1 /* 2 * SH4 emulation 3 * 4 * Copyright (c) 2005 Samuel Tardieu 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "exec/log.h" 24 #include "sysemu/sysemu.h" 25 26 #if !defined(CONFIG_USER_ONLY) 27 #include "hw/sh4/sh_intc.h" 28 #endif 29 30 #define MMU_OK 0 31 #define MMU_ITLB_MISS (-1) 32 #define MMU_ITLB_MULTIPLE (-2) 33 #define MMU_ITLB_VIOLATION (-3) 34 #define MMU_DTLB_MISS_READ (-4) 35 #define MMU_DTLB_MISS_WRITE (-5) 36 #define MMU_DTLB_INITIAL_WRITE (-6) 37 #define MMU_DTLB_VIOLATION_READ (-7) 38 #define MMU_DTLB_VIOLATION_WRITE (-8) 39 #define MMU_DTLB_MULTIPLE (-9) 40 #define MMU_DTLB_MISS (-10) 41 #define MMU_IADDR_ERROR (-11) 42 #define MMU_DADDR_ERROR_READ (-12) 43 #define MMU_DADDR_ERROR_WRITE (-13) 44 45 #if defined(CONFIG_USER_ONLY) 46 47 void superh_cpu_do_interrupt(CPUState *cs) 48 { 49 cs->exception_index = -1; 50 } 51 52 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr) 53 { 54 /* For user mode, only U0 area is cacheable. */ 55 return !(addr & 0x80000000); 56 } 57 58 #else /* !CONFIG_USER_ONLY */ 59 60 void superh_cpu_do_interrupt(CPUState *cs) 61 { 62 SuperHCPU *cpu = SUPERH_CPU(cs); 63 CPUSH4State *env = &cpu->env; 64 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD; 65 int do_exp, irq_vector = cs->exception_index; 66 67 /* prioritize exceptions over interrupts */ 68 69 do_exp = cs->exception_index != -1; 70 do_irq = do_irq && (cs->exception_index == -1); 71 72 if (env->sr & (1u << SR_BL)) { 73 if (do_exp && cs->exception_index != 0x1e0) { 74 /* In theory a masked exception generates a reset exception, 75 which in turn jumps to the reset vector. However this only 76 works when using a bootloader. When using a kernel and an 77 initrd, they need to be reloaded and the program counter 78 should be loaded with the kernel entry point. 79 qemu_system_reset_request takes care of that. */ 80 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 81 return; 82 } 83 if (do_irq && !env->in_sleep) { 84 return; /* masked */ 85 } 86 } 87 env->in_sleep = 0; 88 89 if (do_irq) { 90 irq_vector = sh_intc_get_pending_vector(env->intc_handle, 91 (env->sr >> 4) & 0xf); 92 if (irq_vector == -1) { 93 return; /* masked */ 94 } 95 } 96 97 if (qemu_loglevel_mask(CPU_LOG_INT)) { 98 const char *expname; 99 switch (cs->exception_index) { 100 case 0x0e0: 101 expname = "addr_error"; 102 break; 103 case 0x040: 104 expname = "tlb_miss"; 105 break; 106 case 0x0a0: 107 expname = "tlb_violation"; 108 break; 109 case 0x180: 110 expname = "illegal_instruction"; 111 break; 112 case 0x1a0: 113 expname = "slot_illegal_instruction"; 114 break; 115 case 0x800: 116 expname = "fpu_disable"; 117 break; 118 case 0x820: 119 expname = "slot_fpu"; 120 break; 121 case 0x100: 122 expname = "data_write"; 123 break; 124 case 0x060: 125 expname = "dtlb_miss_write"; 126 break; 127 case 0x0c0: 128 expname = "dtlb_violation_write"; 129 break; 130 case 0x120: 131 expname = "fpu_exception"; 132 break; 133 case 0x080: 134 expname = "initial_page_write"; 135 break; 136 case 0x160: 137 expname = "trapa"; 138 break; 139 default: 140 expname = do_irq ? "interrupt" : "???"; 141 break; 142 } 143 qemu_log("exception 0x%03x [%s] raised\n", 144 irq_vector, expname); 145 log_cpu_state(cs, 0); 146 } 147 148 env->ssr = cpu_read_sr(env); 149 env->spc = env->pc; 150 env->sgr = env->gregs[15]; 151 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB); 152 env->lock_addr = -1; 153 154 if (env->flags & DELAY_SLOT_MASK) { 155 /* Branch instruction should be executed again before delay slot. */ 156 env->spc -= 2; 157 /* Clear flags for exception/interrupt routine. */ 158 env->flags &= ~DELAY_SLOT_MASK; 159 } 160 161 if (do_exp) { 162 env->expevt = cs->exception_index; 163 switch (cs->exception_index) { 164 case 0x000: 