1 /* 2 * S390x MMU related functions 3 * 4 * Copyright (c) 2011 Alexander Graf 5 * Copyright (c) 2015 Thomas Huth, IBM Corporation 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qemu/error-report.h" 20 #include "exec/address-spaces.h" 21 #include "cpu.h" 22 #include "internal.h" 23 #include "kvm_s390x.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "exec/exec-all.h" 27 #include "trace.h" 28 #include "hw/hw.h" 29 #include "hw/s390x/storage-keys.h" 30 31 /* Fetch/store bits in the translation exception code: */ 32 #define FS_READ 0x800 33 #define FS_WRITE 0x400 34 35 static void trigger_access_exception(CPUS390XState *env, uint32_t type, 36 uint64_t tec) 37 { 38 S390CPU *cpu = env_archcpu(env); 39 40 if (kvm_enabled()) { 41 kvm_s390_access_exception(cpu, type, tec); 42 } else { 43 CPUState *cs = env_cpu(env); 44 if (type != PGM_ADDRESSING) { 45 stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec); 46 } 47 trigger_pgm_exception(env, type); 48 } 49 } 50 51 /* check whether the address would be proteted by Low-Address Protection */ 52 static bool is_low_address(uint64_t addr) 53 { 54 return addr <= 511 || (addr >= 4096 && addr <= 4607); 55 } 56 57 /* check whether Low-Address Protection is enabled for mmu_translate() */ 58 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc) 59 { 60 if (!(env->cregs[0] & CR0_LOWPROT)) { 61 return false; 62 } 63 if (!(env->psw.mask & PSW_MASK_DAT)) { 64 return true; 65 } 66 67 /* Check the private-space control bit */ 68 switch (asc) { 69 case PSW_ASC_PRIMARY: 70 return !(env->cregs[1] & ASCE_PRIVATE_SPACE); 71 case PSW_ASC_SECONDARY: 72 return !(env->cregs[7] & ASCE_PRIVATE_SPACE); 73 case PSW_ASC_HOME: 74 return !(env->cregs[13] & ASCE_PRIVATE_SPACE); 75 default: 76 /* We don't support access register mode */ 77 error_report("unsupported addressing mode"); 78 exit(1); 79 } 80 } 81 82 /** 83 * Translate real address to absolute (= physical) 84 * address by taking care of the prefix mapping. 85 */ 86 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr) 87 { 88 if (raddr < 0x2000) { 89 return raddr + env->psa; /* Map the lowcore. */ 90 } else if (raddr >= env->psa && raddr < env->psa + 0x2000) { 91 return raddr - env->psa; /* Map the 0 page. */ 92 } 93 return raddr; 94 } 95 96 static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr, 97 uint64_t *entry) 98 { 99 CPUState *cs = env_cpu(env); 100 101 /* 102 * According to the PoP, these table addresses are "unpredictably real 103 * or absolute". Also, "it is unpredictable whether the address wraps 104 * or an addressing exception is recognized". 105 * 106 * We treat them as absolute addresses and don't wrap them. 107 */ 108 if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED, 109 entry, sizeof(*entry)) != 110 MEMTX_OK)) { 111 return false; 112 } 113 *entry = be64_to_cpu(*entry); 114 return true; 115 } 116 117 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr, 118 uint64_t asc, uint64_t asce, target_ulong *raddr, 119 int *flags, int rw) 120 { 121 const bool edat1 = (env->cregs[0] & CR0_EDAT) && 122 s390_has_feat(S390_FEAT_EDAT); 123 const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2); 124 const bool iep = (env->cregs[0] & CR0_IEP) && 125 s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT); 126 const int asce_tl = asce & ASCE_TABLE_LENGTH; 127 const int asce_p = asce & ASCE_PRIVATE_SPACE; 128 hwaddr gaddr = asce & ASCE_ORIGIN; 129 uint64_t entry; 130 131 if (asce & ASCE_REAL_SPACE) { 132 /* direct mapping */ 133 *raddr = vaddr; 134 return 0; 135 } 136 137 switch (asce & ASCE_TYPE_MASK) { 138 case ASCE_TYPE_REGION1: 139 if (VADDR_REGION1_TL(vaddr) > asce_tl) { 140 return PGM_REG_FIRST_TRANS; 141 } 142 gaddr += VADDR_REGION1_TX(vaddr) * 8; 143 break; 144 case ASCE_TYPE_REGION2: 145 if (VADDR_REGION1_TX(vaddr)) { 146 return PGM_ASCE_TYPE; 147 } 148 if (VADDR_REGION2_TL(vaddr) > asce_tl) { 149 return PGM_REG_SEC_TRANS; 150 } 151 gaddr += VADDR_REGION2_TX(vaddr) * 8; 152 break; 153 case ASCE_TYPE_REGION3: 154 if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) { 155 return PGM_ASCE_TYPE; 156 } 157 if (VADDR_REGION3_TL(vaddr) > asce_tl) { 158 return PGM_REG_THIRD_TRANS; 