xref: /openbmc/qemu/target/sh4/helper.c (revision 86e372ad)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/log.h"
25 
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #include "sysemu/runstate.h"
29 #endif
30 
31 #define MMU_OK                   0
32 #define MMU_ITLB_MISS            (-1)
33 #define MMU_ITLB_MULTIPLE        (-2)
34 #define MMU_ITLB_VIOLATION       (-3)
35 #define MMU_DTLB_MISS_READ       (-4)
36 #define MMU_DTLB_MISS_WRITE      (-5)
37 #define MMU_DTLB_INITIAL_WRITE   (-6)
38 #define MMU_DTLB_VIOLATION_READ  (-7)
39 #define MMU_DTLB_VIOLATION_WRITE (-8)
40 #define MMU_DTLB_MULTIPLE        (-9)
41 #define MMU_DTLB_MISS            (-10)
42 #define MMU_IADDR_ERROR          (-11)
43 #define MMU_DADDR_ERROR_READ     (-12)
44 #define MMU_DADDR_ERROR_WRITE    (-13)
45 
46 #if defined(CONFIG_USER_ONLY)
47 
48 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
49 {
50     /* For user mode, only U0 area is cacheable. */
51     return !(addr & 0x80000000);
52 }
53 
54 #else /* !CONFIG_USER_ONLY */
55 
56 void superh_cpu_do_interrupt(CPUState *cs)
57 {
58     CPUSH4State *env = cpu_env(cs);
59     int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
60     int do_exp, irq_vector = cs->exception_index;
61 
62     /* prioritize exceptions over interrupts */
63 
64     do_exp = cs->exception_index != -1;
65     do_irq = do_irq && (cs->exception_index == -1);
66 
67     if (env->sr & (1u << SR_BL)) {
68         if (do_exp && cs->exception_index != 0x1e0) {
69             /* In theory a masked exception generates a reset exception,
70                which in turn jumps to the reset vector. However this only
71                works when using a bootloader. When using a kernel and an
72                initrd, they need to be reloaded and the program counter
73                should be loaded with the kernel entry point.
74                qemu_system_reset_request takes care of that.  */
75             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
76             return;
77         }
78         if (do_irq && !env->in_sleep) {
79             return; /* masked */
80         }
81     }
82     env->in_sleep = 0;
83 
84     if (do_irq) {
85         irq_vector = sh_intc_get_pending_vector(env->intc_handle,
86                                                 (env->sr >> 4) & 0xf);
87         if (irq_vector == -1) {
88             return; /* masked */
89         }
90     }
91 
92     if (qemu_loglevel_mask(CPU_LOG_INT)) {
93         const char *expname;
94         switch (cs->exception_index) {
95         case 0x0e0:
96             expname = "addr_error";
97             break;
98         case 0x040:
99             expname = "tlb_miss";
100             break;
101         case 0x0a0:
102             expname = "tlb_violation";
103             break;
104         case 0x180:
105             expname = "illegal_instruction";
106             break;
107         case 0x1a0:
108             expname = "slot_illegal_instruction";
109             break;
110         case 0x800:
111             expname = "fpu_disable";
112             break;
113         case 0x820:
114             expname = "slot_fpu";
115             break;
116         case 0x100:
117             expname = "data_write";
118             break;
119         case 0x060:
120             expname = "dtlb_miss_write";
121             break;
122         case 0x0c0:
123             expname = "dtlb_violation_write";
124             break;
125         case 0x120:
126             expname = "fpu_exception";
127             break;
128         case 0x080:
129             expname = "initial_page_write";
130             break;
131         case 0x160:
132             expname = "trapa";
133             break;
134         default:
135             expname = do_irq ? "interrupt" : "???";
136             break;
137         }
138         qemu_log("exception 0x%03x [%s] raised\n",
139                   irq_vector, expname);
140         log_cpu_state(cs, 0);
141     }
142 
143     env->ssr = cpu_read_sr(env);
144     env->spc = env->pc;
145     env->sgr = env->gregs[15];
146     env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
147     env->lock_addr = -1;
148 
149     if (env->flags & TB_FLAG_DELAY_SLOT_MASK) {
150         /* Branch instruction should be executed again before delay slot. */
151         env->spc -= 2;
152         /* Clear flags for exception/interrupt routine. */
153         env->flags &= ~TB_FLAG_DELAY_SLOT_MASK;
154     }
155 
156     if (do_exp) {
157         env->expevt = cs->exception_index;
158         switch (cs->exception_index) {
159         case 0x000:
160         case 0x020:
161         case 0x140:
162             env->sr &= ~(1u << SR_FD);
163             env->sr |= 0xf << 4; /* IMASK */
164             env->pc = 0xa0000000;
165             break;
166         case 0x040:
167         case 0x060:
168             env->pc = env->vbr + 0x400;
169             break;
170         case 0x160:
