1 /* 2 * SH4 emulation 3 * 4 * Copyright (c) 2005 Samuel Tardieu 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "exec/log.h" 26 27 #if !defined(CONFIG_USER_ONLY) 28 #include "hw/sh4/sh_intc.h" 29 #include "sysemu/runstate.h" 30 #endif 31 32 #define MMU_OK 0 33 #define MMU_ITLB_MISS (-1) 34 #define MMU_ITLB_MULTIPLE (-2) 35 #define MMU_ITLB_VIOLATION (-3) 36 #define MMU_DTLB_MISS_READ (-4) 37 #define MMU_DTLB_MISS_WRITE (-5) 38 #define MMU_DTLB_INITIAL_WRITE (-6) 39 #define MMU_DTLB_VIOLATION_READ (-7) 40 #define MMU_DTLB_VIOLATION_WRITE (-8) 41 #define MMU_DTLB_MULTIPLE (-9) 42 #define MMU_DTLB_MISS (-10) 43 #define MMU_IADDR_ERROR (-11) 44 #define MMU_DADDR_ERROR_READ (-12) 45 #define MMU_DADDR_ERROR_WRITE (-13) 46 47 #if defined(CONFIG_USER_ONLY) 48 49 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr) 50 { 51 /* For user mode, only U0 area is cacheable. */ 52 return !(addr & 0x80000000); 53 } 54 55 #else /* !CONFIG_USER_ONLY */ 56 57 void superh_cpu_do_interrupt(CPUState *cs) 58 { 59 CPUSH4State *env = cpu_env(cs); 60 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD; 61 int do_exp, irq_vector = cs->exception_index; 62 63 /* prioritize exceptions over interrupts */ 64 65 do_exp = cs->exception_index != -1; 66 do_irq = do_irq && (cs->exception_index == -1); 67 68 if (env->sr & (1u << SR_BL)) { 69 if (do_exp && cs->exception_index != 0x1e0) { 70 /* In theory a masked exception generates a reset exception, 71 which in turn jumps to the reset vector. However this only 72 works when using a bootloader. When using a kernel and an 73 initrd, they need to be reloaded and the program counter 74 should be loaded with the kernel entry point. 75 qemu_system_reset_request takes care of that. */ 76 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 77 return; 78 } 79 if (do_irq && !env->in_sleep) { 80 return; /* masked */ 81 } 82 } 83 env->in_sleep = 0; 84 85 if (do_irq) { 86 irq_vector = sh_intc_get_pending_vector(env->intc_handle, 87 (env->sr >> 4) & 0xf); 88 if (irq_vector == -1) { 89 return; /* masked */ 90 } 91 } 92 93 if (qemu_loglevel_mask(CPU_LOG_INT)) { 94 const char *expname; 95 switch (cs->exception_index) { 96 case 0x0e0: 97 expname = "addr_error"; 98 break; 99 case 0x040: 100 expname = "tlb_miss"; 101 break; 102 case 0x0a0: 103 expname = "tlb_violation"; 104 break; 105 case 0x180: 106 expname = "illegal_instruction"; 107 break; 108 case 0x1a0: 109 expname = "slot_illegal_instruction"; 110 break; 111 case 0x800: 112 expname = "fpu_disable"; 113 break; 114 case 0x820: 115 expname = "slot_fpu"; 116 break; 117 case 0x100: 118 expname = "data_write"; 119 break; 120 case 0x060: 121 expname = "dtlb_miss_write"; 122 break; 123 case 0x0c0: 124 expname = "dtlb_violation_write"; 125 break; 126 case 0x120: 127 expname = "fpu_exception"; 128 break; 129 case 0x080: 130 expname = "initial_page_write"; 131 break; 132 case 0x160: 133 expname = "trapa"; 134 break; 135 default: 136 expname = do_irq ? "interrupt" : "???"; 137 break; 138 } 139 qemu_log("exception 0x%03x [%s] raised\n", 140 irq_vector, expname); 141 log_cpu_state(cs, 0); 142 } 143 144 env->ssr = cpu_read_sr(env); 145 env->spc = env->pc; 146 env->sgr = env->gregs[15]; 147 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB); 148 env->lock_addr = -1; 149 150 if (env->flags & TB_FLAG_DELAY_SLOT_MASK) { 151 /* Branch instruction should be executed again before delay slot. */ 152 env->spc -= 2; 153 /* Clear flags for exception/interrupt routine. */ 154 env->flags &= ~TB_FLAG_DELAY_SLOT_MASK; 155 } 156 157 if (do_exp) { 158 env->expevt = cs->exception_index; 159 switch (cs->exception_index) { 160 case 0x000: 161 case 0x020: 162 case 0x140: 163 env->sr &= ~(1u << SR_FD); 164 env->sr |= 0xf << 4; /* IMASK */ 165 env->pc = 0xa0000000; 166 break; 167 case 0x040: 168 case 0x060: 169 env->pc = env->vbr + 0x400; 170 break; 171 case 0x160: 172 env->spc += 2; /* special case for TRAPA */ 173 /* fall through */ 174 default: 175 env->pc = env->vbr + 0x100; 176 break; 177 } 178 return; 179 } 180 181 if (do_irq) { 182 env->intevt = irq_vector; 183 env->pc = env->vbr + 0x600; 184 return; 185 } 186 } 187 188 static void update_itlb_use(CPUSH4State * env, int itlbnb) 189 { 190 uint32_t or_mask = 0, and_mask = 0xff; 191 192 switch (itlbnb) { 193 case 0: 194 and_mask = 0x1f; 195 break; 196 case 1: 197 and_mask = 0xe7; 198 or_mask = 0x80; 199 break; 200 case 2: 201 and_mask = 0xfb; 202 or_mask = 0x50; 203 break; 204 case 3: 205 or_mask = 0x2c; 206 break; 207 } 208 209 env->mmucr &= (and_mask << 24) | 0x00ffffff; 210 env->mmucr |= (or_mask << 24); 211 } 212 213 static int itlb_replacement(CPUSH4State * env) 214 { 215 if ((env->mmucr & 0xe0000000) == 0xe0000000) { 216 return 0; 217 } 218 if ((env->mmucr & 0x98000000) == 0x18000000) { 219 return 1; 220 } 221 if ((env->mmucr & 0x54000000) == 0x04000000) { 222 return 2; 223 } 224 if ((env->mmucr & 0x2c000000) == 0x00000000) { 225 return 3; 226 } 227 cpu_abort(env_cpu(env), "Unhandled itlb_replacement"); 228 } 229 230 /* Find the corresponding entry in the right TLB 231 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE 232 */ 233 static int find_tlb_entry(CPUSH4State * env, target_ulong address, 234 tlb_t * entries, uint8_t nbtlb, int use_asid) 235 { 236 int match = MMU_DTLB_MISS; 237 uint32_t start, end; 238 uint8_t asid; 239 int i; 240 241 asid = env->pteh & 0xff; 242 243 for (i = 0; i < nbtlb; i++) { 244 if (!entries[i].v) 245 continue; /* Invalid entry */ 246 if (!entries[i].sh && use_asid && entries[i].asid != asid) 247 continue; /* Bad ASID */ 248 start = (entries[i].vpn << 10) & ~(entries[i].size - 1); 249 end = start + entries[i].size - 1; 250 if (address >= start && address <= end) { /* Match */ 251 if (match != MMU_DTLB_MISS) 252 return MMU_DTLB_MULTIPLE; /* Multiple match */ 253 match = i; 254 } 255 } 256 return match; 257 } 258 259 static void increment_urc(CPUSH4State * env) 260 { 261 uint8_t urb, urc; 262 263 /* Increment URC */ 264 urb = ((env->mmucr) >> 18) & 0x3f; 265 urc = ((env->mmucr) >> 10) & 0x3f; 266 urc++; 267 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1)) 268 urc = 0; 269 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10); 270 } 271 272 /* Copy and utlb entry into itlb 273 Return entry 274 */ 275 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb) 276 { 277 int itlb; 278 279 tlb_t * ientry; 280 itlb = itlb_replacement(env); 281 ientry = &env->itlb[itlb]; 282 if (ientry->v) { 283 tlb_flush_page(env_cpu(env), ientry->vpn << 10); 284 } 285 *ientry = env->utlb[utlb]; 286 update_itlb_use(env, itlb); 287 return itlb; 288 } 289 290 /* Find itlb entry 291 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE 292 */ 293 static int find_itlb_entry(CPUSH4State * env, target_ulong address, 294 int use_asid) 295 { 296 int e; 297 298 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid); 299 if (e == MMU_DTLB_MULTIPLE) { 300 e = MMU_ITLB_MULTIPLE; 301 } else if (e == MMU_DTLB_MISS) { 302 e = MMU_ITLB_MISS; 303 } else if (e >= 0) { 304 update_itlb_use(env, e); 305 } 306 return e; 307 } 308 309 /* Find utlb entry 310 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */ 311 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid) 312 { 313 /* per utlb access */ 314 increment_urc(env); 315 316 /* Return entry */ 317 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid); 318 } 319 320 /* Match address against MMU 321 