1 /* 2 * S390x MMU related functions 3 * 4 * Copyright (c) 2011 Alexander Graf 5 * Copyright (c) 2015 Thomas Huth, IBM Corporation 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qemu/error-report.h" 20 #include "exec/address-spaces.h" 21 #include "cpu.h" 22 #include "sysemu/kvm.h" 23 #include "trace.h" 24 #include "hw/s390x/storage-keys.h" 25 26 /* #define DEBUG_S390 */ 27 /* #define DEBUG_S390_PTE */ 28 /* #define DEBUG_S390_STDOUT */ 29 30 #ifdef DEBUG_S390 31 #ifdef DEBUG_S390_STDOUT 32 #define DPRINTF(fmt, ...) \ 33 do { fprintf(stderr, fmt, ## __VA_ARGS__); \ 34 if (qemu_log_separate()) qemu_log(fmt, ##__VA_ARGS__); } while (0) 35 #else 36 #define DPRINTF(fmt, ...) \ 37 do { qemu_log(fmt, ## __VA_ARGS__); } while (0) 38 #endif 39 #else 40 #define DPRINTF(fmt, ...) \ 41 do { } while (0) 42 #endif 43 44 #ifdef DEBUG_S390_PTE 45 #define PTE_DPRINTF DPRINTF 46 #else 47 #define PTE_DPRINTF(fmt, ...) \ 48 do { } while (0) 49 #endif 50 51 /* Fetch/store bits in the translation exception code: */ 52 #define FS_READ 0x800 53 #define FS_WRITE 0x400 54 55 static void trigger_access_exception(CPUS390XState *env, uint32_t type, 56 uint32_t ilen, uint64_t tec) 57 { 58 S390CPU *cpu = s390_env_get_cpu(env); 59 60 if (kvm_enabled()) { 61 kvm_s390_access_exception(cpu, type, tec); 62 } else { 63 CPUState *cs = CPU(cpu); 64 stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec); 65 trigger_pgm_exception(env, type, ilen); 66 } 67 } 68 69 static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr, 70 uint64_t asc, int rw, bool exc) 71 { 72 uint64_t tec; 73 74 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46; 75 76 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec); 77 78 if (!exc) { 79 return; 80 } 81 82 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, tec); 83 } 84 85 static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr, 86 uint32_t type, uint64_t asc, int rw, bool exc) 87 { 88 int ilen = ILEN_AUTO; 89 uint64_t tec; 90 91 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46; 92 93 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec); 94 95 if (!exc) { 96 return; 97 } 98 99 /* Code accesses have an undefined ilc. */ 100 if (rw == MMU_INST_FETCH) { 101 ilen = 2; 102 } 103 104 trigger_access_exception(env, type, ilen, tec); 105 } 106 107 /** 108 * Translate real address to absolute (= physical) 109 * address by taking care of the prefix mapping. 110 */ 111 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr) 112 { 113 if (raddr < 0x2000) { 114 return raddr + env->psa; /* Map the lowcore. */ 115 } else if (raddr >= env->psa && raddr < env->psa + 0x2000) { 116 return raddr - env->psa; /* Map the 0 page. */ 117 } 118 return raddr; 119 } 120 121 /* Decode page table entry (normal 4KB page) */ 122 static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr, 123 uint64_t asc, uint64_t pt_entry, 124 target_ulong *raddr, int *flags, int rw, bool exc) 125 { 126 if (pt_entry & _PAGE_INVALID) { 127 DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry); 128 trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc); 129 return -1; 130 } 131 if (pt_entry & _PAGE_RES0) { 132 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc); 133 return -1; 134 } 135 if (pt_entry & _PAGE_RO) { 136 *flags &= ~PAGE_WRITE; 137 } 138 139 *raddr = pt_entry & _ASCE_ORIGIN; 140 141 PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry); 142 143 return 0; 144 } 145 146 /* Decode segment table entry */ 147 static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr, 148 uint64_t asc, uint64_t st_entry, 149 target_ulong *raddr, int *flags, int rw, 150 bool exc) 151 { 152 CPUState *cs = CPU(s390_env_get_cpu(env)); 153 uint64_t origin, offs, pt_entry; 154 155 if (st_entry & _SEGMENT_ENTRY_RO) { 156 *flags &= ~PAGE_WRITE; 157 } 158 159 if ((st_entry & _SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) { 160 /* Decode EDAT1 segment frame absolute address (1MB page) */ 161 *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff); 162 PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry); 163 return 0; 164 } 165 166 /* Look up 4KB page entry */ 167 origin = st_entry & _SEGMENT_ENTRY_ORIGIN; 168 offs = (vaddr & VADDR_PX) >> 9; 169 pt_entry = ldq_phys(cs->as, origin + offs); 170 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n", 171 __func__, origin, offs, pt_entry); 172 return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc); 173 } 174 175 /* Decode region table entries */ 176 static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr, 177 uint64_t asc, uint64_t entry, int level, 178 target_ulong *raddr, int *flags, int rw, 179 bool exc) 180 { 181 