171             env->spc += 2; /* special case for TRAPA */
172             /* fall through */
173         default:
174             env->pc = env->vbr + 0x100;
175             break;
176         }
177         return;
178     }
179 
180     if (do_irq) {
181         env->intevt = irq_vector;
182         env->pc = env->vbr + 0x600;
183         return;
184     }
185 }
186 
187 static void update_itlb_use(CPUSH4State * env, int itlbnb)
188 {
189     uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
190 
191     switch (itlbnb) {
192     case 0:
193         and_mask = 0x1f;
194         break;
195     case 1:
196         and_mask = 0xe7;
197         or_mask = 0x80;
198         break;
199     case 2:
200         and_mask = 0xfb;
201         or_mask = 0x50;
202         break;
203     case 3:
204         or_mask = 0x2c;
205         break;
206     }
207 
208     env->mmucr &= (and_mask << 24) | 0x00ffffff;
209     env->mmucr |= (or_mask << 24);
210 }
211 
212 static int itlb_replacement(CPUSH4State * env)
213 {
214     if ((env->mmucr & 0xe0000000) == 0xe0000000) {
215         return 0;
216     }
217     if ((env->mmucr & 0x98000000) == 0x18000000) {
218         return 1;
219     }
220     if ((env->mmucr & 0x54000000) == 0x04000000) {
221         return 2;
222     }
223     if ((env->mmucr & 0x2c000000) == 0x00000000) {
224         return 3;
225     }
226     cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
227 }
228 
229 /* Find the corresponding entry in the right TLB
230    Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
231 */
232 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
233                           tlb_t * entries, uint8_t nbtlb, int use_asid)
234 {
235     int match = MMU_DTLB_MISS;
236     uint32_t start, end;
237     uint8_t asid;
238     int i;
239 
240     asid = env->pteh & 0xff;
241 
242     for (i = 0; i < nbtlb; i++) {
243         if (!entries[i].v)
244             continue; /* Invalid entry */
245         if (!entries[i].sh && use_asid && entries[i].asid != asid)
246             continue; /* Bad ASID */
247         start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
248         end = start + entries[i].size - 1;
249         if (address >= start && address <= end) { /* Match */
250             if (match != MMU_DTLB_MISS)
251                 return MMU_DTLB_MULTIPLE; /* Multiple match */
252             match = i;
253         }
254     }
255     return match;
256 }
257 
258 static void increment_urc(CPUSH4State * env)
259 {
260     uint8_t urb, urc;
261 
262     /* Increment URC */
263     urb = ((env->mmucr) >> 18) & 0x3f;
264     urc = ((env->mmucr) >> 10) & 0x3f;
265     urc++;
266     if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
267         urc = 0;
268     env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
269 }
270 
271 /* Copy and utlb entry into itlb
272    Return entry
273 */
274 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
275 {
276     int itlb;
277 
278     tlb_t * ientry;
279     itlb = itlb_replacement(env);
280     ientry = &env->itlb[itlb];
281     if (ientry->v) {
282         tlb_flush_page(env_cpu(env), ientry->vpn << 10);
283     }
284     *ientry = env->utlb[utlb];
285     update_itlb_use(env, itlb);
286     return itlb;
287 }
288 
289 /* Find itlb entry
290    Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
291 */
292 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
293                            int use_asid)
294 {
295     int e;
296 
297     e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
298     if (e == MMU_DTLB_MULTIPLE) {
299         e = MMU_ITLB_MULTIPLE;
300     } else if (e == MMU_DTLB_MISS) {
301         e = MMU_ITLB_MISS;
302     } else if (e >= 0) {
303         update_itlb_use(env, e);
304     }
305     return e;
306 }
307 
308 /* Find utlb entry
309    Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
310 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
311 {
312     /* per utlb access */
313     increment_urc(env);
314 
315     /* Return entry */
316     return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
317 }
318 
319 /* Match address against MMU
320    Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
321    MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
322    MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
323    MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
324    MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
325 */
326 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
327                            int *prot, target_ulong address,
328                            MMUAccessType access_type)
329 {
330     int use_asid, n;
331     tlb_t *matching = NULL;
332 
333     use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
334 
335     if (access_type == MMU_INST_FETCH) {
336         n = find_itlb_entry(env, address, use_asid);
337         if (n >= 0) {
338             matching = &env->itlb[n];