165 case 0x020: 166 case 0x140: 167 env->sr &= ~(1u << SR_FD); 168 env->sr |= 0xf << 4; /* IMASK */ 169 env->pc = 0xa0000000; 170 break; 171 case 0x040: 172 case 0x060: 173 env->pc = env->vbr + 0x400; 174 break; 175 case 0x160: 176 env->spc += 2; /* special case for TRAPA */ 177 /* fall through */ 178 default: 179 env->pc = env->vbr + 0x100; 180 break; 181 } 182 return; 183 } 184 185 if (do_irq) { 186 env->intevt = irq_vector; 187 env->pc = env->vbr + 0x600; 188 return; 189 } 190 } 191 192 static void update_itlb_use(CPUSH4State * env, int itlbnb) 193 { 194 uint8_t or_mask = 0, and_mask = (uint8_t) - 1; 195 196 switch (itlbnb) { 197 case 0: 198 and_mask = 0x1f; 199 break; 200 case 1: 201 and_mask = 0xe7; 202 or_mask = 0x80; 203 break; 204 case 2: 205 and_mask = 0xfb; 206 or_mask = 0x50; 207 break; 208 case 3: 209 or_mask = 0x2c; 210 break; 211 } 212 213 env->mmucr &= (and_mask << 24) | 0x00ffffff; 214 env->mmucr |= (or_mask << 24); 215 } 216 217 static int itlb_replacement(CPUSH4State * env) 218 { 219 if ((env->mmucr & 0xe0000000) == 0xe0000000) { 220 return 0; 221 } 222 if ((env->mmucr & 0x98000000) == 0x18000000) { 223 return 1; 224 } 225 if ((env->mmucr & 0x54000000) == 0x04000000) { 226 return 2; 227 } 228 if ((env->mmucr & 0x2c000000) == 0x00000000) { 229 return 3; 230 } 231 cpu_abort(env_cpu(env), "Unhandled itlb_replacement"); 232 } 233 234 /* Find the corresponding entry in the right TLB 235 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE 236 */ 237 static int find_tlb_entry(CPUSH4State * env, target_ulong address, 238 tlb_t * entries, uint8_t nbtlb, int use_asid) 239 { 240 int match = MMU_DTLB_MISS; 241 uint32_t start, end; 242 uint8_t asid; 243 int i; 244 245 asid = env->pteh & 0xff; 246 247 for (i = 0; i < nbtlb; i++) { 248 if (!entries[i].v) 249 continue; /* Invalid entry */ 250 if (!entries[i].sh && use_asid && entries[i].asid != asid) 251 continue; /* Bad ASID */ 252 start = (entries[i].vpn << 10) & ~(entries[i].size - 1); 253 end = start + entries[i].size - 1; 254 if (address >= start && address <= end) { /* Match */ 255 if (match != MMU_DTLB_MISS) 256 return MMU_DTLB_MULTIPLE; /* Multiple match */ 257 match = i; 258 } 259 } 260 return match; 261 } 262 263 static void increment_urc(CPUSH4State * env) 264 { 265 uint8_t urb, urc; 266 267 /* Increment URC */ 268 urb = ((env->mmucr) >> 18) & 0x3f; 269 urc = ((env->mmucr) >> 10) & 0x3f; 270 urc++; 271 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1)) 272 urc = 0; 273 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10); 274 } 275 276 /* Copy and utlb entry into itlb 277 Return entry 278 */ 279 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb) 280 { 281 int itlb; 282 283 tlb_t * ientry; 284 itlb = itlb_replacement(env); 285 ientry = &env->itlb[itlb]; 286 if (ientry->v) { 287 tlb_flush_page(env_cpu(env), ientry->vpn << 10); 288 } 289 *ientry = env->utlb[utlb]; 290 update_itlb_use(env, itlb); 291 return itlb; 292 } 293 294 /* Find itlb entry 295 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE 296 */ 297 static int find_itlb_entry(CPUSH4State * env, target_ulong address, 298 int use_asid) 299 { 300 int e; 301 302 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid); 303 if (e == MMU_DTLB_MULTIPLE) { 304 e = MMU_ITLB_MULTIPLE; 305 } else if (e == MMU_DTLB_MISS) { 306 e = MMU_ITLB_MISS; 307 } else if (e >= 0) { 308 update_itlb_use(env, e); 309 } 310 return e; 311 } 312 313 /* Find utlb entry 314 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */ 315 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid) 316 { 317 /* per utlb access */ 318 increment_urc(env); 319 320 /* Return entry */ 321 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid); 322 } 323 324 /* Match address