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE, 322 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ, 323 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS, 324 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION, 325 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE. 326 */ 327 static int get_mmu_address(CPUSH4State * env, target_ulong * physical, 328 int *prot, target_ulong address, 329 MMUAccessType access_type) 330 { 331 int use_asid, n; 332 tlb_t *matching = NULL; 333 334 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 335 336 if (access_type == MMU_INST_FETCH) { 337 n = find_itlb_entry(env, address, use_asid); 338 if (n >= 0) { 339 matching = &env->itlb[n]; 340 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 341 n = MMU_ITLB_VIOLATION; 342 } else { 343 *prot = PAGE_EXEC; 344 } 345 } else { 346 n = find_utlb_entry(env, address, use_asid); 347 if (n >= 0) { 348 n = copy_utlb_entry_itlb(env, n); 349 matching = &env->itlb[n]; 350 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 351 n = MMU_ITLB_VIOLATION; 352 } else { 353 *prot = PAGE_READ | PAGE_EXEC; 354 if ((matching->pr & 1) && matching->d) { 355 *prot |= PAGE_WRITE; 356 } 357 } 358 } else if (n == MMU_DTLB_MULTIPLE) { 359 n = MMU_ITLB_MULTIPLE; 360 } else if (n == MMU_DTLB_MISS) { 361 n = MMU_ITLB_MISS; 362 } 363 } 364 } else { 365 n = find_utlb_entry(env, address, use_asid); 366 if (n >= 0) { 367 matching = &env->utlb[n]; 368 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 369 n = (access_type == MMU_DATA_STORE) 370 ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ; 371 } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) { 372 n = MMU_DTLB_VIOLATION_WRITE; 373 } else if ((access_type == MMU_DATA_STORE) && !matching->d) { 374 n = MMU_DTLB_INITIAL_WRITE; 375 } else { 376 *prot = PAGE_READ; 377 if ((matching->pr & 1) && matching->d) { 378 *prot |= PAGE_WRITE; 379 } 380 } 381 } else if (n == MMU_DTLB_MISS) { 382 n = (access_type == MMU_DATA_STORE) 383 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ; 384 } 385 } 386 if (n >= 0) { 387 n = MMU_OK; 388 *physical = ((matching->ppn << 10) & ~(matching->size - 1)) 389 | (address & (matching->size - 1)); 390 } 391 return n; 392 } 393 394 static int get_physical_address(CPUSH4State * env, target_ulong * physical, 395 int *prot, target_ulong address, 396 MMUAccessType access_type) 397 { 398 /* P1, P2 and P4 areas do not use translation */ 399 if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) { 400 if (!(env->sr & (1u << SR_MD)) 401 && (address < 0xe0000000 || address >= 0xe4000000)) { 402 /* Unauthorized access in user mode (only store queues are available) */ 403 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n"); 404 if (access_type == MMU_DATA_LOAD) { 405 return MMU_DADDR_ERROR_READ; 406 } else if (access_type == MMU_DATA_STORE) { 407 return MMU_DADDR_ERROR_WRITE; 408 } else { 409 return MMU_IADDR_ERROR; 410 } 411 } 412 if (address >= 0x80000000 && address < 0xc0000000) { 413 /* Mask upper 3 bits for P1 and P2 areas */ 414 *physical = address & 0x1fffffff; 415 } else { 416 *physical = address; 417 } 418 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 419 return MMU_OK; 420 } 421 422 /* If MMU is disabled, return the corresponding physical page */ 423 if (!