1 /* 2 * SH4 emulation 3 * 4 * Copyright (c) 2005 Samuel Tardieu 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "exec/log.h" 24 #include "sysemu/sysemu.h" 25 26 #if !defined(CONFIG_USER_ONLY) 27 #include "hw/sh4/sh_intc.h" 28 #endif 29 30 #if defined(CONFIG_USER_ONLY) 31 32 void superh_cpu_do_interrupt(CPUState *cs) 33 { 34 cs->exception_index = -1; 35 } 36 37 int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, 38 int mmu_idx) 39 { 40 SuperHCPU *cpu = SUPERH_CPU(cs); 41 CPUSH4State *env = &cpu->env; 42 43 env->tea = address; 44 cs->exception_index = -1; 45 switch (rw) { 46 case 0: 47 cs->exception_index = 0x0a0; 48 break; 49 case 1: 50 cs->exception_index = 0x0c0; 51 break; 52 case 2: 53 cs->exception_index = 0x0a0; 54 break; 55 } 56 return 1; 57 } 58 59 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) 60 { 61 /* For user mode, only U0 area is cacheable. */ 62 return !(addr & 0x80000000); 63 } 64 65 #else /* !CONFIG_USER_ONLY */ 66 67 #define MMU_OK 0 68 #define MMU_ITLB_MISS (-1) 69 #define MMU_ITLB_MULTIPLE (-2) 70 #define MMU_ITLB_VIOLATION (-3) 71 #define MMU_DTLB_MISS_READ (-4) 72 #define MMU_DTLB_MISS_WRITE (-5) 73 #define MMU_DTLB_INITIAL_WRITE (-6) 74 #define MMU_DTLB_VIOLATION_READ (-7) 75 #define MMU_DTLB_VIOLATION_WRITE (-8) 76 #define MMU_DTLB_MULTIPLE (-9) 77 #define MMU_DTLB_MISS (-10) 78 #define MMU_IADDR_ERROR (-11) 79 #define MMU_DADDR_ERROR_READ (-12) 80 #define MMU_DADDR_ERROR_WRITE (-13) 81 82 void superh_cpu_do_interrupt(CPUState *cs) 83 { 84 SuperHCPU *cpu = SUPERH_CPU(cs); 85 CPUSH4State *env = &cpu->env; 86 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD; 87 int do_exp, irq_vector = cs->exception_index; 88 89 /* prioritize exceptions over interrupts */ 90 91 do_exp = cs->exception_index != -1; 92 do_irq = do_irq && (cs->exception_index == -1); 93 94 if (env->sr & (1u << SR_BL)) { 95 if (do_exp && cs->exception_index != 0x1e0) { 96 /* In theory a masked exception generates a reset exception, 97 which in turn jumps to the reset vector. However this only 98 works when using a bootloader. When using a kernel and an 99 initrd, they need to be reloaded and the program counter 100 should be loaded with the kernel entry point. 101 qemu_system_reset_request takes care of that. */ 102 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 103 return; 104 } 105 if (do_irq && !env->in_sleep) { 106 return; /* masked */ 107 } 108 } 109 env->in_sleep = 0; 110 111 if (do_irq) { 112 irq_vector = sh_intc_get_pending_vector(env->intc_handle, 113 (env->sr >> 4) & 0xf); 114 if (irq_vector == -1) { 115 return; /* masked */ 116 } 117 } 118 119 if (qemu_loglevel_mask(CPU_LOG_INT)) { 120 const char *expname; 121 switch (cs->exception_index) { 122 case 0x0e0: 123 expname = "addr_error"; 124 break; 125 case 0x040: 126 expname = "tlb_miss"; 127 break; 128 case 0x0a0: 129 expname = "tlb_violation"; 130 break; 131 case 0x180: 132 expname = "illegal_instruction"; 133 break; 134 case 0x1a0: 135 expname = "slot_illegal_instruction"; 136 break; 137 case 0x800: 138 expname = "fpu_disable"; 139 break; 140 case 0x820: 141 expname = "slot_fpu"; 142 break; 143 case 0x100: 144 expname = "data_write"; 145 break; 146 case 0x060: 147 expname = "dtlb_miss_write"; 148 break; 149 case 