xref: /openbmc/qemu/target/sh4/helper.c (revision 6016b7b4)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/log.h"
25 
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #include "sysemu/runstate.h"
29 #endif
30 
31 #define MMU_OK                   0
32 #define MMU_ITLB_MISS            (-1)
33 #define MMU_ITLB_MULTIPLE        (-2)
34 #define MMU_ITLB_VIOLATION       (-3)
35 #define MMU_DTLB_MISS_READ       (-4)
36 #define MMU_DTLB_MISS_WRITE      (-5)
37 #define MMU_DTLB_INITIAL_WRITE   (-6)
38 #define MMU_DTLB_VIOLATION_READ  (-7)
39 #define MMU_DTLB_VIOLATION_WRITE (-8)
40 #define MMU_DTLB_MULTIPLE        (-9)
41 #define MMU_DTLB_MISS            (-10)
42 #define MMU_IADDR_ERROR          (-11)
43 #define MMU_DADDR_ERROR_READ     (-12)
44 #define MMU_DADDR_ERROR_WRITE    (-13)
45 
46 #if defined(CONFIG_USER_ONLY)
47 
48 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
49 {
50     /* For user mode, only U0 area is cacheable. */
51     return !(addr & 0x80000000);
52 }
53 
54 #else /* !CONFIG_USER_ONLY */
55 
56 void superh_cpu_do_interrupt(CPUState *cs)
57 {
58     SuperHCPU *cpu = SUPERH_CPU(cs);
59     CPUSH4State *env = &cpu->env;
60     int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
61     int do_exp, irq_vector = cs->exception_index;
62 
63     /* prioritize exceptions over interrupts */
64 
65     do_exp = cs->exception_index != -1;
66     do_irq = do_irq && (cs->exception_index == -1);
67 
68     if (env->sr & (1u << SR_BL)) {
69         if (do_exp && cs->exception_index != 0x1e0) {
70             /* In theory a masked exception generates a reset exception,
71                which in turn jumps to the reset vector. However this only
72                works when using a bootloader. When using a kernel and an
73                initrd, they need to be reloaded and the program counter
74                should be loaded with the kernel entry point.
75                qemu_system_reset_request takes care of that.  */
76             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
77             return;
78         }
79         if (do_irq && !env->in_sleep) {
80             return; /* masked */
81         }
82     }
83     env->in_sleep = 0;
84 
85     if (do_irq) {
86         irq_vector = sh_intc_get_pending_vector(env->intc_handle,
87 						(env->sr >> 4) & 0xf);
88         if (irq_vector == -1) {
89             return; /* masked */
90 	}
91     }
92 
93     if (qemu_loglevel_mask(CPU_LOG_INT)) {
94 	const char *expname;
95         switch (cs->exception_index) {
96 	case 0x0e0:
97 	    expname = "addr_error";
98 	    break;
99 	case 0x040:
100 	    expname = "tlb_miss";
101 	    break;
102 	case 0x0a0:
103 	    expname = "tlb_violation";
104 	    break;
105 	case 0x180:
106 	    expname = "illegal_instruction";
107 	    break;
108 	case 0x1a0:
109 	    expname = "slot_illegal_instruction";
110 	    break;
111 	case 0x800:
112 	    expname = "fpu_disable";
113 	    break;
114 	case 0x820:
115 	    expname = "slot_fpu";
116 	    break;
117 	case 0x100:
118 	    expname = "data_write";
119 	    break;
120 	case 0x060:
121 	    expname = "dtlb_miss_write";
122 	    break;
123 	case 0x0c0:
124 	    expname = "dtlb_violation_write";
125 	    break;
126 	case 0x120:
127 	    expname = "fpu_exception";
128 	    break;
129 	case 0x080:
130 	    expname = "initial_page_write";
131 	    break;
132 	case 0x160:
133 	    expname = "trapa";
134 	    break;
135 	default:
136             expname = do_irq ? "interrupt" : "???";
137             break;
138 	}
139 	qemu_log("exception 0x%03x [%s] raised\n",
140 		  irq_vector, expname);
141         log_cpu_state(cs, 0);
142     }
143 
144     env->ssr = cpu_read_sr(env);
145     env->spc = env->pc;
146     env->sgr = env->gregs[15];
147     env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
148     env->lock_addr = -1;
149 
150     if (env->flags & DELAY_SLOT_MASK) {
151         /* Branch instruction should be executed again before delay slot. */
152 	env->spc -= 2;
153 	/* Clear flags for exception/interrupt routine. */
154         env->flags &= ~DELAY_SLOT_MASK;
155     }
156 
157     if (do_exp) {
158         env->expevt = cs->exception_index;
159         switch (cs->exception_index) {
160         case 0x000:
161         case 0x020:
162         case 0x140:
163             env->sr &= ~(1u << SR_FD);
164             env->sr |= 0xf << 4; /* IMASK */
165             env->pc = 0xa0000000;
166             break;
167         case 0x040:
168         case 0x060:
169             env->pc = env->vbr + 0x400;
170             break;
171         case 0x160:
172             env->spc += 2; /* special case for TRAPA */
173             /* fall through */
174         default:
175             env->pc = env->vbr + 0x100;
176             break;
