xref: /openbmc/qemu/target/s390x/mmu_helper.c (revision 1580b897)
1 /*
2  * S390x MMU related functions
3  *
4  * Copyright (c) 2011 Alexander Graf
5  * Copyright (c) 2015 Thomas Huth, IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
21 #include "cpu.h"
22 #include "s390x-internal.h"
23 #include "kvm/kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "exec/exec-all.h"
27 #include "trace.h"
28 #include "hw/hw.h"
29 #include "hw/s390x/storage-keys.h"
30 #include "hw/boards.h"
31 
32 /* Fetch/store bits in the translation exception code: */
33 #define FS_READ  0x800
34 #define FS_WRITE 0x400
35 
36 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
37                                      uint64_t tec)
38 {
39     S390CPU *cpu = env_archcpu(env);
40 
41     if (kvm_enabled()) {
42         kvm_s390_access_exception(cpu, type, tec);
43     } else {
44         CPUState *cs = env_cpu(env);
45         if (type != PGM_ADDRESSING) {
46             stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
47         }
48         trigger_pgm_exception(env, type);
49     }
50 }
51 
52 /* check whether the address would be proteted by Low-Address Protection */
53 static bool is_low_address(uint64_t addr)
54 {
55     return addr <= 511 || (addr >= 4096 && addr <= 4607);
56 }
57 
58 /* check whether Low-Address Protection is enabled for mmu_translate() */
59 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
60 {
61     if (!(env->cregs[0] & CR0_LOWPROT)) {
62         return false;
63     }
64     if (!(env->psw.mask & PSW_MASK_DAT)) {
65         return true;
66     }
67 
68     /* Check the private-space control bit */
69     switch (asc) {
70     case PSW_ASC_PRIMARY:
71         return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
72     case PSW_ASC_SECONDARY:
73         return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
74     case PSW_ASC_HOME:
75         return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
76     default:
77         /* We don't support access register mode */
78         error_report("unsupported addressing mode");
79         exit(1);
80     }
81 }
82 
83 /**
84  * Translate real address to absolute (= physical)
85  * address by taking care of the prefix mapping.
86  */
87 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
88 {
89     if (raddr < 0x2000) {
90         return raddr + env->psa;    /* Map the lowcore. */
91     } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
92         return raddr - env->psa;    /* Map the 0 page. */
93     }
94     return raddr;
95 }
96 
97 static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
98                                     uint64_t *entry)
99 {
100     CPUState *cs = env_cpu(env);
101 
102     /*
103      * According to the PoP, these table addresses are "unpredictably real
104      * or absolute". Also, "it is unpredictable whether the address wraps
105      * or an addressing exception is recognized".
106      *
107      * We treat them as absolute addresses and don't wrap them.
108      */
109     if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
110                                     entry, sizeof(*entry)) !=
111                  MEMTX_OK)) {
112         return false;
113     }
114     *entry = be64_to_cpu(*entry);
115     return true;
116 }
117 
118 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
119                               uint64_t asc, uint64_t asce, target_ulong *raddr,
120                               int *flags, int rw)
121 {
122     const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
123                        s390_has_feat(S390_FEAT_EDAT);
124     const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
125     const bool iep = (env->cregs[0] & CR0_IEP) &&
126                      s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT);
127     const int asce_tl = asce & ASCE_TABLE_LENGTH;
128     const int asce_p = asce & ASCE_PRIVATE_SPACE;
129     hwaddr gaddr = asce & ASCE_ORIGIN;
130     uint64_t entry;
131 
132     if (asce & ASCE_REAL_SPACE) {
133         /* direct mapping */
134         *raddr = vaddr;
135         return 0;
136     }
137 
138     switch (asce & ASCE_TYPE_MASK) {
139     case ASCE_TYPE_REGION1:
140         if (VADDR_REGION1_TL(vaddr) > asce_tl) {
141             return PGM_REG_FIRST_TRANS;
142         }
143         gaddr += VADDR_REGION1_TX(vaddr) * 8;
144         break;
145     case ASCE_TYPE_REGION2:
146         if (VADDR_REGION1_TX(vaddr)) {
147             return PGM_ASCE_TYPE;
148         }
149         if (VADDR_REGION2_TL(vaddr) > asce_tl) {
150             return PGM_REG_SEC_TRANS;
151         }
152         gaddr += VADDR_REGION2_TX(vaddr) * 8;
153         break;
154     case ASCE_TYPE_REGION3:
155         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
156             return PGM_ASCE_TYPE;
157         }
158         if (VADDR_REGION3_TL(vaddr) > asce_tl) {
159             return PGM_REG_THIRD_TRANS;
160         }
161         gaddr += VADDR_REGION3_TX(vaddr) * 8;
162         break;
163     case ASCE_TYPE_SEGMENT:
164         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
165             VADDR_REGION3_TX(vaddr)) {
166             return PGM_ASCE_TYPE;
167         }
168         if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
169             return PGM_SEGMENT_TRANS;