CPUState *cs = CPU(s390_env_get_cpu(env)); 182 uint64_t origin, offs, new_entry; 183 const int pchks[4] = { 184 PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS, 185 PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS 186 }; 187 188 PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry); 189 190 origin = entry & _REGION_ENTRY_ORIGIN; 191 offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8; 192 193 new_entry = ldq_phys(cs->as, origin + offs); 194 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n", 195 __func__, origin, offs, new_entry); 196 197 if ((new_entry & _REGION_ENTRY_INV) != 0) { 198 DPRINTF("%s: invalid region\n", __func__); 199 trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc); 200 return -1; 201 } 202 203 if ((new_entry & _REGION_ENTRY_TYPE_MASK) != level) { 204 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc); 205 return -1; 206 } 207 208 if (level == _ASCE_TYPE_SEGMENT) { 209 return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags, 210 rw, exc); 211 } 212 213 /* Check region table offset and length */ 214 offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3; 215 if (offs < ((new_entry & _REGION_ENTRY_TF) >> 6) 216 || offs > (new_entry & _REGION_ENTRY_LENGTH)) { 217 DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry); 218 trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc); 219 return -1; 220 } 221 222 if ((env->cregs[0] & CR0_EDAT) && (new_entry & _REGION_ENTRY_RO)) { 223 *flags &= ~PAGE_WRITE; 224 } 225 226 /* yet another region */ 227 return mmu_translate_region(env, vaddr, asc, new_entry, level - 4, 228 raddr, flags, rw, exc); 229 } 230 231 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr, 232 uint64_t asc, uint64_t asce, target_ulong *raddr, 233 int *flags, int rw, bool exc) 234 { 235 int level; 236 int r; 237 238 if (asce & _ASCE_REAL_SPACE) { 239 /* direct mapping */ 240 *raddr = vaddr; 241 return 0; 242 } 243 244 level = asce & _ASCE_TYPE_MASK; 245 switch (level) { 246 case _ASCE_TYPE_REGION1: 247 if ((vaddr >> 62) > (asce & _ASCE_TABLE_LENGTH)) { 248 trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc); 249 return -1; 250 } 251 break; 252 case _ASCE_TYPE_REGION2: 253 if (vaddr & 0xffe0000000000000ULL) { 254 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 255 " 0xffe0000000000000ULL\n", __func__, vaddr); 256 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc); 257 return -1; 258 } 259 if ((vaddr >> 51 & 3) > (asce & _ASCE_TABLE_LENGTH)) { 260 trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc); 261 return -1; 262 } 263 break; 264 case _ASCE_TYPE_REGION3: 265 if (vaddr & 0xfffffc0000000000ULL) { 266 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 267 " 0xfffffc0000000000ULL\n", __func__, vaddr); 268 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc); 269 return -1; 270 } 271 if ((vaddr >> 40 & 3) > (asce & _ASCE_TABLE_LENGTH)) { 272 trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc); 273 return -1; 274 } 275 break; 276 case _ASCE_TYPE_SEGMENT: 277 if (vaddr & 0xffffffff80000000ULL) { 278 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 279 " 0xffffffff80000000ULL\n", __func__, vaddr); 280 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc); 281 return -1; 282 } 283 if ((vaddr >> 29 & 3) > (asce & _ASCE_TABLE_LENGTH)) { 284 trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc); 285 return -1; 286 } 287 break; 288 } 289 290 r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw, 291 exc); 292 if (rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) { 293 trigger_prot_fault(env, vaddr, asc, rw, exc); 294 return -1; 295 } 296 297 return r; 298 } 299 300 /** 301 * Translate a virtual (logical) address into a physical (absolute) address. 302 * @param vaddr the virtual address 303 * @param rw 0 = read, 1 = write, 2 = code fetch 304 * @param asc address space control (one of the PSW_ASC_* modes) 305 * @param raddr the translated address is stored to this pointer 306 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer 307 * @param exc true = inject a program check if a fault occurred 308 * @return 0 if the translation was successful, -1 if a fault occurred 309 */ 310 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc, 311 target_ulong *raddr, int *flags, bool exc) 312 { 313 static S390SKeysState *ss; 314 static S390SKeysClass *skeyclass; 315 int r = -1; 316 uint8_t key; 317 318 if (unlikely(!ss)) { 319 ss = s390_get_skeys_device(); 320 skeyclass = S390_SKEYS_GET_CLASS(ss); 321 } 322 323 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 324 vaddr &= TARGET_PAGE_MASK; 325 326 if (!