1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "cpu.h" 28 #include "s390x-internal.h" 29 #include "kvm_s390x.h" 30 #include "sysemu/kvm_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/units.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/mmap-alloc.h" 38 #include "qemu/log.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/hw_accel.h" 41 #include "sysemu/runstate.h" 42 #include "sysemu/device_tree.h" 43 #include "exec/gdbstub.h" 44 #include "exec/ram_addr.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-virtio-hcall.h" 53 #include "hw/s390x/pv.h" 54 55 #ifndef DEBUG_KVM 56 #define DEBUG_KVM 0 57 #endif 58 59 #define DPRINTF(fmt, ...) do { \ 60 if (DEBUG_KVM) { \ 61 fprintf(stderr, fmt, ## __VA_ARGS__); \ 62 } \ 63 } while (0) 64 65 #define kvm_vm_check_mem_attr(s, attr) \ 66 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 67 68 #define IPA0_DIAG 0x8300 69 #define IPA0_SIGP 0xae00 70 #define IPA0_B2 0xb200 71 #define IPA0_B9 0xb900 72 #define IPA0_EB 0xeb00 73 #define IPA0_E3 0xe300 74 75 #define PRIV_B2_SCLP_CALL 0x20 76 #define PRIV_B2_CSCH 0x30 77 #define PRIV_B2_HSCH 0x31 78 #define PRIV_B2_MSCH 0x32 79 #define PRIV_B2_SSCH 0x33 80 #define PRIV_B2_STSCH 0x34 81 #define PRIV_B2_TSCH 0x35 82 #define PRIV_B2_TPI 0x36 83 #define PRIV_B2_SAL 0x37 84 #define PRIV_B2_RSCH 0x38 85 #define PRIV_B2_STCRW 0x39 86 #define PRIV_B2_STCPS 0x3a 87 #define PRIV_B2_RCHP 0x3b 88 #define PRIV_B2_SCHM 0x3c 89 #define PRIV_B2_CHSC 0x5f 90 #define PRIV_B2_SIGA 0x74 91 #define PRIV_B2_XSCH 0x76 92 93 #define PRIV_EB_SQBS 0x8a 94 #define PRIV_EB_PCISTB 0xd0 95 #define PRIV_EB_SIC 0xd1 96 97 #define PRIV_B9_EQBS 0x9c 98 #define PRIV_B9_CLP 0xa0 99 #define PRIV_B9_PCISTG 0xd0 100 #define PRIV_B9_PCILG 0xd2 101 #define PRIV_B9_RPCIT 0xd3 102 103 #define PRIV_E3_MPCIFC 0xd0 104 #define PRIV_E3_STPCIFC 0xd4 105 106 #define DIAG_TIMEREVENT 0x288 107 #define DIAG_IPL 0x308 108 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318 109 #define DIAG_KVM_HYPERCALL 0x500 110 #define DIAG_KVM_BREAKPOINT 0x501 111 112 #define ICPT_INSTRUCTION 0x04 113 #define ICPT_PROGRAM 0x08 114 #define ICPT_EXT_INT 0x14 115 #define ICPT_WAITPSW 0x1c 116 #define ICPT_SOFT_INTERCEPT 0x24 117 #define ICPT_CPU_STOP 0x28 118 #define ICPT_OPEREXC 0x2c 119 #define ICPT_IO 0x40 120 #define ICPT_PV_INSTR 0x68 121 #define ICPT_PV_INSTR_NOTIFICATION 0x6c 122 123 #define NR_LOCAL_IRQS 32 124 /* 125 * Needs to be big enough to contain max_cpus emergency signals 126 * and in addition NR_LOCAL_IRQS interrupts 127 */ 128 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 129 (max_cpus + NR_LOCAL_IRQS)) 130 /* 131 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 132 * as the dirty bitmap must be managed by bitops that take an int as 133 * position indicator. This would end at an unaligned address 134 * (0x7fffff00000). As future variants might provide larger pages 135 * and to make all addresses properly aligned, let us split at 4TB. 136 */ 137 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 138 139 static CPUWatchpoint hw_watchpoint; 140 /* 141 * We don't use a list because this structure is also used to transmit the 142 * hardware breakpoints to the kernel. 143 */ 144 static struct kvm_hw_breakpoint *hw_breakpoints; 145 static int nb_hw_breakpoints; 146 147 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 148 KVM_CAP_LAST_INFO 149 }; 150 151 static int cap_sync_regs; 152 static int cap_async_pf; 153 static int cap_mem_op; 154 static int cap_s390_irq; 155 static int cap_ri; 156 static int cap_hpage_1m; 157 static int cap_vcpu_resets; 158 static int cap_protected; 159 160 static int active_cmma; 161 162 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 163 { 164 struct kvm_device_attr attr = { 165 .group = KVM_S390_VM_MEM_CTRL, 166 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 167 .addr = (uint64_t) memory_limit, 168 }; 169 170 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 171 } 172 173 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 174 { 175 int rc; 176 177 struct kvm_device_attr attr = { 178 .group = KVM_S390_VM_MEM_CTRL, 179 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 180 .addr = (uint64_t) &new_limit, 181 }; 182 183 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 184 return 0; 185 } 186 187 rc = kvm_s390_query_mem_limit(hw_limit); 188 if (rc) { 189 return rc; 190 } else if (*hw_limit < new_limit) { 191 return -E2BIG; 192 } 193 194 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 195 } 196 197 int kvm_s390_cmma_active(void) 198 { 199 return active_cmma; 