xref: /openbmc/qemu/target/s390x/mmu_helper.c (revision 500eb6db)
1 /*
2  * S390x MMU related functions
3  *
4  * Copyright (c) 2011 Alexander Graf
5  * Copyright (c) 2015 Thomas Huth, IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "exec/exec-all.h"
27 #include "trace.h"
28 #include "hw/s390x/storage-keys.h"
29 
30 /* #define DEBUG_S390 */
31 /* #define DEBUG_S390_PTE */
32 /* #define DEBUG_S390_STDOUT */
33 
34 #ifdef DEBUG_S390
35 #ifdef DEBUG_S390_STDOUT
36 #define DPRINTF(fmt, ...) \
37     do { fprintf(stderr, fmt, ## __VA_ARGS__); \
38          if (qemu_log_separate()) qemu_log(fmt, ##__VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41     do { qemu_log(fmt, ## __VA_ARGS__); } while (0)
42 #endif
43 #else
44 #define DPRINTF(fmt, ...) \
45     do { } while (0)
46 #endif
47 
48 #ifdef DEBUG_S390_PTE
49 #define PTE_DPRINTF DPRINTF
50 #else
51 #define PTE_DPRINTF(fmt, ...) \
52     do { } while (0)
53 #endif
54 
55 /* Fetch/store bits in the translation exception code: */
56 #define FS_READ  0x800
57 #define FS_WRITE 0x400
58 
59 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
60                                      uint32_t ilen, uint64_t tec)
61 {
62     S390CPU *cpu = env_archcpu(env);
63 
64     if (kvm_enabled()) {
65         kvm_s390_access_exception(cpu, type, tec);
66     } else {
67         CPUState *cs = env_cpu(env);
68         if (type != PGM_ADDRESSING) {
69             stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
70         }
71         trigger_pgm_exception(env, type, ilen);
72     }
73 }
74 
75 static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr,
76                                uint64_t asc, int rw, bool exc)
77 {
78     uint64_t tec;
79 
80     tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46;
81 
82     DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
83 
84     if (!exc) {
85         return;
86     }
87 
88     trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, tec);
89 }
90 
91 static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr,
92                                uint32_t type, uint64_t asc, int rw, bool exc)
93 {
94     int ilen = ILEN_AUTO;
95     uint64_t tec;
96 
97     tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46;
98 
99     DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
100 
101     if (!exc) {
102         return;
103     }
104 
105     /* Code accesses have an undefined ilc.  */
106     if (rw == MMU_INST_FETCH) {
107         ilen = 2;
108     }
109 
110     trigger_access_exception(env, type, ilen, tec);
111 }
112 
113 /* check whether the address would be proteted by Low-Address Protection */
114 static bool is_low_address(uint64_t addr)
115 {
116     return addr <= 511 || (addr >= 4096 && addr <= 4607);
117 }
118 
119 /* check whether Low-Address Protection is enabled for mmu_translate() */
120 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
121 {
122     if (!(env->cregs[0] & CR0_LOWPROT)) {
123         return false;
124     }
125     if (!(env->psw.mask & PSW_MASK_DAT)) {
126         return true;
127     }
128 
129     /* Check the private-space control bit */
130     switch (asc) {
131     case PSW_ASC_PRIMARY:
132         return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
133     case PSW_ASC_SECONDARY:
134         return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
135     case PSW_ASC_HOME:
136         return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
137     default:
138         /* We don't support access register mode */
139         error_report("unsupported addressing mode");
140         exit(1);
141     }
142 }
143 
144 /**
145  * Translate real address to absolute (= physical)
146  * address by taking care of the prefix mapping.