339             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
340                 n = MMU_ITLB_VIOLATION;
341             } else {
342                 *prot = PAGE_EXEC;
343             }
344         } else {
345             n = find_utlb_entry(env, address, use_asid);
346             if (n >= 0) {
347                 n = copy_utlb_entry_itlb(env, n);
348                 matching = &env->itlb[n];
349                 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
350                     n = MMU_ITLB_VIOLATION;
351                 } else {
352                     *prot = PAGE_READ | PAGE_EXEC;
353                     if ((matching->pr & 1) && matching->d) {
354                         *prot |= PAGE_WRITE;
355                     }
356                 }
357             } else if (n == MMU_DTLB_MULTIPLE) {
358                 n = MMU_ITLB_MULTIPLE;
359             } else if (n == MMU_DTLB_MISS) {
360                 n = MMU_ITLB_MISS;
361             }
362         }
363     } else {
364         n = find_utlb_entry(env, address, use_asid);
365         if (n >= 0) {
366             matching = &env->utlb[n];
367             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
368                 n = (access_type == MMU_DATA_STORE)
369                     ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ;
370             } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) {
371                 n = MMU_DTLB_VIOLATION_WRITE;
372             } else if ((access_type == MMU_DATA_STORE) && !matching->d) {
373                 n = MMU_DTLB_INITIAL_WRITE;
374             } else {
375                 *prot = PAGE_READ;
376                 if ((matching->pr & 1) && matching->d) {
377                     *prot |= PAGE_WRITE;
378                 }
379             }
380         } else if (n == MMU_DTLB_MISS) {
381             n = (access_type == MMU_DATA_STORE)
382                 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ;
383         }
384     }
385     if (n >= 0) {
386         n = MMU_OK;
387         *physical = ((matching->ppn << 10) & ~(matching->size - 1))
388                     | (address & (matching->size - 1));
389     }
390     return n;
391 }
392 
393 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
394                                 int *prot, target_ulong address,
395                                 MMUAccessType access_type)
396 {
397     /* P1, P2 and P4 areas do not use translation */
398     if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) {
399         if (!(env->sr & (1u << SR_MD))
400                 && (address < 0xe0000000 || address >= 0xe4000000)) {
401             /* Unauthorized access in user mode (only store queues are available) */
402             qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
403             if (access_type == MMU_DATA_LOAD) {
404                 return MMU_DADDR_ERROR_READ;
405             } else if (access_type == MMU_DATA_STORE) {
406                 return MMU_DADDR_ERROR_WRITE;
407             } else {
408                 return MMU_IADDR_ERROR;
409             }
410         }
411         if (address >= 0x80000000 && address < 0xc0000000) {
412             /* Mask upper 3 bits for P1 and P2 areas */
413             *physical = address & 0x1fffffff;
414         } else {
415             *physical = address;
416         }
417         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
418         return MMU_OK;
419     }
420 
421     /* If MMU is disabled, return the corresponding physical page */
422     if (!(env->mmucr & MMUCR_AT)) {
423         *physical = address & 0x1FFFFFFF;
424         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
425         return MMU_OK;
426     }
427 
428     /* We need to resort to the MMU */
429     return get_mmu_address(env, physical, prot, address, access_type);
430 }
431 
432 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
433 {
434     target_ulong physical;
435     int prot;
436 
437     if (get_physical_address(cpu_env(cs), &physical, &prot, addr, MMU_DATA_LOAD)
438             == MMU_OK) {
439         return physical;
440     }
441 
442     return -1;
443 }
444 
445 void cpu_load_tlb(CPUSH4State * env)
446 {
447     CPUState *cs = env_cpu(env);
448     int n = cpu_mmucr_urc(env->mmucr);
449     tlb_t * entry = &env->utlb[n];
450 
451     if (entry->v) {
452         /* Overwriting valid entry in utlb. */
453         target_ulong address = entry->vpn << 10;
454         tlb_flush_page(cs, address);
455     }
456 
457     /* Take values into cpu status from registers. */
458     entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
459     entry->vpn  = cpu_pteh_vpn(env->pteh);
460     entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
461     entry->ppn  = cpu_ptel_ppn(env->ptel);
462     entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
463     switch (entry->sz) {
464     case 0: /* 00 */
465         entry->size = 1024; /* 1K */
