1 /* 2 * s390x crypto helpers 3 * 4 * Copyright (C) 2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 5 * Copyright (c) 2017 Red Hat Inc 6 * 7 * Authors: 8 * David Hildenbrand <david@redhat.com> 9 * Jason A. Donenfeld <Jason@zx2c4.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/guest-random.h" 17 #include "s390x-internal.h" 18 #include "tcg_s390x.h" 19 #include "exec/helper-proto.h" 20 #include "exec/exec-all.h" 21 #include "exec/cpu_ldst.h" 22 23 static uint64_t R(uint64_t x, int c) 24 { 25 return (x >> c) | (x << (64 - c)); 26 } 27 static uint64_t Ch(uint64_t x, uint64_t y, uint64_t z) 28 { 29 return (x & y) ^ (~x & z); 30 } 31 static uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) 32 { 33 return (x & y) ^ (x & z) ^ (y & z); 34 } 35 static uint64_t Sigma0(uint64_t x) 36 { 37 return R(x, 28) ^ R(x, 34) ^ R(x, 39); 38 } 39 static uint64_t Sigma1(uint64_t x) 40 { 41 return R(x, 14) ^ R(x, 18) ^ R(x, 41); 42 } 43 static uint64_t sigma0(uint64_t x) 44 { 45 return R(x, 1) ^ R(x, 8) ^ (x >> 7); 46 } 47 static uint64_t sigma1(uint64_t x) 48 { 49 return R(x, 19) ^ R(x, 61) ^ (x >> 6); 50 } 51 52 static const uint64_t K[80] = { 53 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 54 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 55 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 56 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 57 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 58 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 59 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 60 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 61 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 62 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 63 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 64 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 65 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 66 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 67 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 68 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 69 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 70 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 71 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 72 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 73 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 74 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 75 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 76 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 77 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 78 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 79 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 80 }; 81 82 /* a is icv/ocv, w is a single message block. w will get reused internally. */ 83 static void sha512_bda(uint64_t a[8], uint64_t w[16]) 84 { 85 uint64_t t, z[8], b[8]; 86 int i, j; 87 88 memcpy(z, a, sizeof(z)); 89 for (i = 0; i < 80; i++) { 90 memcpy(b, a, sizeof(b)); 91 92 t = a[7] + Sigma1(a[4]) + Ch(a[4], a[5], a[6]) + K[i] + w[i % 16]; 93 b[7] = t + Sigma0(a[0]) + Maj(a[0], a[1], a[2]); 94 b[3] += t; 95 for (j = 0; j < 8; ++j) { 96 a[(j + 1) % 8] = b[j]; 97 } 98 if (i % 16 == 15) { 99 for (j = 0; j < 16; ++j) { 100 w[j] += w[(j + 9) % 16] + sigma0(w[(j + 1) % 16]) + 101 sigma1(w[(j + 14) % 16]); 102 } 103 } 104 } 105 106 for (i = 0; i < 8; i++) { 107 a[i] += z[i]; 108 } 109 } 110 111 /* a is icv/ocv, w is a single message block that needs be64 conversion. */ 112 static void sha512_bda_be64(uint64_t a[8], uint64_t w[16]) 113 { 114 uint64_t t[16]; 115 int i; 116 117 for (i = 0; i < 16; i++) { 118 t[i] = be64_to_cpu(w[i]); 119 } 120 sha512_bda(a, t); 121 } 122 123 static void sha512_read_icv(CPUS390XState *env, uint64_t addr, 124 uint64_t a[8], uintptr_t ra) 125 { 126 int i; 127 128 for (i = 0; i < 8; i++, addr += 8) { 129 addr = wrap_address(env, addr); 130 a[i] = cpu_ldq_be_data_ra(env, addr, ra); 131 } 132 } 133 134 static void sha512_write_ocv(CPUS390XState *env, uint64_t addr, 135 uint64_t a[8], uintptr_t ra) 136 { 137 int i; 138 139 for (i = 0; i < 8; i++, addr += 8) { 140 addr = wrap_address(env, addr); 141 cpu_stq_be_data_ra(env, addr, a[i], ra); 142 } 143 } 144 145 static void sha512_read_block(CPUS390XState *env, uint64_t addr, 146 uint64_t a[16], uintptr_t ra) 147 { 148 int i; 149 150 for (i = 0; i < 16; i++, addr += 8) { 151 addr = wrap_address(env, addr); 152 a[i] = cpu_ldq_be_data_ra(env, addr, ra); 153 } 154 } 155 156 static void sha512_read_mbl_be64(CPUS390XState *env, uint64_t addr, 157 uint8_t a[16], uintptr_t ra) 158 { 159 int i; 160 161 for (i = 0; i < 16; i++, addr += 1) { 162 addr = wrap_address(env, addr); 163 a[i] = cpu_ldub_data_ra(env, addr, ra); 164 } 165 } 166 167 static int cpacf_sha512(CPUS390XState *env, uintptr_t ra, uint64_t param_addr, 168 uint64_t *message_reg, uint64_t *len_reg, uint32_t type) 169 { 170 enum { MAX_BLOCKS_PER_RUN = 64 }; /* Arbitrary: keep interactivity. */ 171 uint64_t len = *len_reg, a[8], processed = 0; 172 int i, message_reg_len = 64; 173 174 g_assert(type == S390_FEAT_TYPE_KIMD || type == S390_FEAT_TYPE_KLMD); 175 176 if (!