147  */
148 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
149 {
150     if (raddr < 0x2000) {
151         return raddr + env->psa;    /* Map the lowcore. */
152     } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
153         return raddr - env->psa;    /* Map the 0 page. */
154     }
155     return raddr;
156 }
157 
158 /* Decode page table entry (normal 4KB page) */
159 static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr,
160                              uint64_t asc, uint64_t pt_entry,
161                              target_ulong *raddr, int *flags, int rw, bool exc)
162 {
163     if (pt_entry & PAGE_INVALID) {
164         DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry);
165         trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc);
166         return -1;
167     }
168     if (pt_entry & PAGE_RES0) {
169         trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
170         return -1;
171     }
172     if (pt_entry & PAGE_RO) {
173         *flags &= ~PAGE_WRITE;
174     }
175 
176     *raddr = pt_entry & ASCE_ORIGIN;
177 
178     PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry);
179 
180     return 0;
181 }
182 
183 /* Decode segment table entry */
184 static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr,
185                                  uint64_t asc, uint64_t st_entry,
186                                  target_ulong *raddr, int *flags, int rw,
187                                  bool exc)
188 {
189     CPUState *cs = env_cpu(env);
190     uint64_t origin, offs, pt_entry;
191 
192     if (st_entry & SEGMENT_ENTRY_RO) {
193         *flags &= ~PAGE_WRITE;
194     }
195 
196     if ((st_entry & SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) {
197         /* Decode EDAT1 segment frame absolute address (1MB page) */
198         *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff);
199         PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry);
200         return 0;
201     }
202 
203     /* Look up 4KB page entry */
204     origin = st_entry & SEGMENT_ENTRY_ORIGIN;
205     offs  = (vaddr & VADDR_PX) >> 9;
206     pt_entry = ldq_phys(cs->as, origin + offs);
207     PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
208                 __func__, origin, offs, pt_entry);
209     return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc);
210 }
211 
212 /* Decode region table entries */
213 static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr,
214                                 uint64_t asc, uint64_t entry, int level,
215                                 target_ulong *raddr, int *flags, int rw,
216                                 bool exc)
217 {
218     CPUState *cs = env_cpu(env);
219     uint64_t origin, offs, new_entry;
220     const int pchks[4] = {
221         PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS,
222         PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS
223     };
224 
225     PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry);
226 
227     origin = entry & REGION_ENTRY_ORIGIN;
228     offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8;
229 
230     new_entry = ldq_phys(cs->as, origin + offs);
231     PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
232                 __func__, origin, offs, new_entry);
233 
234     if ((new_entry & REGION_ENTRY_INV) != 0) {
235         DPRINTF("%s: invalid region\n", __func__);
236         trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc);
237         return -1;
238     }
239 
240     if ((new_entry & REGION_ENTRY_TYPE_MASK) != level) {
241         trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
242         return -1;
243     }
244 
245     if (level == ASCE_TYPE_SEGMENT) {
246         return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags,
247                                      rw, exc);
248     }
249 
250     /* Check region table offset and length */
251     offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3;
252     if (offs < ((new_entry & REGION_ENTRY_TF) >> 6)
253         || offs > (new_entry & REGION_ENTRY_LENGTH)) {
254         DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry);
255         trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc);
256         return -1;
257     }
258 
259     if ((env->cregs[0] & CR0_EDAT) && (new_entry & REGION_ENTRY_RO)) {
260         *flags &= ~PAGE_WRITE;
261     }
262 
263     /* yet another region */
264     return mmu_translate_region(env, vaddr, asc, new_entry, level - 4,
265                                 raddr, flags, rw, exc);
266 }
267 
268 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
269                               uint64_t asc, uint64_t asce, target_ulong *raddr,
270                               int *flags, int rw, bool exc)
271 {
272     int level;
273     int r;
274 
275     if (asce & ASCE_REAL_SPACE) {
276         /* direct mapping */
277         *raddr = vaddr;
278         return 0;
279     }
280 
281     level = asce & ASCE_TYPE_MASK;
282     switch (level) {
283     case ASCE_TYPE_REGION1:
284         if ((vaddr >> 62) > (asce & ASCE_TABLE_LENGTH)) {
285             trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc);
286             return -1;
287         }
288         break;
289     case ASCE_TYPE_REGION2:
290         if (vaddr & 0xffe0000000000000ULL) {
291             DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
292                     " 0xffe0000000000000ULL\n", __func__, vaddr);
293             trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
294             return -1;
295         }