177         }
178         return;
179     }
180 
181     if (do_irq) {
182         env->intevt = irq_vector;
183         env->pc = env->vbr + 0x600;
184         return;
185     }
186 }
187 
188 static void update_itlb_use(CPUSH4State * env, int itlbnb)
189 {
190     uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
191 
192     switch (itlbnb) {
193     case 0:
194 	and_mask = 0x1f;
195 	break;
196     case 1:
197 	and_mask = 0xe7;
198 	or_mask = 0x80;
199 	break;
200     case 2:
201 	and_mask = 0xfb;
202 	or_mask = 0x50;
203 	break;
204     case 3:
205 	or_mask = 0x2c;
206 	break;
207     }
208 
209     env->mmucr &= (and_mask << 24) | 0x00ffffff;
210     env->mmucr |= (or_mask << 24);
211 }
212 
213 static int itlb_replacement(CPUSH4State * env)
214 {
215     if ((env->mmucr & 0xe0000000) == 0xe0000000) {
216 	return 0;
217     }
218     if ((env->mmucr & 0x98000000) == 0x18000000) {
219 	return 1;
220     }
221     if ((env->mmucr & 0x54000000) == 0x04000000) {
222 	return 2;
223     }
224     if ((env->mmucr & 0x2c000000) == 0x00000000) {
225 	return 3;
226     }
227     cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
228 }
229 
230 /* Find the corresponding entry in the right TLB
231    Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
232 */
233 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
234 			  tlb_t * entries, uint8_t nbtlb, int use_asid)
235 {
236     int match = MMU_DTLB_MISS;
237     uint32_t start, end;
238     uint8_t asid;
239     int i;
240 
241     asid = env->pteh & 0xff;
242 
243     for (i = 0; i < nbtlb; i++) {
244 	if (!entries[i].v)
245 	    continue;		/* Invalid entry */
246 	if (!entries[i].sh && use_asid && entries[i].asid != asid)
247 	    continue;		/* Bad ASID */
248 	start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
249 	end = start + entries[i].size - 1;
250 	if (address >= start && address <= end) {	/* Match */
251 	    if (match != MMU_DTLB_MISS)
252 		return MMU_DTLB_MULTIPLE;	/* Multiple match */
253 	    match = i;
254 	}
255     }
256     return match;
257 }
258 
259 static void increment_urc(CPUSH4State * env)
260 {
261     uint8_t urb, urc;
262 
263     /* Increment URC */
264     urb = ((env->mmucr) >> 18) & 0x3f;
265     urc = ((env->mmucr) >> 10) & 0x3f;
266     urc++;
267     if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
268 	urc = 0;
269     env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
270 }
271 
272 /* Copy and utlb entry into itlb
273    Return entry
274 */
275 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
276 {
277     int itlb;
278 
279     tlb_t * ientry;
280     itlb = itlb_replacement(env);
281     ientry = &env->itlb[itlb];
282     if (ientry->v) {
283         tlb_flush_page(env_cpu(env), ientry->vpn << 10);
284     }
285     *ientry = env->utlb[utlb];
286     update_itlb_use(env, itlb);
287     return itlb;
288 }
289 
290 /* Find itlb entry
291    Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
292 */
293 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
294                            int use_asid)
295 {
296     int e;
297 
298     e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
299     if (e == MMU_DTLB_MULTIPLE) {
300 	e = MMU_ITLB_MULTIPLE;
301     } else if (e == MMU_DTLB_MISS) {
302 	e = MMU_ITLB_MISS;
303     } else if (e >= 0) {
304 	update_itlb_use(env, e);
305     }
306     return e;
307 }
308 
309 /* Find utlb entry
310    Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
311 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
312 {
313     /* per utlb access */
314     increment_urc(env);
315 
316     /* Return entry */
317     return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
318 }
319 
320 /* Match address against MMU
321    Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
322    MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
323    MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
324    MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
325    MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
326 */
327 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
328                            int *prot, target_ulong address,
329                            MMUAccessType access_type)
330 {
331     int use_asid, n;
332     tlb_t *matching = NULL;
333 
334     use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
335 
336     if (access_type == MMU_INST_FETCH) {
337         n = find_itlb_entry(env, address, use_asid);
338         if (n >= 0) {
339             matching = &env->itlb[n];
340             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
341                 n = MMU_ITLB_VIOLATION;
342             } else {
343                 *prot = PAGE_EXEC;
344             }
345         } else {
