xref: /openbmc/qemu/target/sh4/helper.c (revision 500eb6db)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/log.h"
24 #include "sysemu/sysemu.h"
25 
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #endif
29 
30 #define MMU_OK                   0
31 #define MMU_ITLB_MISS            (-1)
32 #define MMU_ITLB_MULTIPLE        (-2)
33 #define MMU_ITLB_VIOLATION       (-3)
34 #define MMU_DTLB_MISS_READ       (-4)
35 #define MMU_DTLB_MISS_WRITE      (-5)
36 #define MMU_DTLB_INITIAL_WRITE   (-6)
37 #define MMU_DTLB_VIOLATION_READ  (-7)
38 #define MMU_DTLB_VIOLATION_WRITE (-8)
39 #define MMU_DTLB_MULTIPLE        (-9)
40 #define MMU_DTLB_MISS            (-10)
41 #define MMU_IADDR_ERROR          (-11)
42 #define MMU_DADDR_ERROR_READ     (-12)
43 #define MMU_DADDR_ERROR_WRITE    (-13)
44 
45 #if defined(CONFIG_USER_ONLY)
46 
47 void superh_cpu_do_interrupt(CPUState *cs)
48 {
49     cs->exception_index = -1;
50 }
51 
52 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
53 {
54     /* For user mode, only U0 area is cacheable. */
55     return !(addr & 0x80000000);
56 }
57 
58 #else /* !CONFIG_USER_ONLY */
59 
60 void superh_cpu_do_interrupt(CPUState *cs)
61 {
62     SuperHCPU *cpu = SUPERH_CPU(cs);
63     CPUSH4State *env = &cpu->env;
64     int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
65     int do_exp, irq_vector = cs->exception_index;
66 
67     /* prioritize exceptions over interrupts */
68 
69     do_exp = cs->exception_index != -1;
70     do_irq = do_irq && (cs->exception_index == -1);
71 
72     if (env->sr & (1u << SR_BL)) {
73         if (do_exp && cs->exception_index != 0x1e0) {
74             /* In theory a masked exception generates a reset exception,
75                which in turn jumps to the reset vector. However this only
76                works when using a bootloader. When using a kernel and an
77                initrd, they need to be reloaded and the program counter
78                should be loaded with the kernel entry point.
79                qemu_system_reset_request takes care of that.  */
80             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
81             return;
82         }
83         if (do_irq && !env->in_sleep) {
84             return; /* masked */
85         }
86     }
87     env->in_sleep = 0;
88 
89     if (do_irq) {
90         irq_vector = sh_intc_get_pending_vector(env->intc_handle,
91 						(env->sr >> 4) & 0xf);
92         if (irq_vector == -1) {
93             return; /* masked */
94 	}
95     }
96 
97     if (qemu_loglevel_mask(CPU_LOG_INT)) {
98 	const char *expname;
99         switch (cs->exception_index) {
100 	case 0x0e0:
101 	    expname = "addr_error";
102 	    break;
103 	case 0x040:
104 	    expname = "tlb_miss";
105 	    break;
106 	case 0x0a0:
107 	    expname = "tlb_violation";
108 	    break;
109 	case 0x180:
110 	    expname = "illegal_instruction";
111 	    break;
112 	case 0x1a0:
113 	    expname = "slot_illegal_instruction";
114 	    break;
115 	case 0x800:
116 	    expname = "fpu_disable";
117 	    break;
118 	case 0x820:
119 	    expname = "slot_fpu";
120 	    break;
121 	case 0x100:
122 	    expname = "data_write";
123 	    break;
124 	case 0x060:
125 	    expname = "dtlb_miss_write";
126 	    break;
127 	case 0x0c0:
128 	    expname = "dtlb_violation_write";
129 	    break;
130 	case 0x120:
131 	    expname = "fpu_exception";
132 	    break;
133 	case 0x080:
134 	    expname = "initial_page_write";
135 	    break;
136 	case 0x160:
137 	    expname = "trapa";
138 	    break;
139 	default:
140             expname = do_irq ? "interrupt" : "???";
141             break;
142 	}
143 	qemu_log("exception 0x%03x [%s] raised\n",
144 		  irq_vector, expname);
145         log_cpu_state(cs, 0);
146     }
147 
148     env->ssr = cpu_read_sr(env);
149     env->spc = env->pc;
150     env->sgr = env->gregs[15];
151     env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
152     env->lock_addr = -1;
153 
154     if (env->flags & DELAY_SLOT_MASK) {
155         /* Branch instruction should be executed again before delay slot. */
156 	env->spc -= 2;
157 	/* Clear flags for exception/interrupt routine. */
158         env->flags &= ~DELAY_SLOT_MASK;
159     }
160 
161     if (do_exp) {
162         env->expevt = cs->exception_index;
163         switch (cs->exception_index) {
164         case 0x000:
165         case 0x020:
166         case 0x140:
167             env->sr &= ~(1u << SR_FD);
168             env->sr |= 0xf << 4; /* IMASK */
169             env->pc = 0xa0000000;
170             break;
171         case 0x040:
172         case 0x060:
173             env->pc = env->vbr + 0x400;
174             break;
175         case 0x160:
176             env->spc += 2; /* special case for TRAPA */
177             /* fall through */
178         default:
179             env->pc = env->vbr + 0x100;
180             break;
181         }
182         return;
183     }
184 
185     if (do_irq) {
186         env->intevt = irq_vector;
187         env->pc = env->vbr + 0x600;
188         return;
189     }
190 }
191 
192 static void update_itlb_use(CPUSH4State * env, int itlbnb)
193 {
194     uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
195 
196     switch (itlbnb) {
197     case 0:
198 	and_mask = 0x1f;
199 	break;
200     case 1:
201 	and_mask = 0xe7;
202 	or_mask = 0x80;
203 	break;
204     case 2:
205 	and_mask = 0xfb;
206 	or_mask = 0x50;
207 	break;
208     case 3:
209 	or_mask = 0x2c;
210 	break;
211     }
212 
213     env->mmucr &= (and_mask << 24) | 0x00ffffff;
214     env->mmucr |= (or_mask << 24);
215 }
216 
217 static int itlb_replacement(CPUSH4State * env)
218 {
219     if ((env->mmucr & 0xe0000000) == 0xe0000000) {
220 	return 0;
221     }
222     if ((env->mmucr & 0x98000000) == 0x18000000) {
223 	return 1;
224     }
225     if ((env->mmucr & 0x54000000) == 0x04000000) {
226 	return 2;
227     }
228     if ((env->mmucr & 0x2c000000) == 0x00000000) {
229 	return 3;
230     }
231     cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
232 }
233 
234 /* Find the corresponding entry in the right TLB
235    Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
236 */
237 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
238 			  tlb_t * entries, uint8_t nbtlb, int use_asid)
239 {
240     int match = MMU_DTLB_MISS;
241     uint32_t start, end;
242     uint8_t asid;
243     int i;
244 
245     asid = env->pteh & 0xff;
246 
247     for (i = 0; i < nbtlb; i++) {
248 	if (!entries[i].v)
249 	    continue;		/* Invalid entry */
250 	if (!entries[i].sh && use_asid && entries[i].asid != asid)
251 	    continue;		/* Bad ASID */
252 	start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
253 	end = start + entries[i].size - 1;
254 	if (address >= start && address <= end) {	/* Match */
255 	    if (match != MMU_DTLB_MISS)
256 		return MMU_DTLB_MULTIPLE;	/* Multiple match */
257 	    match = i;
258 	}
259     }
260     return match;
261 }
262 
263 static void increment_urc(CPUSH4State * env)
264 {
265     uint8_t urb, urc;
266 
267     /* Increment URC */
268     urb = ((env->mmucr) >> 18) & 0x3f;
269     urc = ((env->mmucr) >> 10) & 0x3f;
270     urc++;
271     if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
272 	urc = 0;
273     env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
274 }
275 
276 /* Copy and utlb entry into itlb
277    Return entry
278 */
279 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
280 {
281     int itlb;
282 
283     tlb_t * ientry;
284     itlb = itlb_replacement(env);
285     ientry = &env->itlb[itlb];
286     if (ientry->v) {
287         tlb_flush_page(env_cpu(env), ientry->vpn << 10);
288     }
289     *ientry = env->utlb[utlb];
290     update_itlb_use(env, itlb);
291     return itlb;
292 }
293 
294 /* Find itlb entry
295    Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
296 */
297 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
298                            int use_asid)
299 {
300     int e;
301 
302     e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
303     if (e == MMU_DTLB_MULTIPLE) {
304 	e = MMU_ITLB_MULTIPLE;
305     } else if (e == MMU_DTLB_MISS) {
306 	e = MMU_ITLB_MISS;
307     } else if (e >= 0) {
308 	update_itlb_use(env, e);
309     }
310     return e;
311 }
312 
313 /* Find utlb entry
314    Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
315 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
316 {
317     /* per utlb access */
318     increment_urc(env);
319 
320     /* Return entry */
321     return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
322 }
323 
324 /* Match address against MMU
325    Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
326    MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
327    MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
328    MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
329    MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
330 */
331 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
332 			   int *prot, target_ulong address,
333 			   int rw, int access_type)
334 {
335     int use_asid, n;
336     tlb_t *matching = NULL;
337 
338     use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
339 
340     if (rw == 2) {
341         n = find_itlb_entry(env, address, use_asid);
342 	if (n >= 0) {
343 	    matching = &env->itlb[n];