0x0c0: 150 expname = "dtlb_violation_write"; 151 break; 152 case 0x120: 153 expname = "fpu_exception"; 154 break; 155 case 0x080: 156 expname = "initial_page_write"; 157 break; 158 case 0x160: 159 expname = "trapa"; 160 break; 161 default: 162 expname = do_irq ? "interrupt" : "???"; 163 break; 164 } 165 qemu_log("exception 0x%03x [%s] raised\n", 166 irq_vector, expname); 167 log_cpu_state(cs, 0); 168 } 169 170 env->ssr = cpu_read_sr(env); 171 env->spc = env->pc; 172 env->sgr = env->gregs[15]; 173 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB); 174 env->lock_addr = -1; 175 176 if (env->flags & DELAY_SLOT_MASK) { 177 /* Branch instruction should be executed again before delay slot. */ 178 env->spc -= 2; 179 /* Clear flags for exception/interrupt routine. */ 180 env->flags &= ~DELAY_SLOT_MASK; 181 } 182 183 if (do_exp) { 184 env->expevt = cs->exception_index; 185 switch (cs->exception_index) { 186 case 0x000: 187 case 0x020: 188 case 0x140: 189 env->sr &= ~(1u << SR_FD); 190 env->sr |= 0xf << 4; /* IMASK */ 191 env->pc = 0xa0000000; 192 break; 193 case 0x040: 194 case 0x060: 195 env->pc = env->vbr + 0x400; 196 break; 197 case 0x160: 198 env->spc += 2; /* special case for TRAPA */ 199 /* fall through */ 200 default: 201 env->pc = env->vbr + 0x100; 202 break; 203 } 204 return; 205 } 206 207 if (do_irq) { 208 env->intevt = irq_vector; 209 env->pc = env->vbr + 0x600; 210 return; 211 } 212 } 213 214 static void update_itlb_use(CPUSH4State * env, int itlbnb) 215 { 216 uint8_t or_mask = 0, and_mask = (uint8_t) - 1; 217 218 switch (itlbnb) { 219 case 0: 220 and_mask = 0x1f; 221 break; 222 case 1: 223 and_mask = 0xe7; 224 or_mask = 0x80; 225 break; 226 case 2: 227 and_mask = 0xfb; 228 or_mask = 0x50; 229 break; 230 case 3: 231 or_mask = 0x2c; 232 break; 233 } 234 235 env->mmucr &= (and_mask << 24) | 0x00ffffff; 236 env->mmucr |= (or_mask << 24); 237 } 238 239 static int itlb_replacement(CPUSH4State * env) 240 { 241 SuperHCPU *cpu = sh_env_get_cpu(env); 242 243 if ((env->mmucr & 0xe0000000) == 0xe0000000) { 244 return 0; 245 } 246 if ((env->mmucr & 0x98000000) == 0x18000000) { 247 return 1; 248 } 249 if ((env->mmucr & 0x54000000) == 0x04000000) { 250 return 2; 251 } 252 if ((env->mmucr & 0x2c000000) == 0x00000000) { 253 return 3; 254 } 255 cpu_abort(CPU(cpu), "Unhandled itlb_replacement"); 256 } 257 258 /* Find the corresponding entry in the right TLB 259 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE 260 */ 261 static int find_tlb_entry(CPUSH4State * env, target_ulong address, 262 tlb_t * entries, uint8_t nbtlb, int use_asid) 263 { 264 int match = MMU_DTLB_MISS; 265 uint32_t start, end; 266 uint8_t asid; 267 int i; 268 269 asid = env->pteh & 0xff; 270 271 for (i = 0; i < nbtlb; i++) { 272 if (!entries[i].v) 273 continue; /* Invalid entry */ 274 if (!entries[i].sh && use_asid && entries[i].asid != asid) 275 continue; /* Bad ASID */ 276 start = (entries[i].vpn << 10) & ~(entries[i].size - 1); 277 end = start + entries[i].size - 1; 278 if (address >= start && address <= end) { /* Match */ 279 if (match != MMU_DTLB_MISS) 280 return MMU_DTLB_MULTIPLE; /* Multiple match */ 281 match = i; 282 } 283 } 284 return match; 285 } 286 287 static void increment_urc(CPUSH4State * env) 288 { 289 