xref: /openbmc/qemu/target/s390x/mmu_helper.c (revision 520e210c)
1 /*
2  * S390x MMU related functions
3  *
4  * Copyright (c) 2011 Alexander Graf
5  * Copyright (c) 2015 Thomas Huth, IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "exec/exec-all.h"
26 #include "trace.h"
27 #include "hw/s390x/storage-keys.h"
28 
29 /* #define DEBUG_S390 */
30 /* #define DEBUG_S390_PTE */
31 /* #define DEBUG_S390_STDOUT */
32 
33 #ifdef DEBUG_S390
34 #ifdef DEBUG_S390_STDOUT
35 #define DPRINTF(fmt, ...) \
36     do { fprintf(stderr, fmt, ## __VA_ARGS__); \
37          if (qemu_log_separate()) qemu_log(fmt, ##__VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40     do { qemu_log(fmt, ## __VA_ARGS__); } while (0)
41 #endif
42 #else
43 #define DPRINTF(fmt, ...) \
44     do { } while (0)
45 #endif
46 
47 #ifdef DEBUG_S390_PTE
48 #define PTE_DPRINTF DPRINTF
49 #else
50 #define PTE_DPRINTF(fmt, ...) \
51     do { } while (0)
52 #endif
53 
54 /* Fetch/store bits in the translation exception code: */
55 #define FS_READ  0x800
56 #define FS_WRITE 0x400
57 
58 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
59                                      uint32_t ilen, uint64_t tec)
60 {
61     S390CPU *cpu = s390_env_get_cpu(env);
62 
63     if (kvm_enabled()) {
64         kvm_s390_access_exception(cpu, type, tec);
65     } else {
66         CPUState *cs = CPU(cpu);
67         if (type != PGM_ADDRESSING) {
68             stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
69         }
70         trigger_pgm_exception(env, type, ilen);
71     }
72 }
73 
74 static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr,
75                                uint64_t asc, int rw, bool exc)
76 {
77     uint64_t tec;
78 
79     tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46;
80 
81     DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
82 
83     if (!exc) {
84         return;
85     }
86 
87     trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, tec);
88 }
89 
90 static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr,
91                                uint32_t type, uint64_t asc, int rw, bool exc)
92 {
93     int ilen = ILEN_AUTO;
94     uint64_t tec;
95 
96     tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46;
97 
98     DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
99 
100     if (!exc) {
101         return;
102     }
103 
104     /* Code accesses have an undefined ilc.  */
105     if (rw == MMU_INST_FETCH) {
106         ilen = 2;
107     }
108 
109     trigger_access_exception(env, type, ilen, tec);
110 }
111 
112 /* check whether the address would be proteted by Low-Address Protection */
113 static bool is_low_address(uint64_t addr)
114 {
115     return addr <= 511 || (addr >= 4096 && addr <= 4607);
116 }
117 
118 /* check whether Low-Address Protection is enabled for mmu_translate() */
119 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
120 {
121     if (!(env->cregs[0] & CR0_LOWPROT)) {
122         return false;
123     }
124     if (!(env->psw.mask & PSW_MASK_DAT)) {
125         return true;
126     }
127 
128     /* Check the private-space control bit */
129     switch (asc) {
130     case PSW_ASC_PRIMARY:
131         return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
132     case PSW_ASC_SECONDARY:
133         return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
134     case PSW_ASC_HOME:
135         return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
136     default:
137         /* We don't support access register mode */
138         error_report("unsupported addressing mode");
139         exit(1);
140     }
141 }
142 
143 /**
144  * Translate real address to absolute (= physical)
145  * address by taking care of the prefix mapping.