344             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
345 		n = MMU_ITLB_VIOLATION;
346             } else {
347 		*prot = PAGE_EXEC;
348             }
349         } else {
350             n = find_utlb_entry(env, address, use_asid);
351             if (n >= 0) {
352                 n = copy_utlb_entry_itlb(env, n);
353                 matching = &env->itlb[n];
354                 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
355                     n = MMU_ITLB_VIOLATION;
356                 } else {
357                     *prot = PAGE_READ | PAGE_EXEC;
358                     if ((matching->pr & 1) && matching->d) {
359                         *prot |= PAGE_WRITE;
360                     }
361                 }
362             } else if (n == MMU_DTLB_MULTIPLE) {
363                 n = MMU_ITLB_MULTIPLE;
364             } else if (n == MMU_DTLB_MISS) {
365                 n = MMU_ITLB_MISS;
366             }
367 	}
368     } else {
369 	n = find_utlb_entry(env, address, use_asid);
370 	if (n >= 0) {
371 	    matching = &env->utlb[n];
372             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
373                 n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE :
374                     MMU_DTLB_VIOLATION_READ;
375             } else if ((rw == 1) && !(matching->pr & 1)) {
376                 n = MMU_DTLB_VIOLATION_WRITE;
377             } else if ((rw == 1) && !matching->d) {
378                 n = MMU_DTLB_INITIAL_WRITE;
379             } else {
380                 *prot = PAGE_READ;
381                 if ((matching->pr & 1) && matching->d) {
382                     *prot |= PAGE_WRITE;
383                 }
384             }
385 	} else if (n == MMU_DTLB_MISS) {
386 	    n = (rw == 1) ? MMU_DTLB_MISS_WRITE :
387 		MMU_DTLB_MISS_READ;
388 	}
389     }
390     if (n >= 0) {
391 	n = MMU_OK;
392 	*physical = ((matching->ppn << 10) & ~(matching->size - 1)) |
393 	    (address & (matching->size - 1));
394     }
395     return n;
396 }
397 
398 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
399                                 int *prot, target_ulong address,
400                                 int rw, int access_type)
401 {
402     /* P1, P2 and P4 areas do not use translation */
403     if ((address >= 0x80000000 && address < 0xc0000000) ||
404 	address >= 0xe0000000) {
405         if (!(env->sr & (1u << SR_MD))
406 	    && (address < 0xe0000000 || address >= 0xe4000000)) {
407 	    /* Unauthorized access in user mode (only store queues are available) */
408             qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
409 	    if (rw == 0)
410 		return MMU_DADDR_ERROR_READ;
411 	    else if (rw == 1)
412 		return MMU_DADDR_ERROR_WRITE;
413 	    else
414 		return MMU_IADDR_ERROR;
415 	}
416 	if (address >= 0x80000000 && address < 0xc0000000) {
417 	    /* Mask upper 3 bits for P1 and P2 areas */
418 	    *physical = address & 0x1fffffff;
419 	} else {
420 	    *physical = address;
421 	}
422 	*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
423 	return MMU_OK;
424     }
425 
426     /* If MMU is disabled, return the corresponding physical page */
427     if (!(env->mmucr & MMUCR_AT)) {
428 	*physical = address & 0x1FFFFFFF;
429 	*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
430 	return MMU_OK;
431     }
432 
433     /* We need to resort to the MMU */
434     return get_mmu_address(env, physical, prot, address, rw, access_type);
435 }
436 
437 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
438 {
439     SuperHCPU *cpu = SUPERH_CPU(cs);
440     target_ulong physical;
441     int prot;
442 
443     get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0);
444     return physical;
445 }
446 
447 void cpu_load_tlb(CPUSH4State * env)
448 {
449     CPUState *cs = env_cpu(env);
450     int n = cpu_mmucr_urc(env->mmucr);
451     tlb_t * entry = &env->utlb[n];
452 
453     if (entry->v) {
454         /* Overwriting valid entry in utlb. */
455         target_ulong address = entry->vpn << 10;
456         tlb_flush_page(cs, address);
457     }
458 
459     /* Take values into cpu status from registers. */
460     entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
461     entry->vpn  = cpu_pteh_vpn(env->pteh);
462     entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
463     entry->ppn  = cpu_ptel_ppn(env->ptel);
464     entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
465     switch (entry->sz) {
466     case 0: /* 00 */
467         entry->size = 1024; /* 1K */
468         break;
469     case 1: /* 01 */
470         entry->size = 1024 * 4; /* 4K */
471         break;
472     case 2: /* 10 */
473         entry->size = 1024 * 64; /* 64K */