uint8_t urb, urc; 290 291 /* Increment URC */ 292 urb = ((env->mmucr) >> 18) & 0x3f; 293 urc = ((env->mmucr) >> 10) & 0x3f; 294 urc++; 295 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1)) 296 urc = 0; 297 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10); 298 } 299 300 /* Copy and utlb entry into itlb 301 Return entry 302 */ 303 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb) 304 { 305 int itlb; 306 307 tlb_t * ientry; 308 itlb = itlb_replacement(env); 309 ientry = &env->itlb[itlb]; 310 if (ientry->v) { 311 tlb_flush_page(CPU(sh_env_get_cpu(env)), ientry->vpn << 10); 312 } 313 *ientry = env->utlb[utlb]; 314 update_itlb_use(env, itlb); 315 return itlb; 316 } 317 318 /* Find itlb entry 319 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE 320 */ 321 static int find_itlb_entry(CPUSH4State * env, target_ulong address, 322 int use_asid) 323 { 324 int e; 325 326 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid); 327 if (e == MMU_DTLB_MULTIPLE) { 328 e = MMU_ITLB_MULTIPLE; 329 } else if (e == MMU_DTLB_MISS) { 330 e = MMU_ITLB_MISS; 331 } else if (e >= 0) { 332 update_itlb_use(env, e); 333 } 334 return e; 335 } 336 337 /* Find utlb entry 338 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */ 339 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid) 340 { 341 /* per utlb access */ 342 increment_urc(env); 343 344 /* Return entry */ 345 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid); 346 } 347 348 /* Match address against MMU 349 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE, 350 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ, 351 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS, 352 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION, 353 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE. 354 */ 355 static int get_mmu_address(CPUSH4State * env, target_ulong * physical, 356 int *prot, target_ulong address, 357 int rw, int access_type) 358 { 359 int use_asid, n; 360 tlb_t *matching = NULL; 361 362 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 363 364 if (rw == 2) { 365 n = find_itlb_entry(env, address, use_asid); 366 if (n >= 0) { 367 matching = &env->itlb[n]; 368 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 369 n = MMU_ITLB_VIOLATION; 370 } else { 371 *prot = PAGE_EXEC; 372 } 373 } else { 374 n = find_utlb_entry(env, address, use_asid); 375 if (n >= 0) { 376 n = copy_utlb_entry_itlb(env, n); 377 matching = &env->itlb[n]; 378 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 379 n = MMU_ITLB_VIOLATION; 380 } else { 381 *prot = PAGE_READ | PAGE_EXEC; 382 if ((matching->pr & 1) && matching->d) { 383 *prot |= PAGE_WRITE; 384 } 385 } 386 } else if (n == MMU_DTLB_MULTIPLE) { 387 n = MMU_ITLB_MULTIPLE; 388 } else if (n == MMU_DTLB_MISS) { 389 n = MMU_ITLB_MISS; 390 } 391 } 392 } else { 393 n = find_utlb_entry(env, address, use_asid); 394 if (n >= 0) { 395 matching = &env->utlb[n]; 396 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 397 n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE : 398 MMU_DTLB_VIOLATION_READ; 399 } else if ((rw == 1) && !