346             n = find_utlb_entry(env, address, use_asid);
347             if (n >= 0) {
348                 n = copy_utlb_entry_itlb(env, n);
349                 matching = &env->itlb[n];
350                 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
351                     n = MMU_ITLB_VIOLATION;
352                 } else {
353                     *prot = PAGE_READ | PAGE_EXEC;
354                     if ((matching->pr & 1) && matching->d) {
355                         *prot |= PAGE_WRITE;
356                     }
357                 }
358             } else if (n == MMU_DTLB_MULTIPLE) {
359                 n = MMU_ITLB_MULTIPLE;
360             } else if (n == MMU_DTLB_MISS) {
361                 n = MMU_ITLB_MISS;
362             }
363         }
364     } else {
365         n = find_utlb_entry(env, address, use_asid);
366         if (n >= 0) {
367             matching = &env->utlb[n];
368             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
369                 n = (access_type == MMU_DATA_STORE)
370                     ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ;
371             } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) {
372                 n = MMU_DTLB_VIOLATION_WRITE;
373             } else if ((access_type == MMU_DATA_STORE) && !matching->d) {
374                 n = MMU_DTLB_INITIAL_WRITE;
375             } else {
376                 *prot = PAGE_READ;
377                 if ((matching->pr & 1) && matching->d) {
378                     *prot |= PAGE_WRITE;
379                 }
380             }
381         } else if (n == MMU_DTLB_MISS) {
382             n = (access_type == MMU_DATA_STORE)
383                 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ;
384         }
385     }
386     if (n >= 0) {
387         n = MMU_OK;
388         *physical = ((matching->ppn << 10) & ~(matching->size - 1))
389                     | (address & (matching->size - 1));
390     }
391     return n;
392 }
393 
394 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
395                                 int *prot, target_ulong address,
396                                 MMUAccessType access_type)
397 {
398     /* P1, P2 and P4 areas do not use translation */
399     if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) {
400         if (!(env->sr & (1u << SR_MD))
401                 && (address < 0xe0000000 || address >= 0xe4000000)) {
402             /* Unauthorized access in user mode (only store queues are available) */
403             qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
404             if (access_type == MMU_DATA_LOAD) {
405                 return MMU_DADDR_ERROR_READ;
406             } else if (access_type == MMU_DATA_STORE) {
407                 return MMU_DADDR_ERROR_WRITE;
408             } else {
409                 return MMU_IADDR_ERROR;
410             }
411         }
412         if (address >= 0x80000000 && address < 0xc0000000) {
413             /* Mask upper 3 bits for P1 and P2 areas */
414             *physical = address & 0x1fffffff;
415         } else {
416             *physical = address;
417         }
418         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
419         return MMU_OK;
420     }
421 
422     /* If MMU is disabled, return the corresponding physical page */
423     if (!(env->mmucr & MMUCR_AT)) {
424         *physical = address & 0x1FFFFFFF;
425         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
426         return MMU_OK;
427     }
428 
429     /* We need to resort to the MMU */
430     return get_mmu_address(env, physical, prot, address, access_type);
431 }
432 
433 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
434 {
435     SuperHCPU *cpu = SUPERH_CPU(cs);
436     target_ulong physical;
437     int prot;
438 
439     if (get_physical_address(&cpu->env, &physical, &prot, addr, MMU_DATA_LOAD)
440             == MMU_OK) {
441         return physical;
442     }
443 
444     return -1;
445 }
446 
447 void cpu_load_tlb(CPUSH4State * env)
448 {
449     CPUState *cs = env_cpu(env);
450     int n = cpu_mmucr_urc(env->mmucr);
451     tlb_t * entry = &env->utlb[n];
452 
453     if (entry->v) {
454         /* Overwriting valid entry in utlb. */
455         target_ulong address = entry->vpn << 10;
456         tlb_flush_page(cs, address);
457     }
458 
459     /* Take values into cpu status from registers. */
460     entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
461     entry->vpn  = cpu_pteh_vpn(env->pteh);
462     entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
463     entry->ppn  = cpu_ptel_ppn(env->ptel);
464     entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
465     switch (entry->sz) {
466     case 0: /* 00 */
467         entry->size = 1024; /* 1K */