474         break;
475     case 3: /* 11 */
476         entry->size = 1024 * 1024; /* 1M */
477         break;
478     default:
479         cpu_abort(cs, "Unhandled load_tlb");
480         break;
481     }
482     entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
483     entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
484     entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
485     entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
486     entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
487     entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
488     entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
489 }
490 
491  void cpu_sh4_invalidate_tlb(CPUSH4State *s)
492 {
493     int i;
494 
495     /* UTLB */
496     for (i = 0; i < UTLB_SIZE; i++) {
497         tlb_t * entry = &s->utlb[i];
498         entry->v = 0;
499     }
500     /* ITLB */
501     for (i = 0; i < ITLB_SIZE; i++) {
502         tlb_t * entry = &s->itlb[i];
503         entry->v = 0;
504     }
505 
506     tlb_flush(env_cpu(s));
507 }
508 
509 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
510                                        hwaddr addr)
511 {
512     int index = (addr & 0x00000300) >> 8;
513     tlb_t * entry = &s->itlb[index];
514 
515     return (entry->vpn  << 10) |
516            (entry->v    <<  8) |
517            (entry->asid);
518 }
519 
520 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
521 				    uint32_t mem_value)
522 {
523     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
524     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
525     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
526 
527     int index = (addr & 0x00000300) >> 8;
528     tlb_t * entry = &s->itlb[index];
529     if (entry->v) {
530         /* Overwriting valid entry in itlb. */
531         target_ulong address = entry->vpn << 10;
532         tlb_flush_page(env_cpu(s), address);
533     }
534     entry->asid = asid;
535     entry->vpn = vpn;
536     entry->v = v;
537 }
538 
539 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
540                                        hwaddr addr)
541 {
542     int array = (addr & 0x00800000) >> 23;
543     int index = (addr & 0x00000300) >> 8;
544     tlb_t * entry = &s->itlb[index];
545 
546     if (array == 0) {
547         /* ITLB Data Array 1 */
548         return (entry->ppn << 10) |
549                (entry->v   <<  8) |
550                (entry->pr  <<  5) |
551                ((entry->sz & 1) <<  6) |
552                ((entry->sz & 2) <<  4) |
553                (entry->c   <<  3) |
554                (entry->sh  <<  1);
555     } else {
556         /* ITLB Data Array 2 */
557         return (entry->tc << 1) |
558                (entry->sa);
559     }
560 }
561 
562 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
563                                     uint32_t mem_value)
564 {
565     int array = (addr & 0x00800000) >> 23;
566     int index = (addr & 0x00000300) >> 8;
567     tlb_t * entry = &s->itlb[index];
568 
569     if (array == 0) {
570         /* ITLB Data Array 1 */
571         if (entry->v) {
572             /* Overwriting valid entry in utlb. */
573             target_ulong address = entry->vpn << 10;
574             tlb_flush_page(env_cpu(s), address);
575         }
576         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
577         entry->v   = (mem_value & 0x00000100) >> 8;
578         entry->sz  = (mem_value & 0x00000080) >> 6 |
579                      (mem_value & 0x00000010) >> 4;
580         entry->pr  = (mem_value & 0x00000040) >> 5;
581         entry->c   = (mem_value & 0x00000008) >> 3;
582         entry->sh  = (mem_value & 0x00000002) >> 1;
583     } else {
584         /* ITLB Data Array 2 */
585         entry->tc  = (mem_value & 0x00000008) >> 3;
586         entry->sa  = (mem_value & 0x00000007);
587     }
588 }
589 
590 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
591                                        hwaddr addr)
592 {
593     int index = (addr & 0x00003f00) >> 8;
594     tlb_t * entry = &s->utlb[index];
595 
596     increment_urc(s); /* per utlb access */
597 
598     return (entry->vpn  << 10) |
599            (entry->v    <<  8) |
600            (entry->asid);
601 }
602 
603 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
604 				    uint32_t mem_value)
605 {
606     int associate = addr & 0x0000080;
607     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
608     uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
609     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
610     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