(matching->pr & 1)) { 400 n = MMU_DTLB_VIOLATION_WRITE; 401 } else if ((rw == 1) && !matching->d) { 402 n = MMU_DTLB_INITIAL_WRITE; 403 } else { 404 *prot = PAGE_READ; 405 if ((matching->pr & 1) && matching->d) { 406 *prot |= PAGE_WRITE; 407 } 408 } 409 } else if (n == MMU_DTLB_MISS) { 410 n = (rw == 1) ? MMU_DTLB_MISS_WRITE : 411 MMU_DTLB_MISS_READ; 412 } 413 } 414 if (n >= 0) { 415 n = MMU_OK; 416 *physical = ((matching->ppn << 10) & ~(matching->size - 1)) | 417 (address & (matching->size - 1)); 418 } 419 return n; 420 } 421 422 static int get_physical_address(CPUSH4State * env, target_ulong * physical, 423 int *prot, target_ulong address, 424 int rw, int access_type) 425 { 426 /* P1, P2 and P4 areas do not use translation */ 427 if ((address >= 0x80000000 && address < 0xc0000000) || 428 address >= 0xe0000000) { 429 if (!(env->sr & (1u << SR_MD)) 430 && (address < 0xe0000000 || address >= 0xe4000000)) { 431 /* Unauthorized access in user mode (only store queues are available) */ 432 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n"); 433 if (rw == 0) 434 return MMU_DADDR_ERROR_READ; 435 else if (rw == 1) 436 return MMU_DADDR_ERROR_WRITE; 437 else 438 return MMU_IADDR_ERROR; 439 } 440 if (address >= 0x80000000 && address < 0xc0000000) { 441 /* Mask upper 3 bits for P1 and P2 areas */ 442 *physical = address & 0x1fffffff; 443 } else { 444 *physical = address; 445 } 446 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 447 return MMU_OK; 448 } 449 450 /* If MMU is disabled, return the corresponding physical page */ 451 if (!(env->mmucr & MMUCR_AT)) { 452 *physical = address & 0x1FFFFFFF; 453 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 454 return MMU_OK; 455 } 456 457 /* We need to resort to the MMU */ 458 return get_mmu_address(env, physical, prot, address, rw, access_type); 459 } 460 461 int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, 462 int mmu_idx) 463 { 464 SuperHCPU *cpu = SUPERH_CPU(cs); 465 CPUSH4State *env = &cpu->env; 466 target_ulong physical; 467 int prot, ret, access_type; 468 469 access_type = ACCESS_INT; 470 ret = 471 get_physical_address(env, &physical, &prot, address, rw, 472 access_type); 473 474 if (ret != MMU_OK) { 475 env->tea = address; 476 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) { 477 env->pteh = (env->pteh & PTEH_ASID_MASK) | 478 (address & PTEH_VPN_MASK); 479 } 480 switch (ret) { 481 case MMU_ITLB_MISS: 482 case MMU_DTLB_MISS_READ: 483 cs->exception_index = 0x040; 484 break; 485 case MMU_DTLB_MULTIPLE: 486 case MMU_ITLB_MULTIPLE: 487 cs->exception_index = 0x140; 488 break; 489 case MMU_ITLB_VIOLATION: 490 cs->exception_index = 0x0a0; 491 break; 492 case MMU_DTLB_MISS_WRITE: 493 cs->exception_index = 0x060; 494 break; 495 case MMU_DTLB_INITIAL_WRITE: 496 cs->exception_index = 0x080; 497 break; 498 case MMU_DTLB_VIOLATION_READ: 499 cs->exception_index = 0x0a0; 500 break; 501 case MMU_DTLB_VIOLATION_WRITE: 502 cs->exception_index = 0x0c0; 503 break; 504 case MMU_IADDR_ERROR: 505 case MMU_DADDR_ERROR_READ: 506 cs->exception_index = 0x0e0; 507 break; 508 case MMU_DADDR_ERROR_WRITE: 509 cs->exception_index = 0x100; 510 break; 511 default: 512 cpu_abort(cs, "Unhandled MMU fault"); 513 } 514 return 1; 515 } 516 517 address &= TARGET_PAGE_MASK; 518 physical &= TARGET_PAGE_MASK; 519 520 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); 521 return 0; 522 } 523 524 