159 } 160 gaddr += VADDR_REGION3_TX(vaddr) * 8; 161 break; 162 case ASCE_TYPE_SEGMENT: 163 if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) || 164 VADDR_REGION3_TX(vaddr)) { 165 return PGM_ASCE_TYPE; 166 } 167 if (VADDR_SEGMENT_TL(vaddr) > asce_tl) { 168 return PGM_SEGMENT_TRANS; 169 } 170 gaddr += VADDR_SEGMENT_TX(vaddr) * 8; 171 break; 172 } 173 174 switch (asce & ASCE_TYPE_MASK) { 175 case ASCE_TYPE_REGION1: 176 if (!read_table_entry(env, gaddr, &entry)) { 177 return PGM_ADDRESSING; 178 } 179 if (entry & REGION_ENTRY_I) { 180 return PGM_REG_FIRST_TRANS; 181 } 182 if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) { 183 return PGM_TRANS_SPEC; 184 } 185 if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || 186 VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) { 187 return PGM_REG_SEC_TRANS; 188 } 189 if (edat1 && (entry & REGION_ENTRY_P)) { 190 *flags &= ~PAGE_WRITE; 191 } 192 gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8; 193 /* fall through */ 194 case ASCE_TYPE_REGION2: 195 if (!read_table_entry(env, gaddr, &entry)) { 196 return PGM_ADDRESSING; 197 } 198 if (entry & REGION_ENTRY_I) { 199 return PGM_REG_SEC_TRANS; 200 } 201 if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) { 202 return PGM_TRANS_SPEC; 203 } 204 if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || 205 VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) { 206 return PGM_REG_THIRD_TRANS; 207 } 208 if (edat1 && (entry & REGION_ENTRY_P)) { 209 *flags &= ~PAGE_WRITE; 210 } 211 gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8; 212 /* fall through */ 213 case ASCE_TYPE_REGION3: 214 if (!read_table_entry(env, gaddr, &entry)) { 215 return PGM_ADDRESSING; 216 } 217 if (entry & REGION_ENTRY_I) { 218 return PGM_REG_THIRD_TRANS; 219 } 220 if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) { 221 return PGM_TRANS_SPEC; 222 } 223 if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) { 224 return PGM_TRANS_SPEC; 225 } 226 if (edat1 && (entry & REGION_ENTRY_P)) { 227 *flags &= ~PAGE_WRITE; 228 } 229 if (edat2 && (entry & REGION3_ENTRY_FC)) { 230 if (iep && (entry & REGION3_ENTRY_IEP)) { 231 *flags &= ~PAGE_EXEC; 232 } 233 *raddr = (entry & REGION3_ENTRY_RFAA) | 234 (vaddr & ~REGION3_ENTRY_RFAA); 235 return 0; 236 } 237 if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || 238 VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) { 239 return PGM_SEGMENT_TRANS; 240 } 241 gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8; 242 /* fall through */ 243 case ASCE_TYPE_SEGMENT: 244 if (!read_table_entry(env, gaddr, &entry)) { 245 return PGM_ADDRESSING; 246 } 247 if (entry & SEGMENT_ENTRY_I) { 248 return PGM_SEGMENT_TRANS; 249 } 250 if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) { 251 return PGM_TRANS_SPEC; 252 } 253 if ((entry & SEGMENT_ENTRY_CS) && asce_p) { 254 return PGM_TRANS_SPEC; 255 } 256 if (entry & SEGMENT_ENTRY_P) { 257 *flags &= ~PAGE_WRITE; 258 } 259 if (edat1 && (entry & SEGMENT_ENTRY_FC)) { 260 if (iep && (entry & SEGMENT_ENTRY_IEP)) { 261 *flags &= ~PAGE_EXEC; 262 } 263 *raddr = (entry & SEGMENT_ENTRY_SFAA) | 264 (vaddr & ~SEGMENT_ENTRY_SFAA); 265 return 0; 266 } 267 gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8; 268 break; 269 } 270 271 if (!read_table_entry(env, gaddr, &entry)) { 272 return PGM_ADDRESSING; 273 } 274 if (entry & PAGE_ENTRY_I) { 275 return PGM_PAGE_TRANS; 276 } 277 if (entry & PAGE_ENTRY_0) { 278 return PGM_TRANS_SPEC; 279 } 280 if (entry & PAGE_ENTRY_P) { 281 *flags &= ~PAGE_WRITE; 282 } 283 if (iep && (entry & PAGE_ENTRY_IEP)) { 284 *flags &= ~PAGE_EXEC; 285 } 286 287 *raddr = entry & TARGET_PAGE_MASK; 288 return 0; 289 } 290 291 static void mmu_handle_skey(target_ulong addr, int rw, int *flags) 292 { 293 static S390SKeysClass *skeyclass; 294 static S390SKeysState *ss; 295 uint8_t key; 296 int rc; 297 298 if (unlikely(addr >= ram_size)) { 299 return; 300 } 301 302 if (unlikely(!ss)) { 303 ss = s390_get_skeys_device(); 304 skeyclass = S390_SKEYS_GET_CLASS(ss); 305 } 306 307 /* 308 * Whenever we create a new TLB entry, we set the storage key reference 309 * bit. In case we allow write accesses, we set the storage key change 310 * bit. Whenever the guest changes the storage key, we have to flush the 311 * TLBs of all CPUs (the whole TLB or all affected entries), so that the 312 * next reference/change will result in an MMU fault and make us properly 313 * update the storage key here. 314 * 315 * Note 1: "record of references ... is not necessarily accurate", 316 * "change bit may be set in case no storing has occurred". 