against MMU 325 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE, 326 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ, 327 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS, 328 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION, 329 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE. 330 */ 331 static int get_mmu_address(CPUSH4State * env, target_ulong * physical, 332 int *prot, target_ulong address, 333 int rw, int access_type) 334 { 335 int use_asid, n; 336 tlb_t *matching = NULL; 337 338 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 339 340 if (rw == 2) { 341 n = find_itlb_entry(env, address, use_asid); 342 if (n >= 0) { 343 matching = &env->itlb[n]; 344 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 345 n = MMU_ITLB_VIOLATION; 346 } else { 347 *prot = PAGE_EXEC; 348 } 349 } else { 350 n = find_utlb_entry(env, address, use_asid); 351 if (n >= 0) { 352 n = copy_utlb_entry_itlb(env, n); 353 matching = &env->itlb[n]; 354 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 355 n = MMU_ITLB_VIOLATION; 356 } else { 357 *prot = PAGE_READ | PAGE_EXEC; 358 if ((matching->pr & 1) && matching->d) { 359 *prot |= PAGE_WRITE; 360 } 361 } 362 } else if (n == MMU_DTLB_MULTIPLE) { 363 n = MMU_ITLB_MULTIPLE; 364 } else if (n == MMU_DTLB_MISS) { 365 n = MMU_ITLB_MISS; 366 } 367 } 368 } else { 369 n = find_utlb_entry(env, address, use_asid); 370 if (n >= 0) { 371 matching = &env->utlb[n]; 372 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 373 n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE : 374 MMU_DTLB_VIOLATION_READ; 375 } else if ((rw == 1) && !(matching->pr & 1)) { 376 n = MMU_DTLB_VIOLATION_WRITE; 377 } else if ((rw == 1) && !matching->d) { 378 n = MMU_DTLB_INITIAL_WRITE; 379 } else { 380 *prot = PAGE_READ; 381 if ((matching->pr & 1) && matching->d) { 382 *prot |= PAGE_WRITE; 383 } 384 } 385 } else if (n == MMU_DTLB_MISS) { 386 n = (rw == 1) ? MMU_DTLB_MISS_WRITE : 387 MMU_DTLB_MISS_READ; 388 } 389 } 390 if (n >= 0) { 391 n = MMU_OK; 392 *physical = ((matching->ppn << 10) & ~(matching->size - 1)) | 393 (address & (matching->size - 1)); 394 } 395 return n; 396 } 397 398 static int get_physical_address(CPUSH4State * env, target_ulong * physical, 399 int *prot, target_ulong address, 400 int rw, int access_type) 401 { 402 /* P1, P2 and P4 areas do not use translation */ 403 if ((address >= 0x80000000 && address < 0xc0000000) || 404 address >= 0xe0000000) { 405 if (!(env->sr & (1u << SR_MD)) 406 && (address < 0xe0000000 || address >= 0xe4000000)) { 407 /* Unauthorized access in user mode (only store queues are available) */ 408 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n"); 409 if (rw == 0) 410 return MMU_DADDR_ERROR_READ; 411 else if (rw == 1) 412 return MMU_DADDR_ERROR_WRITE; 413 else 414 return MMU_IADDR_ERROR; 415 } 416 if (address >= 0x80000000 && address < 0xc0000000) { 417 /* Mask upper 3 bits for P1 and P2 areas */ 418 *physical = address & 0x1fffffff; 419 } else { 420 *physical = address; 421 } 422 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 423 return MMU_OK; 424 } 425 426 /* If MMU is disabled, return the corresponding physical page */ 427 if (!(env->mmucr & MMUCR_AT)) { 428 *physical = address & 0x1FFFFFFF; 429 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 430 return MMU_OK; 431 } 432 433 /* We need to resort to the MMU */ 434 return get_mmu_address(env, physical, prot, address, rw, access_type); 435 } 436 437 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 438 { 439 SuperHCPU *cpu = SUPERH_CPU(cs); 440 target_ulong physical; 441 int prot; 442 443 get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0); 444 return physical; 445 } 446 447 void cpu_load_tlb(CPUSH4State * env) 448 { 449 