146  */
147 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
148 {
149     if (raddr < 0x2000) {
150         return raddr + env->psa;    /* Map the lowcore. */
151     } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
152         return raddr - env->psa;    /* Map the 0 page. */
153     }
154     return raddr;
155 }
156 
157 /* Decode page table entry (normal 4KB page) */
158 static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr,
159                              uint64_t asc, uint64_t pt_entry,
160                              target_ulong *raddr, int *flags, int rw, bool exc)
161 {
162     if (pt_entry & PAGE_INVALID) {
163         DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry);
164         trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc);
165         return -1;
166     }
167     if (pt_entry & PAGE_RES0) {
168         trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
169         return -1;
170     }
171     if (pt_entry & PAGE_RO) {
172         *flags &= ~PAGE_WRITE;
173     }
174 
175     *raddr = pt_entry & ASCE_ORIGIN;
176 
177     PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry);
178 
179     return 0;
180 }
181 
182 /* Decode segment table entry */
183 static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr,
184                                  uint64_t asc, uint64_t st_entry,
185                                  target_ulong *raddr, int *flags, int rw,
186                                  bool exc)
187 {
188     CPUState *cs = CPU(s390_env_get_cpu(env));
189     uint64_t origin, offs, pt_entry;
190 
191     if (st_entry & SEGMENT_ENTRY_RO) {
192         *flags &= ~PAGE_WRITE;
193     }
194 
195     if ((st_entry & SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) {
196         /* Decode EDAT1 segment frame absolute address (1MB page) */
197         *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff);
198         PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry);
199         return 0;
200     }
201 
202     /* Look up 4KB page entry */
203     origin = st_entry & SEGMENT_ENTRY_ORIGIN;
204     offs  = (vaddr & VADDR_PX) >> 9;
205     pt_entry = ldq_phys(cs->as, origin + offs);
206     PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
207                 __func__, origin, offs, pt_entry);
208     return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc);
209 }
210 
211 /* Decode region table entries */
212 static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr,
213                                 uint64_t asc, uint64_t entry, int level,
214                                 target_ulong *raddr, int *flags, int rw,
215                                 bool exc)
216 {
217     CPUState *cs = CPU(s390_env_get_cpu(env));
218     uint64_t origin, offs, new_entry;
219     const int pchks[4] = {
220         PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS,
221         PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS
222     };
223 
224     PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry);
225 
226     origin = entry & REGION_ENTRY_ORIGIN;
227     offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8;
228 
229     new_entry = ldq_phys(cs->as, origin + offs);
230     PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
231                 __func__, origin, offs, new_entry);
232 
233     if ((new_entry & REGION_ENTRY_INV) != 0) {
234         DPRINTF("%s: invalid region\n", __func__);
235         trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc);
236         return -1;
237     }
238 
239     if ((new_entry & REGION_ENTRY_TYPE_MASK) != level) {
240         trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
241         return -1;
242     }
243 
244     if (level == ASCE_TYPE_SEGMENT) {
245         return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags,
246                                      rw, exc);
247     }
248 
249     /* Check region table offset and length */
250     offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3;
251     if (offs < ((new_entry & REGION_ENTRY_TF) >> 6)
252         || offs > (new_entry & REGION_ENTRY_LENGTH)) {
253         DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry);
254         trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc);
255         return -1;
256     }
257 
258     if ((env->cregs[0] & CR0_EDAT) && (new_entry & REGION_ENTRY_RO)) {
259         *flags &= ~PAGE_WRITE;
260     }
261 
262     /* yet another region */
263     return mmu_translate_region(env, vaddr, asc, new_entry, level - 4,
264                                 raddr, flags, rw, exc);
265 }
266 
267 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
268                               uint64_t asc, uint64_t asce, target_ulong *raddr,
269                               int *flags, int rw, bool exc)
270 {
271     int level;
272     int r;
273 
274     if (asce & ASCE_REAL_SPACE) {
275         /* direct mapping */
276         *raddr = vaddr;
277         return 0;
278     }
279 
280     level = asce & ASCE_TYPE_MASK;
281     switch (level) {
282     case ASCE_TYPE_REGION1:
283         if ((vaddr >> 62) > (asce & ASCE_TABLE_LENGTH)) {
284             trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc);
285             return -1;
286         }
287         break;
288     case ASCE_TYPE_REGION2:
289         if (vaddr & 0xffe0000000000000ULL) {
290             DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
291                     " 0xffe0000000000000ULL\n", __func__, vaddr);
292             trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
293             return -1;
294         }