466         break;
467     case 1: /* 01 */
468         entry->size = 1024 * 4; /* 4K */
469         break;
470     case 2: /* 10 */
471         entry->size = 1024 * 64; /* 64K */
472         break;
473     case 3: /* 11 */
474         entry->size = 1024 * 1024; /* 1M */
475         break;
476     default:
477         cpu_abort(cs, "Unhandled load_tlb");
478         break;
479     }
480     entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
481     entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
482     entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
483     entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
484     entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
485     entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
486     entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
487 }
488 
489  void cpu_sh4_invalidate_tlb(CPUSH4State *s)
490 {
491     int i;
492 
493     /* UTLB */
494     for (i = 0; i < UTLB_SIZE; i++) {
495         tlb_t * entry = &s->utlb[i];
496         entry->v = 0;
497     }
498     /* ITLB */
499     for (i = 0; i < ITLB_SIZE; i++) {
500         tlb_t * entry = &s->itlb[i];
501         entry->v = 0;
502     }
503 
504     tlb_flush(env_cpu(s));
505 }
506 
507 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
508                                        hwaddr addr)
509 {
510     int index = (addr & 0x00000300) >> 8;
511     tlb_t * entry = &s->itlb[index];
512 
513     return (entry->vpn  << 10) |
514            (entry->v    <<  8) |
515            (entry->asid);
516 }
517 
518 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
519                                     uint32_t mem_value)
520 {
521     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
522     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
523     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
524 
525     int index = (addr & 0x00000300) >> 8;
526     tlb_t * entry = &s->itlb[index];
527     if (entry->v) {
528         /* Overwriting valid entry in itlb. */
529         target_ulong address = entry->vpn << 10;
530         tlb_flush_page(env_cpu(s), address);
531     }
532     entry->asid = asid;
533     entry->vpn = vpn;
534     entry->v = v;
535 }
536 
537 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
538                                        hwaddr addr)
539 {
540     int array = (addr & 0x00800000) >> 23;
541     int index = (addr & 0x00000300) >> 8;
542     tlb_t * entry = &s->itlb[index];
543 
544     if (array == 0) {
545         /* ITLB Data Array 1 */
546         return (entry->ppn << 10) |
547                (entry->v   <<  8) |
548                (entry->pr  <<  5) |
549                ((entry->sz & 1) <<  6) |
550                ((entry->sz & 2) <<  4) |
551                (entry->c   <<  3) |
552                (entry->sh  <<  1);
553     } else {
554         /* ITLB Data Array 2 */
555         return (entry->tc << 1) |
556                (entry->sa);
557     }
558 }
559 
560 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
561                                     uint32_t mem_value)
562 {
563     int array = (addr & 0x00800000) >> 23;
564     int index = (addr & 0x00000300) >> 8;
565     tlb_t * entry = &s->itlb[index];
566 
567     if (array == 0) {
568         /* ITLB Data Array 1 */
569         if (entry->v) {
570             /* Overwriting valid entry in utlb. */
571             target_ulong address = entry->vpn << 10;
572             tlb_flush_page(env_cpu(s), address);
573         }
574         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
575         entry->v   = (mem_value & 0x00000100) >> 8;
576         entry->sz  = (mem_value & 0x00000080) >> 6 |
577                      (mem_value & 0x00000010) >> 4;
578         entry->pr  = (mem_value & 0x00000040) >> 5;
579         entry->c   = (mem_value & 0x00000008) >> 3;
580         entry->sh  = (mem_value & 0x00000002) >> 1;
581     } else {
582         /* ITLB Data Array 2 */
583         entry->tc  = (mem_value & 0x00000008) >> 3;
584         entry->sa  = (mem_value & 0x00000007);
585     }
586 }
587 
588 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
589                                        hwaddr addr)
590 {
591     int index = (addr & 0x00003f00) >> 8;
592     tlb_t * entry = &s->utlb[index];
593 
594     increment_urc(s); /* per utlb access */
595 
596     return (entry->vpn  << 10) |
597            (entry->v    <<  8) |
598            (entry->asid);
599 }
600 
601 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
602                                     uint32_t mem_value)
603 {
604     int associate = addr & 0x0000080;
605     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
606     uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
607     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
608     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
609     int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