CPUState *cs = env_cpu(env); 450 int n = cpu_mmucr_urc(env->mmucr); 451 tlb_t * entry = &env->utlb[n]; 452 453 if (entry->v) { 454 /* Overwriting valid entry in utlb. */ 455 target_ulong address = entry->vpn << 10; 456 tlb_flush_page(cs, address); 457 } 458 459 /* Take values into cpu status from registers. */ 460 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh); 461 entry->vpn = cpu_pteh_vpn(env->pteh); 462 entry->v = (uint8_t)cpu_ptel_v(env->ptel); 463 entry->ppn = cpu_ptel_ppn(env->ptel); 464 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel); 465 switch (entry->sz) { 466 case 0: /* 00 */ 467 entry->size = 1024; /* 1K */ 468 break; 469 case 1: /* 01 */ 470 entry->size = 1024 * 4; /* 4K */ 471 break; 472 case 2: /* 10 */ 473 entry->size = 1024 * 64; /* 64K */ 474 break; 475 case 3: /* 11 */ 476 entry->size = 1024 * 1024; /* 1M */ 477 break; 478 default: 479 cpu_abort(cs, "Unhandled load_tlb"); 480 break; 481 } 482 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel); 483 entry->c = (uint8_t)cpu_ptel_c(env->ptel); 484 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel); 485 entry->d = (uint8_t)cpu_ptel_d(env->ptel); 486 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel); 487 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea); 488 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea); 489 } 490 491 void cpu_sh4_invalidate_tlb(CPUSH4State *s) 492 { 493 int i; 494 495 /* UTLB */ 496 for (i = 0; i < UTLB_SIZE; i++) { 497 tlb_t * entry = &s->utlb[i]; 498 entry->v = 0; 499 } 500 /* ITLB */ 501 for (i = 0; i < ITLB_SIZE; i++) { 502 tlb_t * entry = &s->itlb[i]; 503 entry->v = 0; 504 } 505 506 tlb_flush(env_cpu(s)); 507 } 508 509 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, 510 hwaddr addr) 511 { 512 int index = (addr & 0x00000300) >> 8; 513 tlb_t * entry = &s->itlb[index]; 514 515 return (entry->vpn << 10) | 516 (entry->v << 8) | 517 (entry->asid); 518 } 519 520 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, 521 uint32_t mem_value) 522 { 523 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 524 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 525 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 526 527 int index = (addr & 0x00000300) >> 8; 528 tlb_t * entry = &s->itlb[index]; 529 if (entry->v) { 530 /* Overwriting valid entry in itlb. */ 531 target_ulong address = entry->vpn << 10; 532 tlb_flush_page(env_cpu(s), address); 533 } 534 entry->asid = asid; 535 entry->vpn = vpn; 536 entry->v = v; 537 } 538 539 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, 540 hwaddr addr) 541 { 542 int array = (addr & 0x00800000) >> 23; 543 int index = (addr & 0x00000300) >> 8; 544 tlb_t * entry = &s->itlb[index]; 545 546 if (array == 0) { 547 /* ITLB Data Array 1 */ 548 return (entry->ppn << 10) | 549 (entry->v << 8) | 550 (entry->pr << 5) | 551 ((entry->sz & 1) << 6) | 552 ((entry->sz & 2) << 4) | 553 (entry->c << 3) | 554 (entry->sh << 1); 555 } else { 556 /* ITLB Data Array 2 */ 557 return (entry->tc << 1) | 558 (entry->sa); 559 } 560 } 561 562 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, 563 uint32_t mem_value) 564 { 565 int array = (addr & 0x00800000) >> 23; 566 int index = (addr & 0x00000300) >> 8; 567 tlb_t * entry = &s->itlb[index]; 568 569 if (array == 0) { 570 /* ITLB Data Array 1 */ 571 if (entry->v) { 572 /* Overwriting valid entry in utlb. */ 573 target_ulong address = entry->vpn << 10; 574 tlb_flush_page(env_cpu(s), address); 575 } 576 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 577 entry->v = (mem_value & 0x00000100) >> 8; 578 entry->sz = (mem_value & 0x00000080) >> 6 | 579 (mem_value & 0x00000010) >> 4; 580 entry->pr = (mem_value & 0x00000040) >> 5; 581 entry->c = (mem_value & 0x00000008) >> 3; 