(env->mmucr & MMUCR_AT)) { 424 *physical = address & 0x1FFFFFFF; 425 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 426 return MMU_OK; 427 } 428 429 /* We need to resort to the MMU */ 430 return get_mmu_address(env, physical, prot, address, access_type); 431 } 432 433 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 434 { 435 target_ulong physical; 436 int prot; 437 438 if (get_physical_address(cpu_env(cs), &physical, &prot, addr, MMU_DATA_LOAD) 439 == MMU_OK) { 440 return physical; 441 } 442 443 return -1; 444 } 445 446 void cpu_load_tlb(CPUSH4State * env) 447 { 448 CPUState *cs = env_cpu(env); 449 int n = cpu_mmucr_urc(env->mmucr); 450 tlb_t * entry = &env->utlb[n]; 451 452 if (entry->v) { 453 /* Overwriting valid entry in utlb. */ 454 target_ulong address = entry->vpn << 10; 455 tlb_flush_page(cs, address); 456 } 457 458 /* Take values into cpu status from registers. */ 459 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh); 460 entry->vpn = cpu_pteh_vpn(env->pteh); 461 entry->v = (uint8_t)cpu_ptel_v(env->ptel); 462 entry->ppn = cpu_ptel_ppn(env->ptel); 463 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel); 464 switch (entry->sz) { 465 case 0: /* 00 */ 466 entry->size = 1024; /* 1K */ 467 break; 468 case 1: /* 01 */ 469 entry->size = 1024 * 4; /* 4K */ 470 break; 471 case 2: /* 10 */ 472 entry->size = 1024 * 64; /* 64K */ 473 break; 474 case 3: /* 11 */ 475 entry->size = 1024 * 1024; /* 1M */ 476 break; 477 default: 478 cpu_abort(cs, "Unhandled load_tlb"); 479 break; 480 } 481 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel); 482 entry->c = (uint8_t)cpu_ptel_c(env->ptel); 483 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel); 484 entry->d = (uint8_t)cpu_ptel_d(env->ptel); 485 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel); 486 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea); 487 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea); 488 } 489 490 void cpu_sh4_invalidate_tlb(CPUSH4State *s) 491 { 492 int i; 493 494 /* UTLB */ 495 for (i = 0; i < UTLB_SIZE; i++) { 496 tlb_t * entry = &s->utlb[i]; 497 entry->v = 0; 498 } 499 /* ITLB */ 500 for (i = 0; i < ITLB_SIZE; i++) { 501 tlb_t * entry = &s->itlb[i]; 502 entry->v = 0; 503 } 504 505 tlb_flush(env_cpu(s)); 506 } 507 508 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, 509 hwaddr addr) 510 { 511 int index = (addr & 0x00000300) >> 8; 512 tlb_t * entry = &s->itlb[index]; 513 514 return (entry->vpn << 10) | 515 (entry->v << 8) | 516 (entry->asid); 517 } 518 519 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, 520 uint32_t mem_value) 521 { 522 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 523 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 524 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 525 526 int index = (addr & 0x00000300) >> 8; 527 tlb_t * entry = &s->itlb[index]; 528 if (entry->v) { 529 /* Overwriting valid entry in itlb. */ 530 target_ulong address = entry->vpn << 10; 531 tlb_flush_page(env_cpu(s), address); 532 } 533 entry->asid = asid; 534 entry->vpn = vpn; 535 entry->v = v; 536 } 537 538 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, 539 hwaddr addr) 540 { 541 int array = (addr & 0x00800000) >> 23; 542 int index = (addr & 0x00000300) >> 8; 543 tlb_t * entry = &s->itlb[index]; 544 545 if (array == 0) { 546 /* ITLB Data Array 1 */ 547 return (entry->ppn << 10) | 548 (entry->v << 8) | 549 (entry->pr << 5) | 550 ((entry->sz & 1) << 6) | 551 ((entry->sz & 2) << 4) | 552 (entry->c << 3) | 553 (entry->sh << 1); 554 } else { 555 /* ITLB Data Array 2 */ 556 return (entry->tc << 1) | 557 (entry->sa); 558 } 559 } 560 561 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, 562 uint32_t mem_value) 563 { 564 int array = (addr & 0x00800000) >> 23; 565 int index = (addr & 0x00000300) >> 8; 566 tlb_t * entry = &s->itlb[index]; 567 568 if (array == 0) { 569 /* ITLB Data Array 1 */ 570 if (entry->v) { 571 /* Overwriting valid entry in utlb. */ 572 target_ulong address = entry->vpn << 10; 573 tlb_flush_page(env_cpu(s), address); 574 } 575 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 