610 
611     if (associate) {
612         int i;
613         tlb_t * utlb_match_entry = NULL;
614         int needs_tlb_flush = 0;
615 
616         /* search UTLB */
617         for (i = 0; i < UTLB_SIZE; i++) {
618             tlb_t * entry = &s->utlb[i];
619             if (!entry->v)
620                 continue;
621 
622             if (entry->vpn == vpn
623                 && (!use_asid || entry->asid == asid || entry->sh)) {
624                 if (utlb_match_entry) {
625                     CPUState *cs = env_cpu(s);
626 
627                     /* Multiple TLB Exception */
628                     cs->exception_index = 0x140;
629                     s->tea = addr;
630                     break;
631                 }
632                 if (entry->v && !v)
633                     needs_tlb_flush = 1;
634                 entry->v = v;
635                 entry->d = d;
636                 utlb_match_entry = entry;
637             }
638             increment_urc(s); /* per utlb access */
639         }
640 
641         /* search ITLB */
642         for (i = 0; i < ITLB_SIZE; i++) {
643             tlb_t * entry = &s->itlb[i];
644             if (entry->vpn == vpn
645                 && (!use_asid || entry->asid == asid || entry->sh)) {
646                 if (entry->v && !v)
647                     needs_tlb_flush = 1;
648                 if (utlb_match_entry)
649                     *entry = *utlb_match_entry;
650                 else
651                     entry->v = v;
652                 break;
653             }
654         }
655 
656         if (needs_tlb_flush) {
657             tlb_flush_page(env_cpu(s), vpn << 10);
658         }
659     } else {
660         int index = (addr & 0x00003f00) >> 8;
661         tlb_t * entry = &s->utlb[index];
662         if (entry->v) {
663             CPUState *cs = env_cpu(s);
664 
665             /* Overwriting valid entry in utlb. */
666             target_ulong address = entry->vpn << 10;
667             tlb_flush_page(cs, address);
668         }
669         entry->asid = asid;
670         entry->vpn = vpn;
671         entry->d = d;
672         entry->v = v;
673         increment_urc(s);
674     }
675 }
676 
677 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
678                                        hwaddr addr)
679 {
680     int array = (addr & 0x00800000) >> 23;
681     int index = (addr & 0x00003f00) >> 8;
682     tlb_t * entry = &s->utlb[index];
683 
684     increment_urc(s); /* per utlb access */
685 
686     if (array == 0) {
687         /* ITLB Data Array 1 */
688         return (entry->ppn << 10) |
689                (entry->v   <<  8) |
690                (entry->pr  <<  5) |
691                ((entry->sz & 1) <<  6) |
692                ((entry->sz & 2) <<  4) |
693                (entry->c   <<  3) |
694                (entry->d   <<  2) |
695                (entry->sh  <<  1) |
696                (entry->wt);
697     } else {
698         /* ITLB Data Array 2 */
699         return (entry->tc << 1) |
700                (entry->sa);
701     }
702 }
703 
704 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
705                                     uint32_t mem_value)
706 {
707     int array = (addr & 0x00800000) >> 23;
708     int index = (addr & 0x00003f00) >> 8;
709     tlb_t * entry = &s->utlb[index];
710 
711     increment_urc(s); /* per utlb access */
712 
713     if (array == 0) {
714         /* UTLB Data Array 1 */
715         if (entry->v) {
716             /* Overwriting valid entry in utlb. */
717             target_ulong address = entry->vpn << 10;
718             tlb_flush_page(env_cpu(s), address);
719         }
720         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
721         entry->v   = (mem_value & 0x00000100) >> 8;
722         entry->sz  = (mem_value & 0x00000080) >> 6 |
723                      (mem_value & 0x00000010) >> 4;
724         entry->pr  = (mem_value & 0x00000060) >> 5;
725         entry->c   = (mem_value & 0x00000008) >> 3;
726         entry->d   = (mem_value & 0x00000004) >> 2;
727         entry->sh  = (mem_value & 0x00000002) >> 1;
728         entry->wt  = (mem_value & 0x00000001);
729     } else {
730         /* UTLB Data Array 2 */
731         entry->tc = (mem_value & 0x00000008) >> 3;
732         entry->sa = (mem_value & 0x00000007);
733     }
734 }
735 
736 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
737 {
738     int n;
739     int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
740 
741     /* check area */
742     if (env->sr & (1u << SR_MD)) {
743         /* For privileged mode, P2 and P4 area is not cacheable. */
744         if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
745             return 0;
746     } else {
747         /* For user mode, only U0 area is cacheable. */
748         if (0x80000000 <= addr)
749             return 0;
750     }
751 
752     /*
753      * TODO : Evaluate CCR and check if the cache is on or off.