(env->psw.mask & PSW_MASK_64)) { 177 len = (uint32_t)len; 178 message_reg_len = (env->psw.mask & PSW_MASK_32) ? 32 : 24; 179 } 180 181 /* KIMD: length has to be properly aligned. */ 182 if (type == S390_FEAT_TYPE_KIMD && !QEMU_IS_ALIGNED(len, 128)) { 183 tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); 184 } 185 186 sha512_read_icv(env, param_addr, a, ra); 187 188 /* Process full blocks first. */ 189 for (; len >= 128; len -= 128, processed += 128) { 190 uint64_t w[16]; 191 192 if (processed >= MAX_BLOCKS_PER_RUN * 128) { 193 break; 194 } 195 196 sha512_read_block(env, *message_reg + processed, w, ra); 197 sha512_bda(a, w); 198 } 199 200 /* KLMD: Process partial/empty block last. */ 201 if (type == S390_FEAT_TYPE_KLMD && len < 128) { 202 uint8_t x[128]; 203 204 /* Read the remainder of the message byte-per-byte. */ 205 for (i = 0; i < len; i++) { 206 uint64_t addr = wrap_address(env, *message_reg + processed + i); 207 208 x[i] = cpu_ldub_data_ra(env, addr, ra); 209 } 210 /* Pad the remainder with zero and set the top bit. */ 211 memset(x + len, 0, 128 - len); 212 x[len] = 128; 213 214 /* 215 * Place the MBL either into this block (if there is space left), 216 * or use an additional one. 217 */ 218 if (len < 112) { 219 sha512_read_mbl_be64(env, param_addr + 64, x + 112, ra); 220 } 221 sha512_bda_be64(a, (uint64_t *)x); 222 223 if (len >= 112) { 224 memset(x, 0, 112); 225 sha512_read_mbl_be64(env, param_addr + 64, x + 112, ra); 226 sha512_bda_be64(a, (uint64_t *)x); 227 } 228 229 processed += len; 230 len = 0; 231 } 232 233 /* 234 * Modify memory after we read all inputs and modify registers only after 235 * writing memory succeeded. 236 * 237 * TODO: if writing fails halfway through (e.g., when crossing page 238 * boundaries), we're in trouble. We'd need something like access_prepare(). 239 */ 240 sha512_write_ocv(env, param_addr, a, ra); 241 *message_reg = deposit64(*message_reg, 0, message_reg_len, 242 *message_reg + processed); 243 *len_reg -= processed; 244 return !len ? 0 : 3; 245 } 246 247 static void fill_buf_random(CPUS390XState *env, uintptr_t ra, 248 uint64_t *buf_reg, uint64_t *len_reg) 249 { 250 uint8_t tmp[256]; 251 uint64_t len = *len_reg; 252 int buf_reg_len = 64; 253 254 if (!(env->psw.mask & PSW_MASK_64)) { 255 len = (uint32_t)len; 256 buf_reg_len = (env->psw.mask & PSW_MASK_32) ? 32 : 24; 257 } 258 259 while (len) { 260 size_t block = MIN(len, sizeof(tmp)); 261 262 qemu_guest_getrandom_nofail(tmp, block); 263 for (size_t i = 0; i < block; ++i) { 264 cpu_stb_data_ra(env, wrap_address(env, *buf_reg), tmp[i], ra); 265 *buf_reg = deposit64(*buf_reg, 0, buf_reg_len, *buf_reg + 1); 266 --*len_reg; 267 } 268 len -= block; 269 } 270 } 271 272 uint32_t HELPER(msa)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t r3, 273 uint32_t type) 274 { 275 const uintptr_t ra = GETPC(); 276 const uint8_t mod = env->regs[0] & 0x80ULL; 277 const uint8_t fc = env->regs[0] & 0x7fULL; 278 uint8_t subfunc[16] = { 0 }; 279 uint64_t param_addr; 280 int i; 281 282 switch (type) { 283 case S390_FEAT_TYPE_KMAC: 284 case S390_FEAT_TYPE_KIMD: 285 case S390_FEAT_TYPE_KLMD: 286 case S390_FEAT_TYPE_PCKMO: 287 case S390_FEAT_TYPE_PCC: 288 if (mod) { 289 tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); 290 } 291 break; 292 } 293 294 s390_get_feat_block(type, subfunc); 295 if (!test_be_bit(fc, subfunc)) { 296 tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); 297 } 298 299 switch (fc) { 300 case 0: /* query subfunction */ 301 for (i = 0; i < 16; i++) { 302 param_addr = wrap_address(env, env->regs[1] + i); 303 cpu_stb_data_ra(env, param_addr, subfunc[i], ra); 304 } 305 break; 306 case 3: /* CPACF_*_SHA_512 */ 307 return cpacf_sha512(env, ra, env->regs[1], &env->regs[r2], 308 &env->regs[r2 + 1], type); 309 case 114: /* CPACF_PRNO_TRNG */ 310 fill_buf_random(env, ra, &env->regs[r1], &env->regs[r1 + 1]); 311 fill_buf_random(env, ra, &env->regs[r2], &env->regs[r2 + 1]); 312 break; 313 default: 314 /* we don't implement any other subfunction yet */ 315 g_assert_not_reached(); 316 } 317 318 return 0; 319 } 320