576 entry->v = (mem_value & 0x00000100) >> 8; 577 entry->sz = (mem_value & 0x00000080) >> 6 | 578 (mem_value & 0x00000010) >> 4; 579 entry->pr = (mem_value & 0x00000040) >> 5; 580 entry->c = (mem_value & 0x00000008) >> 3; 581 entry->sh = (mem_value & 0x00000002) >> 1; 582 } else { 583 /* ITLB Data Array 2 */ 584 entry->tc = (mem_value & 0x00000008) >> 3; 585 entry->sa = (mem_value & 0x00000007); 586 } 587 } 588 589 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, 590 hwaddr addr) 591 { 592 int index = (addr & 0x00003f00) >> 8; 593 tlb_t * entry = &s->utlb[index]; 594 595 increment_urc(s); /* per utlb access */ 596 597 return (entry->vpn << 10) | 598 (entry->v << 8) | 599 (entry->asid); 600 } 601 602 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, 603 uint32_t mem_value) 604 { 605 int associate = addr & 0x0000080; 606 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 607 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9); 608 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 609 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 610 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD)); 611 612 if (associate) { 613 int i; 614 tlb_t * utlb_match_entry = NULL; 615 int needs_tlb_flush = 0; 616 617 /* search UTLB */ 618 for (i = 0; i < UTLB_SIZE; i++) { 619 tlb_t * entry = &s->utlb[i]; 620 if (!entry->v) 621 continue; 622 623 if (entry->vpn == vpn 624 && (!use_asid || entry->asid == asid || entry->sh)) { 625 if (utlb_match_entry) { 626 CPUState *cs = env_cpu(s); 627 628 /* Multiple TLB Exception */ 629 cs->exception_index = 0x140; 630 s->tea = addr; 631 break; 632 } 633 if (entry->v && !v) 634 needs_tlb_flush = 1; 635 entry->v = v; 636 entry->d = d; 637 utlb_match_entry = entry; 638 } 639 increment_urc(s); /* per utlb access */ 640 } 641 642 /* search ITLB */ 643 for (i = 0; i < ITLB_SIZE; i++) { 644 tlb_t * entry = &s->itlb[i]; 645 if (entry->vpn == vpn 646 && (!use_asid || entry->asid == asid || entry->sh)) { 647 if (entry->v && !v) 648 needs_tlb_flush = 1; 649 if (utlb_match_entry) 650 *entry = *utlb_match_entry; 651 else 652 entry->v = v; 653 break; 654 } 655 } 656 657 if (needs_tlb_flush) { 658 tlb_flush_page(env_cpu(s), vpn << 10); 659 } 660 } else { 661 int index = (addr & 0x00003f00) >> 8; 662 tlb_t * entry = &s->utlb[index]; 663 if (entry->v) { 664 CPUState *cs = env_cpu(s); 665 666 /* Overwriting valid entry in utlb. */ 667 target_ulong address = entry->vpn << 10; 668 tlb_flush_page(cs, address); 669 } 670 entry->asid = asid; 671 entry->vpn = vpn; 672 entry->d = d; 673 entry->v = v; 674 increment_urc(s); 675 } 676 } 677 678 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, 679 hwaddr addr) 680 { 681 int array = (addr & 0x00800000) >> 23; 682 int index = (addr & 0x00003f00) >> 8; 683 tlb_t * entry = &s->utlb[index]; 684 685 increment_urc(s); /* per utlb access */ 686 687 if (array == 0) { 688 /* ITLB Data Array 1 */ 689 return (entry->ppn << 10) | 690 (entry->v << 8) | 691 (entry->pr << 5) | 692 ((entry->sz & 1) << 6) | 693 ((entry->sz & 2) << 4) | 694 (entry->c << 3) | 695 (entry->d << 2) | 696 (entry->sh << 1) | 697 (entry->wt); 698 } else { 699 /* ITLB Data Array 2 */ 700 return (entry->tc << 1) | 701 (entry->sa); 702 } 703 } 704 705 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, 706 uint32_t mem_value) 707 { 708 int array = (addr & 0x00800000) >> 23; 709 int index = (addr & 0x00003f00) >> 8; 710 tlb_t * entry = &s->utlb[index]; 711 712 increment_urc(s); /* per utlb access */ 713 714 if (array == 0) { 715 /* UTLB Data Array 1 */ 716 if (entry->v) { 717 /* Overwriting valid entry in utlb. */ 718 target_ulong address = entry->vpn << 10; 719 