468         break;
469     case 1: /* 01 */
470         entry->size = 1024 * 4; /* 4K */
471         break;
472     case 2: /* 10 */
473         entry->size = 1024 * 64; /* 64K */
474         break;
475     case 3: /* 11 */
476         entry->size = 1024 * 1024; /* 1M */
477         break;
478     default:
479         cpu_abort(cs, "Unhandled load_tlb");
480         break;
481     }
482     entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
483     entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
484     entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
485     entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
486     entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
487     entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
488     entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
489 }
490 
491  void cpu_sh4_invalidate_tlb(CPUSH4State *s)
492 {
493     int i;
494 
495     /* UTLB */
496     for (i = 0; i < UTLB_SIZE; i++) {
497         tlb_t * entry = &s->utlb[i];
498         entry->v = 0;
499     }
500     /* ITLB */
501     for (i = 0; i < ITLB_SIZE; i++) {
502         tlb_t * entry = &s->itlb[i];
503         entry->v = 0;
504     }
505 
506     tlb_flush(env_cpu(s));
507 }
508 
509 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
510                                        hwaddr addr)
511 {
512     int index = (addr & 0x00000300) >> 8;
513     tlb_t * entry = &s->itlb[index];
514 
515     return (entry->vpn  << 10) |
516            (entry->v    <<  8) |
517            (entry->asid);
518 }
519 
520 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
521 				    uint32_t mem_value)
522 {
523     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
524     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
525     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
526 
527     int index = (addr & 0x00000300) >> 8;
528     tlb_t * entry = &s->itlb[index];
529     if (entry->v) {
530         /* Overwriting valid entry in itlb. */
531         target_ulong address = entry->vpn << 10;
532         tlb_flush_page(env_cpu(s), address);
533     }
534     entry->asid = asid;
535     entry->vpn = vpn;
536     entry->v = v;
537 }
538 
539 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
540                                        hwaddr addr)
541 {
542     int array = (addr & 0x00800000) >> 23;
543     int index = (addr & 0x00000300) >> 8;
544     tlb_t * entry = &s->itlb[index];
545 
546     if (array == 0) {
547         /* ITLB Data Array 1 */
548         return (entry->ppn << 10) |
549                (entry->v   <<  8) |
550                (entry->pr  <<  5) |
551                ((entry->sz & 1) <<  6) |
552                ((entry->sz & 2) <<  4) |
553                (entry->c   <<  3) |
554                (entry->sh  <<  1);
555     } else {
556         /* ITLB Data Array 2 */
557         return (entry->tc << 1) |
558                (entry->sa);
559     }
560 }
561 
562 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
563                                     uint32_t mem_value)
564 {
565     int array = (addr & 0x00800000) >> 23;
566     int index = (addr & 0x00000300) >> 8;
567     tlb_t * entry = &s->itlb[index];
568 
569     if (array == 0) {
570         /* ITLB Data Array 1 */
571         if (entry->v) {
572             /* Overwriting valid entry in utlb. */
573             target_ulong address = entry->vpn << 10;
574             tlb_flush_page(env_cpu(s), address);
575         }
576         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
577         entry->v   = (mem_value & 0x00000100) >> 8;
578         entry->sz  = (mem_value & 0x00000080) >> 6 |
579                      (mem_value & 0x00000010) >> 4;
580         entry->pr  = (mem_value & 0x00000040) >> 5;
581         entry->c   = (mem_value & 0x00000008) >> 3;
582         entry->sh  = (mem_value & 0x00000002) >> 1;
583     } else {
584         /* ITLB Data Array 2 */
585         entry->tc  = (mem_value & 0x00000008) >> 3;
586         entry->sa  = (mem_value & 0x00000007);
587     }
588 }
589 
590 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
591                                        hwaddr addr)
592 {
593     int index = (addr & 0x00003f00) >> 8;
594     tlb_t * entry = &s->utlb[index];
595 
596     increment_urc(s); /* per utlb access */
597 
598     return (entry->vpn  << 10) |
599            (entry->v    <<  8) |
600            (entry->asid);
601 }
602 
603 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
604 				    uint32_t mem_value)
605 {
606     int associate = addr & 0x0000080;
607     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
608     uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
609     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