582 entry->sh = (mem_value & 0x00000002) >> 1; 583 } else { 584 /* ITLB Data Array 2 */ 585 entry->tc = (mem_value & 0x00000008) >> 3; 586 entry->sa = (mem_value & 0x00000007); 587 } 588 } 589 590 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, 591 hwaddr addr) 592 { 593 int index = (addr & 0x00003f00) >> 8; 594 tlb_t * entry = &s->utlb[index]; 595 596 increment_urc(s); /* per utlb access */ 597 598 return (entry->vpn << 10) | 599 (entry->v << 8) | 600 (entry->asid); 601 } 602 603 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, 604 uint32_t mem_value) 605 { 606 int associate = addr & 0x0000080; 607 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 608 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9); 609 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 610 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 611 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD)); 612 613 if (associate) { 614 int i; 615 tlb_t * utlb_match_entry = NULL; 616 int needs_tlb_flush = 0; 617 618 /* search UTLB */ 619 for (i = 0; i < UTLB_SIZE; i++) { 620 tlb_t * entry = &s->utlb[i]; 621 if (!entry->v) 622 continue; 623 624 if (entry->vpn == vpn 625 && (!use_asid || entry->asid == asid || entry->sh)) { 626 if (utlb_match_entry) { 627 CPUState *cs = env_cpu(s); 628 629 /* Multiple TLB Exception */ 630 cs->exception_index = 0x140; 631 s->tea = addr; 632 break; 633 } 634 if (entry->v && !v) 635 needs_tlb_flush = 1; 636 entry->v = v; 637 entry->d = d; 638 utlb_match_entry = entry; 639 } 640 increment_urc(s); /* per utlb access */ 641 } 642 643 /* search ITLB */ 644 for (i = 0; i < ITLB_SIZE; i++) { 645 tlb_t * entry = &s->itlb[i]; 646 if (entry->vpn == vpn 647 && (!use_asid || entry->asid == asid || entry->sh)) { 648 if (entry->v && !v) 649 needs_tlb_flush = 1; 650 if (utlb_match_entry) 651 *entry = *utlb_match_entry; 652 else 653 entry->v = v; 654 break; 655 } 656 } 657 658 if (needs_tlb_flush) { 659 tlb_flush_page(env_cpu(s), vpn << 10); 660 } 661 } else { 662 int index = (addr & 0x00003f00) >> 8; 663 tlb_t * entry = &s->utlb[index]; 664 if (entry->v) { 665 CPUState *cs = env_cpu(s); 666 667 /* Overwriting valid entry in utlb. */ 668 target_ulong address = entry->vpn << 10; 669 tlb_flush_page(cs, address); 670 } 671 entry->asid = asid; 672 entry->vpn = vpn; 673 entry->d = d; 674 entry->v = v; 675 increment_urc(s); 676 } 677 } 678 679 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, 680 hwaddr addr) 681 { 682 int array = (addr & 0x00800000) >> 23; 683 int index = (addr & 0x00003f00) >> 8; 684 tlb_t * entry = &s->utlb[index]; 685 686 increment_urc(s); /* per utlb access */ 687 688 if (array == 0) { 689 /* ITLB Data Array 1 */ 690 return (entry->ppn << 10) | 691 (entry->v << 8) | 692 (entry->pr << 5) | 693 ((entry->sz & 1) << 6) | 694 ((entry->sz & 2) << 4) | 695 (entry->c << 3) | 696 (entry->d << 2) | 697 (entry->sh << 1) | 698 (entry->wt); 699 } else { 700 /* ITLB Data Array 2 */ 701 return (entry->tc << 1) | 702 (entry->sa); 703 } 704 } 705 706 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, 707 uint32_t mem_value) 708 { 709 int array = (addr & 0x00800000) >> 23; 710 int index = (addr & 0x00003f00) >> 8; 711 tlb_t * entry = &s->utlb[index]; 712 713 increment_urc(s); /* per utlb access */ 714 715 if (array == 0) { 716 /* UTLB Data Array 1 */ 717 if (entry->v) { 718 /* Overwriting valid entry in utlb. */ 719 target_ulong address = entry->vpn << 10; 720 tlb_flush_page(env_cpu(s), address); 721 } 722 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 723 entry->v = (mem_value & 0x00000100) >> 8; 724 entry->sz = (mem_value & 0x00000080) >> 6 | 725 (mem_value & 0x00000010) >> 4; 726 entry->pr = (mem_value & 0x00000060) >> 5; 727 entry->c = (mem_value & 