tlb_flush_page(env_cpu(s), address); 720 } 721 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 722 entry->v = (mem_value & 0x00000100) >> 8; 723 entry->sz = (mem_value & 0x00000080) >> 6 | 724 (mem_value & 0x00000010) >> 4; 725 entry->pr = (mem_value & 0x00000060) >> 5; 726 entry->c = (mem_value & 0x00000008) >> 3; 727 entry->d = (mem_value & 0x00000004) >> 2; 728 entry->sh = (mem_value & 0x00000002) >> 1; 729 entry->wt = (mem_value & 0x00000001); 730 } else { 731 /* UTLB Data Array 2 */ 732 entry->tc = (mem_value & 0x00000008) >> 3; 733 entry->sa = (mem_value & 0x00000007); 734 } 735 } 736 737 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) 738 { 739 int n; 740 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 741 742 /* check area */ 743 if (env->sr & (1u << SR_MD)) { 744 /* For privileged mode, P2 and P4 area is not cacheable. */ 745 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr) 746 return 0; 747 } else { 748 /* For user mode, only U0 area is cacheable. */ 749 if (0x80000000 <= addr) 750 return 0; 751 } 752 753 /* 754 * TODO : Evaluate CCR and check if the cache is on or off. 755 * Now CCR is not in CPUSH4State, but in SH7750State. 756 * When you move the ccr into CPUSH4State, the code will be 757 * as follows. 758 */ 759 #if 0 760 /* check if operand cache is enabled or not. */ 761 if (!(env->ccr & 1)) 762 return 0; 763 #endif 764 765 /* if MMU is off, no check for TLB. */ 766 if (env->mmucr & MMUCR_AT) 767 return 1; 768 769 /* check TLB */ 770 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid); 771 if (n >= 0) 772 return env->itlb[n].c; 773 774 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid); 775 if (n >= 0) 776 return env->utlb[n].c; 777 778 return 0; 779 } 780 781 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 782 { 783 if (interrupt_request & CPU_INTERRUPT_HARD) { 784 /* Delay slots are indivisible, ignore interrupts */ 785 if (cpu_env(cs)->flags & TB_FLAG_DELAY_SLOT_MASK) { 786 return false; 787 } else { 788 superh_cpu_do_interrupt(cs); 789 return true; 790 } 791 } 792 return false; 793 } 794 795 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 796 MMUAccessType access_type, int mmu_idx, 797 bool probe, uintptr_t retaddr) 798 { 799 CPUSH4State *env = cpu_env(cs); 800 int ret; 801 802 target_ulong physical; 803 int prot; 804 805 ret = get_physical_address(env, &physical, &prot, address, access_type); 806 807 if (ret == MMU_OK) { 808 address &= TARGET_PAGE_MASK; 809 physical &= TARGET_PAGE_MASK; 810 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); 811 return true; 812 } 813 if (probe) { 814 return false; 815 } 816 817 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) { 818 env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK); 819 } 820 821 env->tea = address; 822 switch (ret) { 823 case MMU_ITLB_MISS: 824 case MMU_DTLB_MISS_READ: 825 cs->exception_index = 0x040; 826 break; 827 case MMU_DTLB_MULTIPLE: 828 case MMU_ITLB_MULTIPLE: 829 cs->exception_index = 0x140; 830 break; 831 case MMU_ITLB_VIOLATION: 832 cs->exception_index = 0x0a0; 833 break; 834 case MMU_DTLB_MISS_WRITE: 835 cs->exception_index = 0x060; 836 break; 837 case MMU_DTLB_INITIAL_WRITE: 838 cs->exception_index = 0x080; 839 break; 840 case MMU_DTLB_VIOLATION_READ: 841 cs->exception_index = 0x0a0; 842 break; 843 case MMU_DTLB_VIOLATION_WRITE: 844 cs->exception_index = 0x0c0; 845 break; 846 case MMU_IADDR_ERROR: 847 case MMU_DADDR_ERROR_READ: 848 cs->exception_index = 0x0e0; 849 break; 850 case MMU_DADDR_ERROR_WRITE: 851 cs->exception_index = 0x100; 852 break; 853 default: 854 cpu_abort(cs, "Unhandled MMU fault"); 855 } 856 cpu_loop_exit_restore(cs, retaddr); 857 } 858 #endif /* !CONFIG_USER_ONLY */ 859