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 525 { 526 SuperHCPU *cpu = SUPERH_CPU(cs); 527 target_ulong physical; 528 int prot; 529 530 get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0); 531 return physical; 532 } 533 534 void cpu_load_tlb(CPUSH4State * env) 535 { 536 SuperHCPU *cpu = sh_env_get_cpu(env); 537 int n = cpu_mmucr_urc(env->mmucr); 538 tlb_t * entry = &env->utlb[n]; 539 540 if (entry->v) { 541 /* Overwriting valid entry in utlb. */ 542 target_ulong address = entry->vpn << 10; 543 tlb_flush_page(CPU(cpu), address); 544 } 545 546 /* Take values into cpu status from registers. */ 547 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh); 548 entry->vpn = cpu_pteh_vpn(env->pteh); 549 entry->v = (uint8_t)cpu_ptel_v(env->ptel); 550 entry->ppn = cpu_ptel_ppn(env->ptel); 551 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel); 552 switch (entry->sz) { 553 case 0: /* 00 */ 554 entry->size = 1024; /* 1K */ 555 break; 556 case 1: /* 01 */ 557 entry->size = 1024 * 4; /* 4K */ 558 break; 559 case 2: /* 10 */ 560 entry->size = 1024 * 64; /* 64K */ 561 break; 562 case 3: /* 11 */ 563 entry->size = 1024 * 1024; /* 1M */ 564 break; 565 default: 566 cpu_abort(CPU(cpu), "Unhandled load_tlb"); 567 break; 568 } 569 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel); 570 entry->c = (uint8_t)cpu_ptel_c(env->ptel); 571 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel); 572 entry->d = (uint8_t)cpu_ptel_d(env->ptel); 573 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel); 574 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea); 575 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea); 576 } 577 578 void cpu_sh4_invalidate_tlb(CPUSH4State *s) 579 { 580 int i; 581 582 /* UTLB */ 583 for (i = 0; i < UTLB_SIZE; i++) { 584 tlb_t * entry = &s->utlb[i]; 585 entry->v = 0; 586 } 587 /* ITLB */ 588 for (i = 0; i < ITLB_SIZE; i++) { 589 tlb_t * entry = &s->itlb[i]; 590 entry->v = 0; 591 } 592 593 tlb_flush(CPU(sh_env_get_cpu(s))); 594 } 595 596 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, 597 hwaddr addr) 598 { 599 int index = (addr & 0x00000300) >> 8; 600 tlb_t * entry = &s->itlb[index]; 601 602 return (entry->vpn << 10) | 603 (entry->v << 8) | 604 (entry->asid); 605 } 606 607 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, 608 uint32_t mem_value) 609 { 610 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 611 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 612 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 613 614 int index = (addr & 0x00000300) >> 8; 615 tlb_t * entry = &s->itlb[index]; 616 if (entry->v) { 617 /* Overwriting valid entry in itlb. */ 618 target_ulong address = entry->vpn << 10; 619 tlb_flush_page(CPU(sh_env_get_cpu(s)), address); 620 } 621 entry->asid = asid; 622 entry->vpn = vpn; 623 entry->v = v; 624 } 625 626 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, 627 hwaddr addr) 628 { 629 int array = (addr & 0x00800000) >> 23; 630 int index = (addr & 0x00000300) >> 8; 631 tlb_t * entry = &s->itlb[index]; 632 633 if (array == 0) { 634 /* ITLB Data Array 1 */ 635 return (entry->ppn << 10) | 636 (entry->v << 8) | 637 (entry->pr << 5) | 638 ((entry->sz & 1) << 6) | 639 ((entry->sz & 2) << 4) | 640 (entry->c << 