317 * -> We can set reference/change bits even on exceptions. 318 * Note 2: certain accesses seem to ignore storage keys. For example, 319 * DAT translation does not set reference bits for table accesses. 320 * 321 * TODO: key-controlled protection. Only CPU accesses make use of the 322 * PSW key. CSS accesses are different - we have to pass in the key. 323 * 324 * TODO: we have races between getting and setting the key. 325 */ 326 rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); 327 if (rc) { 328 trace_get_skeys_nonzero(rc); 329 return; 330 } 331 332 switch (rw) { 333 case MMU_DATA_LOAD: 334 case MMU_INST_FETCH: 335 /* 336 * The TLB entry has to remain write-protected on read-faults if 337 * the storage key does not indicate a change already. Otherwise 338 * we might miss setting the change bit on write accesses. 339 */ 340 if (!(key & SK_C)) { 341 *flags &= ~PAGE_WRITE; 342 } 343 break; 344 case MMU_DATA_STORE: 345 key |= SK_C; 346 break; 347 default: 348 g_assert_not_reached(); 349 } 350 351 /* Any store/fetch sets the reference bit */ 352 key |= SK_R; 353 354 rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); 355 if (rc) { 356 trace_set_skeys_nonzero(rc); 357 } 358 } 359 360 /** 361 * Translate a virtual (logical) address into a physical (absolute) address. 362 * @param vaddr the virtual address 363 * @param rw 0 = read, 1 = write, 2 = code fetch 364 * @param asc address space control (one of the PSW_ASC_* modes) 365 * @param raddr the translated address is stored to this pointer 366 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer 367 * @param exc true = inject a program check if a fault occurred 368 * @return 0 = success, != 0, the exception to raise 369 */ 370 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc, 371 target_ulong *raddr, int *flags, uint64_t *tec) 372 { 373 uint64_t asce; 374 int r; 375 376 *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) | 377 (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ); 378 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 379 380 if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) { 381 /* 382 * If any part of this page is currently protected, make sure the 383 * TLB entry will not be reused. 384 * 385 * As the protected range is always the first 512 bytes of the 386 * two first pages, we are able to catch all writes to these areas 387 * just by looking at the start address (triggering the tlb miss). 388 */ 389 *flags |= PAGE_WRITE_INV; 390 if (is_low_address(vaddr) && rw == MMU_DATA_STORE) { 391 /* LAP sets bit 56 */ 392 *tec |= 0x80; 393 return PGM_PROTECTION; 394 } 395 } 396 397 vaddr &= TARGET_PAGE_MASK; 398 399 if (!(env->psw.mask & PSW_MASK_DAT)) { 400 *raddr = vaddr; 401 goto nodat; 402 } 403 404 switch (asc) { 405 case PSW_ASC_PRIMARY: 406 asce = env->cregs[1]; 407 break; 408 case PSW_ASC_HOME: 409 asce = env->cregs[13]; 410 break; 411 case PSW_ASC_SECONDARY: 412 asce = env->cregs[7]; 413 break; 414 case PSW_ASC_ACCREG: 415 default: 416 hw_error("guest switched to unknown asc mode\n"); 417 break; 418 } 419 420 /* perform the DAT translation */ 421 r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags, rw); 422 if (unlikely(r)) { 423 return r; 424 } 425 426 /* check for DAT protection */ 427 if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) { 428 /* DAT sets bit 61 only */ 429 *tec |= 0x4; 430 return PGM_PROTECTION; 431 } 432 433 /* check for Instruction-Execution-Protection */ 434 if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) { 435 /* IEP sets bit 56 and 61 */ 436 *tec |= 0x84; 437 return PGM_PROTECTION; 438 } 439 440 nodat: 441 /* Convert real address -> absolute address */ 442 *raddr = mmu_real2abs(env, *raddr); 443 444 mmu_handle_skey(*raddr, rw, flags); 445 return 0; 446 } 447 448 /** 449 * translate_pages: Translate a set of consecutive logical page addresses 450 * to absolute addresses. This function is used for TCG and old KVM without 451 * the MEMOP interface. 