE : 813 access_type == MMU_INST_FETCH ? MMU_ITLB_VIOLATION : 814 MMU_DTLB_VIOLATION_READ); 815 #else 816 target_ulong physical; 817 int prot, sh_access_type; 818 819 sh_access_type = ACCESS_INT; 820 ret = get_physical_address(env, &physical, &prot, address, 821 access_type, sh_access_type); 822 823 if (ret == MMU_OK) { 824 address &= TARGET_PAGE_MASK; 825 physical &= TARGET_PAGE_MASK; 826 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); 827 return true; 828 } 829 if (probe) { 830 return false; 831 } 832 833 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) { 834 env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK); 835 } 836 #endif 837 838 env->tea = address; 839 switch (ret) { 840 case MMU_ITLB_MISS: 841 case MMU_DTLB_MISS_READ: 842 cs->exception_index = 0x040; 843 break; 844 case MMU_DTLB_MULTIPLE: 845 case MMU_ITLB_MULTIPLE: 846 cs->exception_index = 0x140; 847 break; 848 case MMU_ITLB_VIOLATION: 849 cs->exception_index = 0x0a0; 850 break; 851 case MMU_DTLB_MISS_WRITE: 852 cs->exception_index = 0x060; 853 break; 854 case MMU_DTLB_INITIAL_WRITE: 855 cs->exception_index = 0x080; 856 break; 857 case MMU_DTLB_VIOLATION_READ: 858 cs->exception_index = 0x0a0; 859 break; 860 case MMU_DTLB_VIOLATION_WRITE: 861 cs->exception_index = 0x0c0; 862 break; 863 case MMU_IADDR_ERROR: 864 case MMU_DADDR_ERROR_READ: 865 cs->exception_index = 0x0e0; 866 break; 867 case MMU_DADDR_ERROR_WRITE: 868 cs->exception_index = 0x100; 869 break; 870 default: 871 cpu_abort(cs, "Unhandled MMU fault"); 872 } 873 cpu_loop_exit_restore(cs, retaddr); 874 } 875