611     int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
612 
613     if (associate) {
614         int i;
615 	tlb_t * utlb_match_entry = NULL;
616 	int needs_tlb_flush = 0;
617 
618 	/* search UTLB */
619 	for (i = 0; i < UTLB_SIZE; i++) {
620             tlb_t * entry = &s->utlb[i];
621             if (!entry->v)
622 	        continue;
623 
624             if (entry->vpn == vpn
625                 && (!use_asid || entry->asid == asid || entry->sh)) {
626 	        if (utlb_match_entry) {
627                     CPUState *cs = env_cpu(s);
628 
629 		    /* Multiple TLB Exception */
630                     cs->exception_index = 0x140;
631 		    s->tea = addr;
632 		    break;
633 	        }
634 		if (entry->v && !v)
635 		    needs_tlb_flush = 1;
636 		entry->v = v;
637 		entry->d = d;
638 	        utlb_match_entry = entry;
639 	    }
640 	    increment_urc(s); /* per utlb access */
641 	}
642 
643 	/* search ITLB */
644 	for (i = 0; i < ITLB_SIZE; i++) {
645             tlb_t * entry = &s->itlb[i];
646             if (entry->vpn == vpn
647                 && (!use_asid || entry->asid == asid || entry->sh)) {
648 	        if (entry->v && !v)
649 		    needs_tlb_flush = 1;
650 	        if (utlb_match_entry)
651 		    *entry = *utlb_match_entry;
652 	        else
653 		    entry->v = v;
654 		break;
655 	    }
656 	}
657 
658         if (needs_tlb_flush) {
659             tlb_flush_page(env_cpu(s), vpn << 10);
660         }
661     } else {
662         int index = (addr & 0x00003f00) >> 8;
663         tlb_t * entry = &s->utlb[index];
664 	if (entry->v) {
665             CPUState *cs = env_cpu(s);
666 
667 	    /* Overwriting valid entry in utlb. */
668             target_ulong address = entry->vpn << 10;
669             tlb_flush_page(cs, address);
670 	}
671 	entry->asid = asid;
672 	entry->vpn = vpn;
673 	entry->d = d;
674 	entry->v = v;
675 	increment_urc(s);
676     }
677 }
678 
679 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
680                                        hwaddr addr)
681 {
682     int array = (addr & 0x00800000) >> 23;
683     int index = (addr & 0x00003f00) >> 8;
684     tlb_t * entry = &s->utlb[index];
685 
686     increment_urc(s); /* per utlb access */
687 
688     if (array == 0) {
689         /* ITLB Data Array 1 */
690         return (entry->ppn << 10) |
691                (entry->v   <<  8) |
692                (entry->pr  <<  5) |
693                ((entry->sz & 1) <<  6) |
694                ((entry->sz & 2) <<  4) |
695                (entry->c   <<  3) |
696                (entry->d   <<  2) |
697                (entry->sh  <<  1) |
698                (entry->wt);
699     } else {
700         /* ITLB Data Array 2 */
701         return (entry->tc << 1) |
702                (entry->sa);
703     }
704 }
705 
706 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
707                                     uint32_t mem_value)
708 {
709     int array = (addr & 0x00800000) >> 23;
710     int index = (addr & 0x00003f00) >> 8;
711     tlb_t * entry = &s->utlb[index];
712 
713     increment_urc(s); /* per utlb access */
714 
715     if (array == 0) {
716         /* UTLB Data Array 1 */
717         if (entry->v) {
718             /* Overwriting valid entry in utlb. */
719             target_ulong address = entry->vpn << 10;
720             tlb_flush_page(env_cpu(s), address);
721         }
722         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
723         entry->v   = (mem_value & 0x00000100) >> 8;
724         entry->sz  = (mem_value & 0x00000080) >> 6 |
725                      (mem_value & 0x00000010) >> 4;
726         entry->pr  = (mem_value & 0x00000060) >> 5;
727         entry->c   = (mem_value & 0x00000008) >> 3;
728         entry->d   = (mem_value & 0x00000004) >> 2;
729         entry->sh  = (mem_value & 0x00000002) >> 1;
730         entry->wt  = (mem_value & 0x00000001);
731     } else {
732         /* UTLB Data Array 2 */
733         entry->tc = (mem_value & 0x00000008) >> 3;
734         entry->sa = (mem_value & 0x00000007);
735     }
736 }
737 
738 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
739 {
740     int n;
741     int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
742 
743     /* check area */
744     if (env->sr & (1u << SR_MD)) {
745         /* For privileged mode, P2 and P4 area is not cacheable. */
746         if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
747             return 0;
748     } else {
749         /* For user mode, only U0 area is cacheable. */
750         if (0x80000000 <= addr)
751             return 0;
752     }
753 
754     /*
755      * TODO : Evaluate CCR and check if the cache is on or off.