610     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
611     int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
612 
613     if (associate) {
614         int i;
615 	tlb_t * utlb_match_entry = NULL;
616 	int needs_tlb_flush = 0;
617 
618 	/* search UTLB */
619 	for (i = 0; i < UTLB_SIZE; i++) {
620             tlb_t * entry = &s->utlb[i];
621             if (!entry->v)
622 	        continue;
623 
624             if (entry->vpn == vpn
625                 && (!use_asid || entry->asid == asid || entry->sh)) {
626 	        if (utlb_match_entry) {
627                     CPUState *cs = env_cpu(s);
628 
629 		    /* Multiple TLB Exception */
630                     cs->exception_index = 0x140;
631 		    s->tea = addr;
632 		    break;
633 	        }
634 		if (entry->v && !v)
635 		    needs_tlb_flush = 1;
636 		entry->v = v;
637 		entry->d = d;
638 	        utlb_match_entry = entry;
639 	    }
640 	    increment_urc(s); /* per utlb access */
641 	}
642 
643 	/* search ITLB */
644 	for (i = 0; i < ITLB_SIZE; i++) {
645             tlb_t * entry = &s->itlb[i];
646             if (entry->vpn == vpn
647                 && (!use_asid || entry->asid == asid || entry->sh)) {
648 	        if (entry->v && !v)
649 		    needs_tlb_flush = 1;
650 	        if (utlb_match_entry)
651 		    *entry = *utlb_match_entry;
652 	        else
653 		    entry->v = v;
654 		break;
655 	    }
656 	}
657 
658         if (needs_tlb_flush) {
659             tlb_flush_page(env_cpu(s), vpn << 10);
660         }
661     } else {
662         int index = (addr & 0x00003f00) >> 8;
663         tlb_t * entry = &s->utlb[index];
664 	if (entry->v) {
665             CPUState *cs = env_cpu(s);
666 
667 	    /* Overwriting valid entry in utlb. */
668             target_ulong address = entry->vpn << 10;
669             tlb_flush_page(cs, address);
670 	}
671 	entry->asid = asid;
672 	entry->vpn = vpn;
673 	entry->d = d;
674 	entry->v = v;
675 	increment_urc(s);
676     }
677 }
678 
679 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
680                                        hwaddr addr)
681 {
682     int array = (addr & 0x00800000) >> 23;
683     int index = (addr & 0x00003f00) >> 8;
684     tlb_t * entry = &s->utlb[index];
685 
686     increment_urc(s); /* per utlb access */
687 
688     if (array == 0) {
689         /* ITLB Data Array 1 */
690         return (entry->ppn << 10) |
691                (entry->v   <<  8) |
692                (entry->pr  <<  5) |
693                ((entry->sz & 1) <<  6) |
694                ((entry->sz & 2) <<  4) |
695                (entry->c   <<  3) |
696                (entry->d   <<  2) |
697                (entry->sh  <<  1) |
698                (entry->wt);
699     } else {
700         /* ITLB Data Array 2 */
701         return (entry->tc << 1) |
702                (entry->sa);
703     }
704 }
705 
706 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
707                                     uint32_t mem_value)
708 {
709     int array = (addr & 0x00800000) >> 23;
710     int index = (addr & 0x00003f00) >> 8;
711     tlb_t * entry = &s->utlb[index];
712 
713     increment_urc(s); /* per utlb access */
714 
715     if (array == 0) {
716         /* UTLB Data Array 1 */
717         if (entry->v) {
718             /* Overwriting valid entry in utlb. */
719             target_ulong address = entry->vpn << 10;
720             tlb_flush_page(env_cpu(s), address);
721         }
722         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
723         entry->v   = (mem_value & 0x00000100) >> 8;
724         entry->sz  = (mem_value & 0x00000080) >> 6 |
725                      (mem_value & 0x00000010) >> 4;
726         entry->pr  = (mem_value & 0x00000060) >> 5;
727         entry->c   = (mem_value & 0x00000008) >> 3;
728         entry->d   = (mem_value & 0x00000004) >> 2;
729         entry->sh  = (mem_value & 0x00000002) >> 1;
730         entry->wt  = (mem_value & 0x00000001);
731     } else {
732         /* UTLB Data Array 2 */
733         entry->tc = (mem_value & 0x00000008) >> 3;
734         entry->sa = (mem_value & 0x00000007);
735     }
736 }
737 
738 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
739 {
740     int n;
741     int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
742 
743     /* check area */
744     if (env->sr & (1u << SR_MD)) {
745         /* For privileged mode, P2 and P4 area is not cacheable. */
746         if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
747             return 0;
748     } else {
749         /* For user mode, only U0 area is cacheable. */
750         if (0x80000000 <= addr)
751             return 0;
752     }
753 
754     /*
755      * TODO : Evaluate CCR and check if the cache is on or off.