170         }
171         gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
172         break;
173     }
174 
175     switch (asce & ASCE_TYPE_MASK) {
176     case ASCE_TYPE_REGION1:
177         if (!read_table_entry(env, gaddr, &entry)) {
178             return PGM_ADDRESSING;
179         }
180         if (entry & REGION_ENTRY_I) {
181             return PGM_REG_FIRST_TRANS;
182         }
183         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
184             return PGM_TRANS_SPEC;
185         }
186         if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
187             VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
188             return PGM_REG_SEC_TRANS;
189         }
190         if (edat1 && (entry & REGION_ENTRY_P)) {
191             *flags &= ~PAGE_WRITE;
192         }
193         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
194         /* fall through */
195     case ASCE_TYPE_REGION2:
196         if (!read_table_entry(env, gaddr, &entry)) {
197             return PGM_ADDRESSING;
198         }
199         if (entry & REGION_ENTRY_I) {
200             return PGM_REG_SEC_TRANS;
201         }
202         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
203             return PGM_TRANS_SPEC;
204         }
205         if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
206             VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
207             return PGM_REG_THIRD_TRANS;
208         }
209         if (edat1 && (entry & REGION_ENTRY_P)) {
210             *flags &= ~PAGE_WRITE;
211         }
212         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
213         /* fall through */
214     case ASCE_TYPE_REGION3:
215         if (!read_table_entry(env, gaddr, &entry)) {
216             return PGM_ADDRESSING;
217         }
218         if (entry & REGION_ENTRY_I) {
219             return PGM_REG_THIRD_TRANS;
220         }
221         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
222             return PGM_TRANS_SPEC;
223         }
224         if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
225             return PGM_TRANS_SPEC;
226         }
227         if (edat1 && (entry & REGION_ENTRY_P)) {
228             *flags &= ~PAGE_WRITE;
229         }
230         if (edat2 && (entry & REGION3_ENTRY_FC)) {
231             if (iep && (entry & REGION3_ENTRY_IEP)) {
232                 *flags &= ~PAGE_EXEC;
233             }
234             *raddr = (entry & REGION3_ENTRY_RFAA) |
235                      (vaddr & ~REGION3_ENTRY_RFAA);
236             return 0;
237         }
238         if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
239             VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
240             return PGM_SEGMENT_TRANS;
241         }
242         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
243         /* fall through */
244     case ASCE_TYPE_SEGMENT:
245         if (!read_table_entry(env, gaddr, &entry)) {
246             return PGM_ADDRESSING;
247         }
248         if (entry & SEGMENT_ENTRY_I) {
249             return PGM_SEGMENT_TRANS;
250         }
251         if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
252             return PGM_TRANS_SPEC;
253         }
254         if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
255             return PGM_TRANS_SPEC;
256         }
257         if (entry & SEGMENT_ENTRY_P) {
258             *flags &= ~PAGE_WRITE;
259         }
260         if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
261             if (iep && (entry & SEGMENT_ENTRY_IEP)) {
262                 *flags &= ~PAGE_EXEC;
263             }
264             *raddr = (entry & SEGMENT_ENTRY_SFAA) |
265                      (vaddr & ~SEGMENT_ENTRY_SFAA);
266             return 0;
267         }
268         gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
269         break;
270     }
271 
272     if (!read_table_entry(env, gaddr, &entry)) {
273         return PGM_ADDRESSING;
274     }
275     if (entry & PAGE_ENTRY_I) {
276         return PGM_PAGE_TRANS;
277     }
278     if (entry & PAGE_ENTRY_0) {
279         return PGM_TRANS_SPEC;
280     }
281     if (entry & PAGE_ENTRY_P) {
282         *flags &= ~PAGE_WRITE;
283     }
284     if (iep && (entry & PAGE_ENTRY_IEP)) {
285         *flags &= ~PAGE_EXEC;
286     }
287 
288     *raddr = entry & TARGET_PAGE_MASK;
289     return 0;
290 }
291 
292 static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
293 {
294     static S390SKeysClass *skeyclass;
295     static S390SKeysState *ss;
296     MachineState *ms = MACHINE(qdev_get_machine());
297     uint8_t key;
298     int rc;
299 
300     if (unlikely(addr >= ms->ram_size)) {
301         return;
302     }
303 
304     if (unlikely(!ss)) {
305         ss = s390_get_skeys_device();
306         skeyclass = S390_SKEYS_GET_CLASS(ss);
307     }
308 
309     /*
310      * Whenever we create a new TLB entry, we set the storage key reference
311      * bit. In case we allow write accesses, we set the storage key change
312      * bit. Whenever the guest changes the storage key, we have to flush the
313      * TLBs of all CPUs (the whole TLB or all affected entries), so that the
314      * next reference/change will result in an MMU fault and make us properly
315      * update the storage key here.