296         if ((vaddr >> 51 & 3) > (asce & ASCE_TABLE_LENGTH)) {
297             trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc);
298             return -1;
299         }
300         break;
301     case ASCE_TYPE_REGION3:
302         if (vaddr & 0xfffffc0000000000ULL) {
303             DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
304                     " 0xfffffc0000000000ULL\n", __func__, vaddr);
305             trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
306             return -1;
307         }
308         if ((vaddr >> 40 & 3) > (asce & ASCE_TABLE_LENGTH)) {
309             trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc);
310             return -1;
311         }
312         break;
313     case ASCE_TYPE_SEGMENT:
314         if (vaddr & 0xffffffff80000000ULL) {
315             DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
316                     " 0xffffffff80000000ULL\n", __func__, vaddr);
317             trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
318             return -1;
319         }
320         if ((vaddr >> 29 & 3) > (asce & ASCE_TABLE_LENGTH)) {
321             trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc);
322             return -1;
323         }
324         break;
325     }
326 
327     r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw,
328                              exc);
329     if (!r && rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) {
330         trigger_prot_fault(env, vaddr, asc, rw, exc);
331         return -1;
332     }
333 
334     return r;
335 }
336 
337 /**
338  * Translate a virtual (logical) address into a physical (absolute) address.
339  * @param vaddr  the virtual address
340  * @param rw     0 = read, 1 = write, 2 = code fetch
341  * @param asc    address space control (one of the PSW_ASC_* modes)
342  * @param raddr  the translated address is stored to this pointer
343  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
344  * @param exc    true = inject a program check if a fault occurred
345  * @return       0 if the translation was successful, -1 if a fault occurred
346  */
347 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
348                   target_ulong *raddr, int *flags, bool exc)
349 {
350     static S390SKeysState *ss;
351     static S390SKeysClass *skeyclass;
352     int r = -1;
353     uint8_t key;
354 
355     if (unlikely(!ss)) {
356         ss = s390_get_skeys_device();
357         skeyclass = S390_SKEYS_GET_CLASS(ss);
358     }
359 
360     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
361     if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
362         /*
363          * If any part of this page is currently protected, make sure the
364          * TLB entry will not be reused.
365          *
366          * As the protected range is always the first 512 bytes of the
367          * two first pages, we are able to catch all writes to these areas
368          * just by looking at the start address (triggering the tlb miss).
369          */
370         *flags |= PAGE_WRITE_INV;
371         if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
372             if (exc) {
373                 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
374             }
375             return -EACCES;
376         }
377     }
378 
379     vaddr &= TARGET_PAGE_MASK;
380 
381     if (!(env->psw.mask & PSW_MASK_DAT)) {
382         *raddr = vaddr;
383         r = 0;
384         goto out;
385     }
386 
387     switch (asc) {
388     case PSW_ASC_PRIMARY:
389         PTE_DPRINTF("%s: asc=primary\n", __func__);
390         r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags,
391                                rw, exc);
392         break;
393     case PSW_ASC_HOME:
394         PTE_DPRINTF("%s: asc=home\n", __func__);
395         r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags,
396                                rw, exc);
397         break;
398     case PSW_ASC_SECONDARY:
399         PTE_DPRINTF("%s: asc=secondary\n", __func__);
400         /*
401          * Instruction: Primary
402          * Data: Secondary
403          */
404         if (rw == MMU_INST_FETCH) {
405             r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1],
406                                    raddr, flags, rw, exc);
407             *flags &= ~(PAGE_READ | PAGE_WRITE);
408         } else {
409             r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7],
410                                    raddr, flags, rw, exc);
411             *flags &= ~(PAGE_EXEC);
412         }
413         break;
414     case PSW_ASC_ACCREG:
415     default:
416         hw_error("guest switched to unknown asc mode\n");
417         break;
418     }
419 
420  out:
421     /* Convert real address -> absolute address */
422     *raddr = mmu_real2abs(env, *raddr);
423 
424     if (r == 0 && *raddr < ram_size) {
425         if (skeyclass->get_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
426             trace_get_skeys_nonzero(r);
427             return 0;
428         }
429 
430         if (*flags & PAGE_READ) {
431             key |= SK_R;
432         }
433 
434         if (*flags & PAGE_WRITE) {
435             key |= SK_C;
436         }
437 
438         if (skeyclass->set_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
439             trace_set_skeys_nonzero(r);
440             return 0;
441         }
442     }
443 
444     return r;
445 }
446 
447 /**
448  * translate_pages: Translate a set of consecutive logical page addresses
449  * to absolute addresses. This function is used for TCG and old KVM without
450  * the MEMOP interface.