756      *        Now CCR is not in CPUSH4State, but in SH7750State.
757      *        When you move the ccr into CPUSH4State, the code will be
758      *        as follows.
759      */
760 #if 0
761     /* check if operand cache is enabled or not. */
762     if (!(env->ccr & 1))
763         return 0;
764 #endif
765 
766     /* if MMU is off, no check for TLB. */
767     if (env->mmucr & MMUCR_AT)
768         return 1;
769 
770     /* check TLB */
771     n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
772     if (n >= 0)
773         return env->itlb[n].c;
774 
775     n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
776     if (n >= 0)
777         return env->utlb[n].c;
778 
779     return 0;
780 }
781 
782 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
783 {
784     if (interrupt_request & CPU_INTERRUPT_HARD) {
785         SuperHCPU *cpu = SUPERH_CPU(cs);
786         CPUSH4State *env = &cpu->env;
787 
788         /* Delay slots are indivisible, ignore interrupts */
789         if (env->flags & DELAY_SLOT_MASK) {
790             return false;
791         } else {
792             superh_cpu_do_interrupt(cs);
793             return true;
794         }
795     }
796     return false;
797 }
798 
799 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
800                          MMUAccessType access_type, int mmu_idx,
801                          bool probe, uintptr_t retaddr)
802 {
803     SuperHCPU *cpu = SUPERH_CPU(cs);
804     CPUSH4State *env = &cpu->env;
805     int ret;
806 
807     target_ulong physical;
808     int prot;
809 
810     ret = get_physical_address(env, &physical, &prot, address, access_type);
811 
812     if (ret == MMU_OK) {
813         address &= TARGET_PAGE_MASK;
814         physical &= TARGET_PAGE_MASK;
815         tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
816         return true;
817     }
818     if (probe) {
819         return false;
820     }
821 
822     if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
823         env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
824     }
825 
826     env->tea = address;
827     switch (ret) {
828     case MMU_ITLB_MISS:
829     case MMU_DTLB_MISS_READ:
830         cs->exception_index = 0x040;
831         break;
832     case MMU_DTLB_MULTIPLE:
833     case MMU_ITLB_MULTIPLE:
834         cs->exception_index = 0x140;
835         break;
836     case MMU_ITLB_VIOLATION:
837         cs->exception_index = 0x0a0;
838         break;
839     case MMU_DTLB_MISS_WRITE:
840         cs->exception_index = 0x060;
841         break;
842     case MMU_DTLB_INITIAL_WRITE:
843         cs->exception_index = 0x080;
844         break;
845     case MMU_DTLB_VIOLATION_READ:
846         cs->exception_index = 0x0a0;
847         break;
848     case MMU_DTLB_VIOLATION_WRITE:
849         cs->exception_index = 0x0c0;
850         break;
851     case MMU_IADDR_ERROR:
852     case MMU_DADDR_ERROR_READ:
853         cs->exception_index = 0x0e0;
854         break;
855     case MMU_DADDR_ERROR_WRITE:
856         cs->exception_index = 0x100;
857         break;
858     default:
859         cpu_abort(cs, "Unhandled MMU fault");
860     }
861     cpu_loop_exit_restore(cs, retaddr);
862 }
863 #endif /* !CONFIG_USER_ONLY */
864