3) | 641 (entry->sh << 1); 642 } else { 643 /* ITLB Data Array 2 */ 644 return (entry->tc << 1) | 645 (entry->sa); 646 } 647 } 648 649 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, 650 uint32_t mem_value) 651 { 652 int array = (addr & 0x00800000) >> 23; 653 int index = (addr & 0x00000300) >> 8; 654 tlb_t * entry = &s->itlb[index]; 655 656 if (array == 0) { 657 /* ITLB Data Array 1 */ 658 if (entry->v) { 659 /* Overwriting valid entry in utlb. */ 660 target_ulong address = entry->vpn << 10; 661 tlb_flush_page(CPU(sh_env_get_cpu(s)), address); 662 } 663 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 664 entry->v = (mem_value & 0x00000100) >> 8; 665 entry->sz = (mem_value & 0x00000080) >> 6 | 666 (mem_value & 0x00000010) >> 4; 667 entry->pr = (mem_value & 0x00000040) >> 5; 668 entry->c = (mem_value & 0x00000008) >> 3; 669 entry->sh = (mem_value & 0x00000002) >> 1; 670 } else { 671 /* ITLB Data Array 2 */ 672 entry->tc = (mem_value & 0x00000008) >> 3; 673 entry->sa = (mem_value & 0x00000007); 674 } 675 } 676 677 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, 678 hwaddr addr) 679 { 680 int index = (addr & 0x00003f00) >> 8; 681 tlb_t * entry = &s->utlb[index]; 682 683 increment_urc(s); /* per utlb access */ 684 685 return (entry->vpn << 10) | 686 (entry->v << 8) | 687 (entry->asid); 688 } 689 690 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, 691 uint32_t mem_value) 692 { 693 int associate = addr & 0x0000080; 694 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 695 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9); 696 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 697 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 698 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD)); 699 700 if (associate) { 701 int i; 702 tlb_t * utlb_match_entry = NULL; 703 int needs_tlb_flush = 0; 704 705 /* search UTLB */ 706 for (i = 0; i < UTLB_SIZE; i++) { 707 tlb_t * entry = &s->utlb[i]; 708 if (!entry->v) 709 continue; 710 711 if (entry->vpn == vpn 712 && (!use_asid || entry->asid == asid || entry->sh)) { 713 if (utlb_match_entry) { 714 CPUState *cs = CPU(sh_env_get_cpu(s)); 715 716 /* Multiple TLB Exception */ 717 cs->exception_index = 0x140; 718 s->tea = addr; 719 break; 720 } 721 if (entry->v && !v) 722 needs_tlb_flush = 1; 723 entry->v = v; 724 entry->d = d; 725 utlb_match_entry = entry; 726 } 727 increment_urc(s); /* per utlb access */ 728 } 729 730 /* search ITLB */ 731 for (i = 0; i < ITLB_SIZE; i++) { 732 tlb_t * entry = &s->itlb[i]; 733 if (entry->vpn == vpn 734 && (!use_asid || entry->asid == asid || entry->sh)) { 735 if (entry->v && !v) 736 needs_tlb_flush = 1; 737 if (utlb_match_entry) 738 *entry = *utlb_match_entry; 739 else 740 entry->v = v; 741 break; 742 } 743 } 744 745 if (needs_tlb_flush) { 746 tlb_flush_page(CPU(sh_env_get_cpu(s)), vpn << 10); 747 } 748 749 } else { 750 int index = (addr & 0x00003f00) >> 8; 751 tlb_t * entry = &s->utlb[index]; 752 if (entry->v) { 753 CPUState *cs = CPU(sh_env_get_cpu(s)); 754 755 /* Overwriting valid entry in utlb. */ 756 target_ulong address = entry->vpn << 10; 757 tlb_flush_page(cs, address); 758 } 759 entry->asid = asid; 760 entry->vpn = vpn; 761 entry->d = d; 762 entry->v = v; 763 increment_urc(s); 