295         if ((vaddr >> 51 & 3) > (asce & ASCE_TABLE_LENGTH)) {
296             trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc);
297             return -1;
298         }
299         break;
300     case ASCE_TYPE_REGION3:
301         if (vaddr & 0xfffffc0000000000ULL) {
302             DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
303                     " 0xfffffc0000000000ULL\n", __func__, vaddr);
304             trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
305             return -1;
306         }
307         if ((vaddr >> 40 & 3) > (asce & ASCE_TABLE_LENGTH)) {
308             trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc);
309             return -1;
310         }
311         break;
312     case ASCE_TYPE_SEGMENT:
313         if (vaddr & 0xffffffff80000000ULL) {
314             DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
315                     " 0xffffffff80000000ULL\n", __func__, vaddr);
316             trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
317             return -1;
318         }
319         if ((vaddr >> 29 & 3) > (asce & ASCE_TABLE_LENGTH)) {
320             trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc);
321             return -1;
322         }
323         break;
324     }
325 
326     r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw,
327                              exc);
328     if (!r && rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) {
329         trigger_prot_fault(env, vaddr, asc, rw, exc);
330         return -1;
331     }
332 
333     return r;
334 }
335 
336 /**
337  * Translate a virtual (logical) address into a physical (absolute) address.
338  * @param vaddr  the virtual address
339  * @param rw     0 = read, 1 = write, 2 = code fetch
340  * @param asc    address space control (one of the PSW_ASC_* modes)
341  * @param raddr  the translated address is stored to this pointer
342  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
343  * @param exc    true = inject a program check if a fault occurred
344  * @return       0 if the translation was successful, -1 if a fault occurred
345  */
346 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
347                   target_ulong *raddr, int *flags, bool exc)
348 {
349     static S390SKeysState *ss;
350     static S390SKeysClass *skeyclass;
351     int r = -1;
352     uint8_t key;
353 
354     if (unlikely(!ss)) {
355         ss = s390_get_skeys_device();
356         skeyclass = S390_SKEYS_GET_CLASS(ss);
357     }
358 
359     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
360     if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
361         /*
362          * If any part of this page is currently protected, make sure the
363          * TLB entry will not be reused.
364          *
365          * As the protected range is always the first 512 bytes of the
366          * two first pages, we are able to catch all writes to these areas
367          * just by looking at the start address (triggering the tlb miss).
368          */
369         *flags |= PAGE_WRITE_INV;
370         if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
371             if (exc) {
372                 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
373             }
374             return -EACCES;
375         }
376     }
377 
378     vaddr &= TARGET_PAGE_MASK;
379 
380     if (!(env->psw.mask & PSW_MASK_DAT)) {
381         *raddr = vaddr;
382         r = 0;
383         goto out;
384     }
385 
386     switch (asc) {
387     case PSW_ASC_PRIMARY:
388         PTE_DPRINTF("%s: asc=primary\n", __func__);
389         r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags,
390                                rw, exc);
391         break;
392     case PSW_ASC_HOME:
393         PTE_DPRINTF("%s: asc=home\n", __func__);
394         r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags,
395                                rw, exc);
396         break;
397     case PSW_ASC_SECONDARY:
398         PTE_DPRINTF("%s: asc=secondary\n", __func__);
399         /*
400          * Instruction: Primary
401          * Data: Secondary
402          */
403         if (rw == MMU_INST_FETCH) {
404             r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1],
405                                    raddr, flags, rw, exc);
406             *flags &= ~(PAGE_READ | PAGE_WRITE);
407         } else {
408             r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7],
409                                    raddr, flags, rw, exc);
410             *flags &= ~(PAGE_EXEC);
411         }
412         break;
413     case PSW_ASC_ACCREG:
414     default:
415         hw_error("guest switched to unknown asc mode\n");
416         break;
417     }
418 
419  out:
420     /* Convert real address -> absolute address */
421     *raddr = mmu_real2abs(env, *raddr);
422 
423     if (r == 0 && *raddr < ram_size) {
424         if (skeyclass->get_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
425             trace_get_skeys_nonzero(r);
426             return 0;
427         }
428 
429         if (*flags & PAGE_READ) {
430             key |= SK_R;
431         }
432 
433         if (*flags & PAGE_WRITE) {
434             key |= SK_C;
435         }
436 
437         if (skeyclass->set_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
438             trace_set_skeys_nonzero(r);
439             return 0;
440         }
441     }
442 
443     return r;
444 }
445 
446 /**
447  * translate_pages: Translate a set of consecutive logical page addresses
448  * to absolute addresses. This function is used for TCG and old KVM without
449  * the MEMOP interface.