(env->psw.mask & PSW_MASK_DAT)) { 327 *raddr = vaddr; 328 r = 0; 329 goto out; 330 } 331 332 switch (asc) { 333 case PSW_ASC_PRIMARY: 334 PTE_DPRINTF("%s: asc=primary\n", __func__); 335 r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags, 336 rw, exc); 337 break; 338 case PSW_ASC_HOME: 339 PTE_DPRINTF("%s: asc=home\n", __func__); 340 r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags, 341 rw, exc); 342 break; 343 case PSW_ASC_SECONDARY: 344 PTE_DPRINTF("%s: asc=secondary\n", __func__); 345 /* 346 * Instruction: Primary 347 * Data: Secondary 348 */ 349 if (rw == MMU_INST_FETCH) { 350 r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1], 351 raddr, flags, rw, exc); 352 *flags &= ~(PAGE_READ | PAGE_WRITE); 353 } else { 354 r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7], 355 raddr, flags, rw, exc); 356 *flags &= ~(PAGE_EXEC); 357 } 358 break; 359 case PSW_ASC_ACCREG: 360 default: 361 hw_error("guest switched to unknown asc mode\n"); 362 break; 363 } 364 365 out: 366 /* Convert real address -> absolute address */ 367 *raddr = mmu_real2abs(env, *raddr); 368 369 if (r == 0 && *raddr < ram_size) { 370 if (skeyclass->get_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) { 371 trace_get_skeys_nonzero(r); 372 return 0; 373 } 374 375 if (*flags & PAGE_READ) { 376 key |= SK_R; 377 } 378 379 if (*flags & PAGE_WRITE) { 380 key |= SK_C; 381 } 382 383 if (skeyclass->set_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) { 384 trace_set_skeys_nonzero(r); 385 return 0; 386 } 387 } 388 389 return r; 390 } 391 392 /** 393 * lowprot_enabled: Check whether low-address protection is enabled 394 */ 395 static bool lowprot_enabled(const CPUS390XState *env) 396 { 397 if (!(env->cregs[0] & CR0_LOWPROT)) { 398 return false; 399 } 400 if (!(env->psw.mask & PSW_MASK_DAT)) { 401 return true; 402 } 403 404 /* Check the private-space control bit */ 405 switch (env->psw.mask & PSW_MASK_ASC) { 406 case PSW_ASC_PRIMARY: 407 return !(env->cregs[1] & _ASCE_PRIVATE_SPACE); 408 case PSW_ASC_SECONDARY: 409 return !(env->cregs[7] & _ASCE_PRIVATE_SPACE); 410 case PSW_ASC_HOME: 411 return !(env->cregs[13] & _ASCE_PRIVATE_SPACE); 412 default: 413 /* We don't support access register mode */ 414 error_report("unsupported addressing mode"); 415 exit(1); 416 } 417 } 418 419 /** 420 * translate_pages: Translate a set of consecutive logical page addresses 421 * to absolute addresses 422 */ 423 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages, 424 target_ulong *pages, bool is_write) 425 { 426 bool lowprot = is_write && lowprot_enabled(&cpu->env); 427 uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC; 428 CPUS390XState *env = &cpu->env; 429 int ret, i, pflags; 430 431 for (i = 0; i < nr_pages; i++) { 432 /* Low-address protection? */ 433 if (lowprot && (addr < 512 || (addr >= 4096 && addr < 4096 + 512))) { 434 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0); 435 return -EACCES; 436 } 437 ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true); 438 if (ret) { 439 return ret; 440 } 441 if (!address_space_access_valid(&address_space_memory, pages[i], 442 TARGET_PAGE_SIZE, is_write)) { 443 program_interrupt(env, PGM_ADDRESSING, 0); 444 return -EFAULT; 445 } 446 addr += TARGET_PAGE_SIZE; 447 } 448 449 return 0; 450 } 451 452 /** 453 * s390_cpu_virt_mem_rw: 454 * @laddr: the logical start address 455 * @ar: the access register number 456 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 457 * @len: length that should be transferred 458 * @is_write: true = write, false = read 459 * Returns: 0 on success, non-zero if an exception occurred 460 * 461 * Copy from/to guest memory using logical addresses. Note that we inject a 462 * program interrupt in case there is an error while accessing the memory. 463 */ 464 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf, 465 int len, bool is_write) 466 { 467 int currlen, nr_pages, i; 468 target_ulong *pages; 469 int ret; 470 471 if (kvm_enabled()) { 472 ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write); 473 if (ret >= 0) { 474 return ret; 475 } 476 } 477 478 nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS) 479 + 1; 480 pages = g_malloc(nr_pages * sizeof(*pages)); 481 482 ret = translate_pages(cpu, laddr, nr_pages, pages, is_write); 483 if (ret == 0 && hostbuf != NULL) { 484 /* Copy data by stepping through the area page by page */ 485 for (i = 0; i < nr_pages; i++) { 486 currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE)); 487 cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK), 488 hostbuf, currlen, is_write); 489 laddr += currlen; 490 hostbuf += currlen; 491 len -= currlen; 492 } 493 } 494 495 g_free(pages); 496 return ret; 497 } 498