452 */ 453 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages, 454 target_ulong *pages, bool is_write, uint64_t *tec) 455 { 456 uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC; 457 CPUS390XState *env = &cpu->env; 458 int ret, i, pflags; 459 460 for (i = 0; i < nr_pages; i++) { 461 ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec); 462 if (ret) { 463 return ret; 464 } 465 if (!address_space_access_valid(&address_space_memory, pages[i], 466 TARGET_PAGE_SIZE, is_write, 467 MEMTXATTRS_UNSPECIFIED)) { 468 *tec = 0; /* unused */ 469 return PGM_ADDRESSING; 470 } 471 addr += TARGET_PAGE_SIZE; 472 } 473 474 return 0; 475 } 476 477 int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf, 478 int len, bool is_write) 479 { 480 int ret; 481 482 if (kvm_enabled()) { 483 ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write); 484 } else { 485 /* Protected Virtualization is a KVM/Hardware only feature */ 486 g_assert_not_reached(); 487 } 488 return ret; 489 } 490 491 /** 492 * s390_cpu_virt_mem_rw: 493 * @laddr: the logical start address 494 * @ar: the access register number 495 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 496 * @len: length that should be transferred 497 * @is_write: true = write, false = read 498 * Returns: 0 on success, non-zero if an exception occurred 499 * 500 * Copy from/to guest memory using logical addresses. Note that we inject a 501 * program interrupt in case there is an error while accessing the memory. 502 * 503 * This function will always return (also for TCG), make sure to call 504 * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop. 505 */ 506 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf, 507 int len, bool is_write) 508 { 509 int currlen, nr_pages, i; 510 target_ulong *pages; 511 uint64_t tec; 512 int ret; 513 514 if (kvm_enabled()) { 515 ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write); 516 if (ret >= 0) { 517 return ret; 518 } 519 } 520 521 nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS) 522 + 1; 523 pages = g_malloc(nr_pages * sizeof(*pages)); 524 525 ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec); 526 if (ret) { 527 trigger_access_exception(&cpu->env, ret, tec); 528 } else if (hostbuf != NULL) { 529 /* Copy data by stepping through the area page by page */ 530 for (i = 0; i < nr_pages; i++) { 531 currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE)); 532 cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK), 533 hostbuf, currlen, is_write); 534 laddr += currlen; 535 hostbuf += currlen; 536 len -= currlen; 537 } 538 } 539 540 g_free(pages); 541 return ret; 542 } 543 544 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra) 545 { 546 /* KVM will handle the interrupt automatically, TCG has to exit the TB */ 547 #ifdef CONFIG_TCG 548 if (tcg_enabled()) { 549 cpu_loop_exit_restore(CPU(cpu), ra); 550 } 551 #endif 552 } 553 554 /** 555 * Translate a real address into a physical (absolute) address. 556 * @param raddr the real address 557 * @param rw 0 = read, 1 = write, 2 = code fetch 558 * @param addr the translated address is stored to this pointer 559 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer 560 * @return 0 = success, != 0, the exception to raise 561 */ 562 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw, 563 target_ulong *addr, int *flags, uint64_t *tec) 564 { 565 const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT; 566 567 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 568 if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) { 569 /* see comment in mmu_translate() how this works */ 570 *flags |= PAGE_WRITE_INV; 571 if (is_low_address(raddr) && rw == MMU_DATA_STORE) { 572 /* LAP sets bit 56 */ 573 *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80; 574 return PGM_PROTECTION; 575 } 576 } 577 578 *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK); 579 580 mmu_handle_skey(*addr, rw, flags); 581 return 0; 582 } 583