0x00000008) >> 3; 728 entry->d = (mem_value & 0x00000004) >> 2; 729 entry->sh = (mem_value & 0x00000002) >> 1; 730 entry->wt = (mem_value & 0x00000001); 731 } else { 732 /* UTLB Data Array 2 */ 733 entry->tc = (mem_value & 0x00000008) >> 3; 734 entry->sa = (mem_value & 0x00000007); 735 } 736 } 737 738 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) 739 { 740 int n; 741 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 742 743 /* check area */ 744 if (env->sr & (1u << SR_MD)) { 745 /* For privileged mode, P2 and P4 area is not cacheable. */ 746 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr) 747 return 0; 748 } else { 749 /* For user mode, only U0 area is cacheable. */ 750 if (0x80000000 <= addr) 751 return 0; 752 } 753 754 /* 755 * TODO : Evaluate CCR and check if the cache is on or off. 756 * Now CCR is not in CPUSH4State, but in SH7750State. 757 * When you move the ccr into CPUSH4State, the code will be 758 * as follows. 759 */ 760 #if 0 761 /* check if operand cache is enabled or not. */ 762 if (!(env->ccr & 1)) 763 return 0; 764 #endif 765 766 /* if MMU is off, no check for TLB. */ 767 if (env->mmucr & MMUCR_AT) 768 return 1; 769 770 /* check TLB */ 771 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid); 772 if (n >= 0) 773 return env->itlb[n].c; 774 775 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid); 776 if (n >= 0) 777 return env->utlb[n].c; 778 779 return 0; 780 } 781 782 #endif 783 784 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 785 { 786 if (interrupt_request & CPU_INTERRUPT_HARD) { 787 SuperHCPU *cpu = SUPERH_CPU(cs); 788 CPUSH4State *env = &cpu->env; 789 790 /* Delay slots are indivisible, ignore interrupts */ 791 if (env->flags & DELAY_SLOT_MASK) { 792 return false; 793 } else { 794 superh_cpu_do_interrupt(cs); 795 return true; 796 } 797 } 798 return false; 799 } 800 801 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 802 MMUAccessType access_type, int mmu_idx, 803 bool probe, uintptr_t retaddr) 804 { 805 SuperHCPU *cpu = SUPERH_CPU(cs); 806 CPUSH4State *env = &cpu->env; 807 int ret; 808 809 #ifdef CONFIG_USER_ONLY 810 ret = (access_type == MMU_DATA_STORE ? MMU_DTLB_VIOLATION_WRITE : 811 access_type == MMU_INST_FETCH ? MMU_ITLB_VIOLATION : 812 MMU_DTLB_VIOLATION_READ); 813 #else 814 target_ulong physical; 815 int prot, sh_access_type; 816 817 sh_access_type = ACCESS_INT; 818 ret = get_physical_address(env, &physical, &prot, address, 819 access_type, sh_access_type); 820 821 if (ret == MMU_OK) { 822 address &= TARGET_PAGE_MASK; 823 physical &= TARGET_PAGE_MASK; 824 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); 825 return true; 826 } 827 if (probe) { 828 return false; 829 } 830 831 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) { 832 env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK); 833 } 834 #endif 835 836 env->tea = address; 837 switch (ret) { 838 case MMU_ITLB_MISS: 839 case MMU_DTLB_MISS_READ: 840 cs->exception_index = 0x040; 841 break; 842 case MMU_DTLB_MULTIPLE: 843 case MMU_ITLB_MULTIPLE: 844 cs->exception_index = 0x140; 845 break; 846 case MMU_ITLB_VIOLATION: 847 cs->exception_index = 0x0a0; 848 break; 849 case MMU_DTLB_MISS_WRITE: 850 cs->exception_index = 0x060; 851 break; 852 case MMU_DTLB_INITIAL_WRITE: 853 cs->exception_index = 0x080; 854 break; 855 case MMU_DTLB_VIOLATION_READ: 856 cs->exception_index = 0x0a0; 857 break; 858 case MMU_DTLB_VIOLATION_WRITE: 859 cs->exception_index = 0x0c0; 860 break; 861 case MMU_IADDR_ERROR: 862 case MMU_DADDR_ERROR_READ: 863 cs->exception_index = 0x0e0; 864 break; 865 case MMU_DADDR_ERROR_WRITE: 866 cs->exception_index = 0x100; 867 break; 868 default: 869 cpu_abort(cs, "Unhandled MMU fault"); 870 } 871 cpu_loop_exit_restore(cs, retaddr); 872 } 873