764 } 765 } 766 767 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, 768 hwaddr addr) 769 { 770 int array = (addr & 0x00800000) >> 23; 771 int index = (addr & 0x00003f00) >> 8; 772 tlb_t * entry = &s->utlb[index]; 773 774 increment_urc(s); /* per utlb access */ 775 776 if (array == 0) { 777 /* ITLB Data Array 1 */ 778 return (entry->ppn << 10) | 779 (entry->v << 8) | 780 (entry->pr << 5) | 781 ((entry->sz & 1) << 6) | 782 ((entry->sz & 2) << 4) | 783 (entry->c << 3) | 784 (entry->d << 2) | 785 (entry->sh << 1) | 786 (entry->wt); 787 } else { 788 /* ITLB Data Array 2 */ 789 return (entry->tc << 1) | 790 (entry->sa); 791 } 792 } 793 794 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, 795 uint32_t mem_value) 796 { 797 int array = (addr & 0x00800000) >> 23; 798 int index = (addr & 0x00003f00) >> 8; 799 tlb_t * entry = &s->utlb[index]; 800 801 increment_urc(s); /* per utlb access */ 802 803 if (array == 0) { 804 /* UTLB Data Array 1 */ 805 if (entry->v) { 806 /* Overwriting valid entry in utlb. */ 807 target_ulong address = entry->vpn << 10; 808 tlb_flush_page(CPU(sh_env_get_cpu(s)), address); 809 } 810 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 811 entry->v = (mem_value & 0x00000100) >> 8; 812 entry->sz = (mem_value & 0x00000080) >> 6 | 813 (mem_value & 0x00000010) >> 4; 814 entry->pr = (mem_value & 0x00000060) >> 5; 815 entry->c = (mem_value & 0x00000008) >> 3; 816 entry->d = (mem_value & 0x00000004) >> 2; 817 entry->sh = (mem_value & 0x00000002) >> 1; 818 entry->wt = (mem_value & 0x00000001); 819 } else { 820 /* UTLB Data Array 2 */ 821 entry->tc = (mem_value & 0x00000008) >> 3; 822 entry->sa = (mem_value & 0x00000007); 823 } 824 } 825 826 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) 827 { 828 int n; 829 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 830 831 /* check area */ 832 if (env->sr & (1u << SR_MD)) { 833 /* For privileged mode, P2 and P4 area is not cacheable. */ 834 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr) 835 return 0; 836 } else { 837 /* For user mode, only U0 area is cacheable. */ 838 if (0x80000000 <= addr) 839 return 0; 840 } 841 842 /* 843 * TODO : Evaluate CCR and check if the cache is on or off. 844 * Now CCR is not in CPUSH4State, but in SH7750State. 845 * When you move the ccr into CPUSH4State, the code will be 846 * as follows. 847 */ 848 #if 0 849 /* check if operand cache is enabled or not. */ 850 if (!(env->ccr & 1)) 851 return 0; 852 #endif 853 854 /* if MMU is off, no check for TLB. */ 855 if (env->mmucr & MMUCR_AT) 856 return 1; 857 858 /* check TLB */ 859 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid); 860 if (n >= 0) 861 return env->itlb[n].c; 862 863 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid); 864 if (n >= 0) 865 return env->utlb[n].c; 866 867 return 0; 868 } 869 870 #endif 871 872 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 873 { 874 if (interrupt_request & CPU_INTERRUPT_HARD) { 875 SuperHCPU *cpu = SUPERH_CPU(cs); 876 CPUSH4State *env = &cpu->env; 877 878 /* Delay slots are indivisible, ignore interrupts */ 879 if (env->flags & DELAY_SLOT_MASK) { 880 return false; 881 } else { 882 superh_cpu_do_interrupt(cs); 883 return true; 884 } 885 } 886 return false; 887 } 888