316      *
317      * Note 1: "record of references ... is not necessarily accurate",
318      *         "change bit may be set in case no storing has occurred".
319      *         -> We can set reference/change bits even on exceptions.
320      * Note 2: certain accesses seem to ignore storage keys. For example,
321      *         DAT translation does not set reference bits for table accesses.
322      *
323      * TODO: key-controlled protection. Only CPU accesses make use of the
324      *       PSW key. CSS accesses are different - we have to pass in the key.
325      *
326      * TODO: we have races between getting and setting the key.
327      */
328     rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
329     if (rc) {
330         trace_get_skeys_nonzero(rc);
331         return;
332     }
333 
334     switch (rw) {
335     case MMU_DATA_LOAD:
336     case MMU_INST_FETCH:
337         /*
338          * The TLB entry has to remain write-protected on read-faults if
339          * the storage key does not indicate a change already. Otherwise
340          * we might miss setting the change bit on write accesses.
341          */
342         if (!(key & SK_C)) {
343             *flags &= ~PAGE_WRITE;
344         }
345         break;
346     case MMU_DATA_STORE:
347         key |= SK_C;
348         break;
349     default:
350         g_assert_not_reached();
351     }
352 
353     /* Any store/fetch sets the reference bit */
354     key |= SK_R;
355 
356     rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
357     if (rc) {
358         trace_set_skeys_nonzero(rc);
359     }
360 }
361 
362 /**
363  * Translate a virtual (logical) address into a physical (absolute) address.
364  * @param vaddr  the virtual address
365  * @param rw     0 = read, 1 = write, 2 = code fetch
366  * @param asc    address space control (one of the PSW_ASC_* modes)
367  * @param raddr  the translated address is stored to this pointer
368  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
369  * @param exc    true = inject a program check if a fault occurred
370  * @return       0 = success, != 0, the exception to raise
371  */
372 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
373                   target_ulong *raddr, int *flags, uint64_t *tec)
374 {
375     uint64_t asce;
376     int r;
377 
378     *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
379             (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
380     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
381 
382     if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
383         /*
384          * If any part of this page is currently protected, make sure the
385          * TLB entry will not be reused.
386          *
387          * As the protected range is always the first 512 bytes of the
388          * two first pages, we are able to catch all writes to these areas
389          * just by looking at the start address (triggering the tlb miss).
390          */
391         *flags |= PAGE_WRITE_INV;
392         if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
393             /* LAP sets bit 56 */
394             *tec |= 0x80;
395             return PGM_PROTECTION;
396         }
397     }
398 
399     vaddr &= TARGET_PAGE_MASK;
400 
401     if (!(env->psw.mask & PSW_MASK_DAT)) {
402         *raddr = vaddr;
403         goto nodat;
404     }
405 
406     switch (asc) {
407     case PSW_ASC_PRIMARY:
408         asce = env->cregs[1];
409         break;
410     case PSW_ASC_HOME:
411         asce = env->cregs[13];
412         break;
413     case PSW_ASC_SECONDARY:
414         asce = env->cregs[7];
415         break;
416     case PSW_ASC_ACCREG:
417     default:
418         hw_error("guest switched to unknown asc mode\n");
419         break;
420     }
421 
422     /* perform the DAT translation */
423     r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags, rw);
424     if (unlikely(r)) {
425         return r;
426     }
427 
428     /* check for DAT protection */
429     if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
430         /* DAT sets bit 61 only */
431         *tec |= 0x4;
432         return PGM_PROTECTION;
433     }
434 
435     /* check for Instruction-Execution-Protection */
436     if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) {
437         /* IEP sets bit 56 and 61 */
438         *tec |= 0x84;
439         return PGM_PROTECTION;
440     }
441 
442 nodat:
443     /* Convert real address -> absolute address */
444     *raddr = mmu_real2abs(env, *raddr);
445 
446     mmu_handle_skey(*raddr, rw, flags);
447     return 0;
448 }
449 
450 /**
451  * translate_pages: Translate a set of consecutive logical page addresses
452  * to absolute addresses. This function is used for TCG and old KVM without
453  * the MEMOP interface.