451  */
452 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
453                            target_ulong *pages, bool is_write)
454 {
455     uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
456     CPUS390XState *env = &cpu->env;
457     int ret, i, pflags;
458 
459     for (i = 0; i < nr_pages; i++) {
460         ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
461         if (ret) {
462             return ret;
463         }
464         if (!address_space_access_valid(&address_space_memory, pages[i],
465                                         TARGET_PAGE_SIZE, is_write,
466                                         MEMTXATTRS_UNSPECIFIED)) {
467             trigger_access_exception(env, PGM_ADDRESSING, ILEN_AUTO, 0);
468             return -EFAULT;
469         }
470         addr += TARGET_PAGE_SIZE;
471     }
472 
473     return 0;
474 }
475 
476 /**
477  * s390_cpu_virt_mem_rw:
478  * @laddr:     the logical start address
479  * @ar:        the access register number
480  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
481  * @len:       length that should be transferred
482  * @is_write:  true = write, false = read
483  * Returns:    0 on success, non-zero if an exception occurred
484  *
485  * Copy from/to guest memory using logical addresses. Note that we inject a
486  * program interrupt in case there is an error while accessing the memory.
487  *
488  * This function will always return (also for TCG), make sure to call
489  * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
490  */
491 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
492                          int len, bool is_write)
493 {
494     int currlen, nr_pages, i;
495     target_ulong *pages;
496     int ret;
497 
498     if (kvm_enabled()) {
499         ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
500         if (ret >= 0) {
501             return ret;
502         }
503     }
504 
505     nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
506                + 1;
507     pages = g_malloc(nr_pages * sizeof(*pages));
508 
509     ret = translate_pages(cpu, laddr, nr_pages, pages, is_write);
510     if (ret == 0 && hostbuf != NULL) {
511         /* Copy data by stepping through the area page by page */
512         for (i = 0; i < nr_pages; i++) {
513             currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
514             cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
515                                    hostbuf, currlen, is_write);
516             laddr += currlen;
517             hostbuf += currlen;
518             len -= currlen;
519         }
520     }
521 
522     g_free(pages);
523     return ret;
524 }
525 
526 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
527 {
528     /* KVM will handle the interrupt automatically, TCG has to exit the TB */
529 #ifdef CONFIG_TCG
530     if (tcg_enabled()) {
531         cpu_loop_exit_restore(CPU(cpu), ra);
532     }
533 #endif
534 }
535 
536 /**
537  * Translate a real address into a physical (absolute) address.
538  * @param raddr  the real address
539  * @param rw     0 = read, 1 = write, 2 = code fetch
540  * @param addr   the translated address is stored to this pointer
541  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
542  * @return       0 if the translation was successful, < 0 if a fault occurred
543  */
544 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
545                        target_ulong *addr, int *flags)
546 {
547     const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
548 
549     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
550     if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
551         /* see comment in mmu_translate() how this works */
552         *flags |= PAGE_WRITE_INV;
553         if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
554             trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
555             return -EACCES;
556         }
557     }
558 
559     *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
560 
561     /* TODO: storage key handling */
562     return 0;
563 }
564