450  */
451 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
452                            target_ulong *pages, bool is_write)
453 {
454     uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
455     CPUS390XState *env = &cpu->env;
456     int ret, i, pflags;
457 
458     for (i = 0; i < nr_pages; i++) {
459         ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
460         if (ret) {
461             return ret;
462         }
463         if (!address_space_access_valid(&address_space_memory, pages[i],
464                                         TARGET_PAGE_SIZE, is_write,
465                                         MEMTXATTRS_UNSPECIFIED)) {
466             trigger_access_exception(env, PGM_ADDRESSING, ILEN_AUTO, 0);
467             return -EFAULT;
468         }
469         addr += TARGET_PAGE_SIZE;
470     }
471 
472     return 0;
473 }
474 
475 /**
476  * s390_cpu_virt_mem_rw:
477  * @laddr:     the logical start address
478  * @ar:        the access register number
479  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
480  * @len:       length that should be transferred
481  * @is_write:  true = write, false = read
482  * Returns:    0 on success, non-zero if an exception occurred
483  *
484  * Copy from/to guest memory using logical addresses. Note that we inject a
485  * program interrupt in case there is an error while accessing the memory.
486  *
487  * This function will always return (also for TCG), make sure to call
488  * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
489  */
490 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
491                          int len, bool is_write)
492 {
493     int currlen, nr_pages, i;
494     target_ulong *pages;
495     int ret;
496 
497     if (kvm_enabled()) {
498         ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
499         if (ret >= 0) {
500             return ret;
501         }
502     }
503 
504     nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
505                + 1;
506     pages = g_malloc(nr_pages * sizeof(*pages));
507 
508     ret = translate_pages(cpu, laddr, nr_pages, pages, is_write);
509     if (ret == 0 && hostbuf != NULL) {
510         /* Copy data by stepping through the area page by page */
511         for (i = 0; i < nr_pages; i++) {
512             currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
513             cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
514                                    hostbuf, currlen, is_write);
515             laddr += currlen;
516             hostbuf += currlen;
517             len -= currlen;
518         }
519     }
520 
521     g_free(pages);
522     return ret;
523 }
524 
525 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
526 {
527     /* KVM will handle the interrupt automatically, TCG has to exit the TB */
528 #ifdef CONFIG_TCG
529     if (tcg_enabled()) {
530         cpu_loop_exit_restore(CPU(cpu), ra);
531     }
532 #endif
533 }
534 
535 /**
536  * Translate a real address into a physical (absolute) address.
537  * @param raddr  the real address
538  * @param rw     0 = read, 1 = write, 2 = code fetch
539  * @param addr   the translated address is stored to this pointer
540  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
541  * @return       0 if the translation was successful, < 0 if a fault occurred
542  */
543 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
544                        target_ulong *addr, int *flags)
545 {
546     const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
547 
548     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
549     if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
550         /* see comment in mmu_translate() how this works */
551         *flags |= PAGE_WRITE_INV;
552         if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
553             trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
554             return -EACCES;
555         }
556     }
557 
558     *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
559 
560     /* TODO: storage key handling */
561     return 0;
562 }
563