756      *        Now CCR is not in CPUSH4State, but in SH7750State.
757      *        When you move the ccr into CPUSH4State, the code will be
758      *        as follows.
759      */
760 #if 0
761     /* check if operand cache is enabled or not. */
762     if (!(env->ccr & 1))
763         return 0;
764 #endif
765 
766     /* if MMU is off, no check for TLB. */
767     if (env->mmucr & MMUCR_AT)
768         return 1;
769 
770     /* check TLB */
771     n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
772     if (n >= 0)
773         return env->itlb[n].c;
774 
775     n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
776     if (n >= 0)
777         return env->utlb[n].c;
778 
779     return 0;
780 }
781 
782 #endif
783 
784 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
785 {
786     if (interrupt_request & CPU_INTERRUPT_HARD) {
787         SuperHCPU *cpu = SUPERH_CPU(cs);
788         CPUSH4State *env = &cpu->env;
789 
790         /* Delay slots are indivisible, ignore interrupts */
791         if (env->flags & DELAY_SLOT_MASK) {
792             return false;
793         } else {
794             superh_cpu_do_interrupt(cs);
795             return true;
796         }
797     }
798     return false;
799 }
800 
801 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
802                          MMUAccessType access_type, int mmu_idx,
803                          bool probe, uintptr_t retaddr)
804 {
805     SuperHCPU *cpu = SUPERH_CPU(cs);
806     CPUSH4State *env = &cpu->env;
807     int ret;
808 
809 #ifdef CONFIG_USER_ONLY
810     ret = (access_type == MMU_DATA_STORE ? MMU_DTLB_VIOLATION_WRITE :
811            access_type == MMU_INST_FETCH ? MMU_ITLB_VIOLATION :
812            MMU_DTLB_VIOLATION_READ);
813 #else
814     target_ulong physical;
815     int prot, sh_access_type;
816 
817     sh_access_type = ACCESS_INT;
818     ret = get_physical_address(env, &physical, &prot, address,
819                                access_type, sh_access_type);
820 
821     if (ret == MMU_OK) {
822         address &= TARGET_PAGE_MASK;
823         physical &= TARGET_PAGE_MASK;
824         tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
825         return true;
826     }
827     if (probe) {
828         return false;
829     }
830 
831     if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
832         env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
833     }
834 #endif
835 
836     env->tea = address;
837     switch (ret) {
838     case MMU_ITLB_MISS:
839     case MMU_DTLB_MISS_READ:
840         cs->exception_index = 0x040;
841         break;
842     case MMU_DTLB_MULTIPLE:
843     case MMU_ITLB_MULTIPLE:
844         cs->exception_index = 0x140;
845         break;
846     case MMU_ITLB_VIOLATION:
847         cs->exception_index = 0x0a0;
848         break;
849     case MMU_DTLB_MISS_WRITE:
850         cs->exception_index = 0x060;
851         break;
852     case MMU_DTLB_INITIAL_WRITE:
853         cs->exception_index = 0x080;
854         break;
855     case MMU_DTLB_VIOLATION_READ:
856         cs->exception_index = 0x0a0;
857         break;
858     case MMU_DTLB_VIOLATION_WRITE:
859         cs->exception_index = 0x0c0;
860         break;
861     case MMU_IADDR_ERROR:
862     case MMU_DADDR_ERROR_READ:
863         cs->exception_index = 0x0e0;
864         break;
865     case MMU_DADDR_ERROR_WRITE:
866         cs->exception_index = 0x100;
867         break;
868     default:
869         cpu_abort(cs, "Unhandled MMU fault");
870     }
871     cpu_loop_exit_restore(cs, retaddr);
872 }
873