454  */
455 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
456                            target_ulong *pages, bool is_write, uint64_t *tec)
457 {
458     uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
459     CPUS390XState *env = &cpu->env;
460     int ret, i, pflags;
461 
462     for (i = 0; i < nr_pages; i++) {
463         ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec);
464         if (ret) {
465             return ret;
466         }
467         if (!address_space_access_valid(&address_space_memory, pages[i],
468                                         TARGET_PAGE_SIZE, is_write,
469                                         MEMTXATTRS_UNSPECIFIED)) {
470             *tec = 0; /* unused */
471             return PGM_ADDRESSING;
472         }
473         addr += TARGET_PAGE_SIZE;
474     }
475 
476     return 0;
477 }
478 
479 int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf,
480                        int len, bool is_write)
481 {
482     int ret;
483 
484     if (kvm_enabled()) {
485         ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write);
486     } else {
487         /* Protected Virtualization is a KVM/Hardware only feature */
488         g_assert_not_reached();
489     }
490     return ret;
491 }
492 
493 /**
494  * s390_cpu_virt_mem_rw:
495  * @laddr:     the logical start address
496  * @ar:        the access register number
497  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
498  * @len:       length that should be transferred
499  * @is_write:  true = write, false = read
500  * Returns:    0 on success, non-zero if an exception occurred
501  *
502  * Copy from/to guest memory using logical addresses. Note that we inject a
503  * program interrupt in case there is an error while accessing the memory.
504  *
505  * This function will always return (also for TCG), make sure to call
506  * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
507  */
508 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
509                          int len, bool is_write)
510 {
511     int currlen, nr_pages, i;
512     target_ulong *pages;
513     uint64_t tec;
514     int ret;
515 
516     if (kvm_enabled()) {
517         ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
518         if (ret >= 0) {
519             return ret;
520         }
521     }
522 
523     nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
524                + 1;
525     pages = g_malloc(nr_pages * sizeof(*pages));
526 
527     ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec);
528     if (ret) {
529         trigger_access_exception(&cpu->env, ret, tec);
530     } else if (hostbuf != NULL) {
531         /* Copy data by stepping through the area page by page */
532         for (i = 0; i < nr_pages; i++) {
533             currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
534             cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
535                                    hostbuf, currlen, is_write);
536             laddr += currlen;
537             hostbuf += currlen;
538             len -= currlen;
539         }
540     }
541 
542     g_free(pages);
543     return ret;
544 }
545 
546 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
547 {
548     /* KVM will handle the interrupt automatically, TCG has to exit the TB */
549 #ifdef CONFIG_TCG
550     if (tcg_enabled()) {
551         cpu_loop_exit_restore(CPU(cpu), ra);
552     }
553 #endif
554 }
555 
556 /**
557  * Translate a real address into a physical (absolute) address.
558  * @param raddr  the real address
559  * @param rw     0 = read, 1 = write, 2 = code fetch
560  * @param addr   the translated address is stored to this pointer
561  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
562  * @return       0 = success, != 0, the exception to raise
563  */
564 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
565                        target_ulong *addr, int *flags, uint64_t *tec)
566 {
567     const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
568 
569     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
570     if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
571         /* see comment in mmu_translate() how this works */
572         *flags |= PAGE_WRITE_INV;
573         if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
574             /* LAP sets bit 56 */
575             *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80;
576             return PGM_PROTECTION;
577         }
578     }
579 
580     *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
581 
582     mmu_handle_skey(*addr, rw, flags);
583     return 0;
584 }
585