754      *        Now CCR is not in CPUSH4State, but in SH7750State.
755      *        When you move the ccr into CPUSH4State, the code will be
756      *        as follows.
757      */
758 #if 0
759     /* check if operand cache is enabled or not. */
760     if (!(env->ccr & 1))
761         return 0;
762 #endif
763 
764     /* if MMU is off, no check for TLB. */
765     if (env->mmucr & MMUCR_AT)
766         return 1;
767 
768     /* check TLB */
769     n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
770     if (n >= 0)
771         return env->itlb[n].c;
772 
773     n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
774     if (n >= 0)
775         return env->utlb[n].c;
776 
777     return 0;
778 }
779 
780 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
781 {
782     if (interrupt_request & CPU_INTERRUPT_HARD) {
783         /* Delay slots are indivisible, ignore interrupts */
784         if (cpu_env(cs)->flags & TB_FLAG_DELAY_SLOT_MASK) {
785             return false;
786         } else {
787             superh_cpu_do_interrupt(cs);
788             return true;
789         }
790     }
791     return false;
792 }
793 
794 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
795                          MMUAccessType access_type, int mmu_idx,
796                          bool probe, uintptr_t retaddr)
797 {
798     CPUSH4State *env = cpu_env(cs);
799     int ret;
800 
801     target_ulong physical;
802     int prot;
803 
804     ret = get_physical_address(env, &physical, &prot, address, access_type);
805 
806     if (ret == MMU_OK) {
807         address &= TARGET_PAGE_MASK;
808         physical &= TARGET_PAGE_MASK;
809         tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
810         return true;
811     }
812     if (probe) {
813         return false;
814     }
815 
816     if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
817         env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
818     }
819 
820     env->tea = address;
821     switch (ret) {
822     case MMU_ITLB_MISS:
823     case MMU_DTLB_MISS_READ:
824         cs->exception_index = 0x040;
825         break;
826     case MMU_DTLB_MULTIPLE:
827     case MMU_ITLB_MULTIPLE:
828         cs->exception_index = 0x140;
829         break;
830     case MMU_ITLB_VIOLATION:
831         cs->exception_index = 0x0a0;
832         break;
833     case MMU_DTLB_MISS_WRITE:
834         cs->exception_index = 0x060;
835         break;
836     case MMU_DTLB_INITIAL_WRITE:
837         cs->exception_index = 0x080;
838         break;
839     case MMU_DTLB_VIOLATION_READ:
840         cs->exception_index = 0x0a0;
841         break;
842     case MMU_DTLB_VIOLATION_WRITE:
843         cs->exception_index = 0x0c0;
844         break;
845     case MMU_IADDR_ERROR:
846     case MMU_DADDR_ERROR_READ:
847         cs->exception_index = 0x0e0;
848         break;
849     case MMU_DADDR_ERROR_WRITE:
850         cs->exception_index = 0x100;
851         break;
852     default:
853         cpu_abort(cs, "Unhandled MMU fault");
854     }
855     cpu_loop_exit_restore(cs, retaddr);
856 }
857 #endif /* !CONFIG_USER_ONLY */
858