200 } 201 202 static bool kvm_s390_cmma_available(void) 203 { 204 static bool initialized, value; 205 206 if (!initialized) { 207 initialized = true; 208 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 209 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 210 } 211 return value; 212 } 213 214 void kvm_s390_cmma_reset(void) 215 { 216 int rc; 217 struct kvm_device_attr attr = { 218 .group = KVM_S390_VM_MEM_CTRL, 219 .attr = KVM_S390_VM_MEM_CLR_CMMA, 220 }; 221 222 if (!kvm_s390_cmma_active()) { 223 return; 224 } 225 226 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 227 trace_kvm_clear_cmma(rc); 228 } 229 230 static void kvm_s390_enable_cmma(void) 231 { 232 int rc; 233 struct kvm_device_attr attr = { 234 .group = KVM_S390_VM_MEM_CTRL, 235 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 236 }; 237 238 if (cap_hpage_1m) { 239 warn_report("CMM will not be enabled because it is not " 240 "compatible with huge memory backings."); 241 return; 242 } 243 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 244 active_cmma = !rc; 245 trace_kvm_enable_cmma(rc); 246 } 247 248 static void kvm_s390_set_attr(uint64_t attr) 249 { 250 struct kvm_device_attr attribute = { 251 .group = KVM_S390_VM_CRYPTO, 252 .attr = attr, 253 }; 254 255 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 256 257 if (ret) { 258 error_report("Failed to set crypto device attribute %lu: %s", 259 attr, strerror(-ret)); 260 } 261 } 262 263 static void kvm_s390_init_aes_kw(void) 264 { 265 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 266 267 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 268 NULL)) { 269 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 270 } 271 272 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 273 kvm_s390_set_attr(attr); 274 } 275 } 276 277 static void kvm_s390_init_dea_kw(void) 278 { 279 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 280 281 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 282 NULL)) { 283 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 284 } 285 286 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 287 kvm_s390_set_attr(attr); 288 } 289 } 290 291 void kvm_s390_crypto_reset(void) 292 { 293 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 294 kvm_s390_init_aes_kw(); 295 kvm_s390_init_dea_kw(); 296 } 297 } 298 299 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 300 { 301 if (pagesize == 4 * KiB) { 302 return; 303 } 304 305 if (!hpage_1m_allowed()) { 306 error_setg(errp, "This QEMU machine does not support huge page " 307 "mappings"); 308 return; 309 } 310 311 if (pagesize != 1 * MiB) { 312 error_setg(errp, "Memory backing with 2G pages was specified, " 313 "but KVM does not support this memory backing"); 314 return; 315 } 316 317 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 318 error_setg(errp, "Memory backing with 1M pages was specified, " 319 "but KVM does not support this memory backing"); 320 return; 321 } 322 323 cap_hpage_1m = 1; 324 } 325 326 int kvm_s390_get_hpage_1m(void) 327 { 328 return cap_hpage_1m; 329 } 330 331 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) 332 { 333 MachineClass *mc = MACHINE_CLASS(oc); 334 335 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 336 } 337 338 int kvm_arch_init(MachineState *ms, KVMState *s) 339 { 340 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, 341 false, NULL); 342 343 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) { 344 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - " 345 "please use kernel 3.15 or newer"); 346 return -1; 347 } 348 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) { 349 error_report("KVM is missing capability KVM_CAP_S390_COW - " 350 "unsupported environment"); 351 return -1; 352 } 353 354 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 355 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 356 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 357 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 358 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); 359 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED); 360 361 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 362 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 363 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 364 if (ri_allowed()) { 365 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 366 cap_ri = 1; 367 } 368 } 369 if (cpu_model_allowed()) { 370 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0); 371 } 372 373 /* 374 * The migration interface for ais was introduced with kernel 4.13 375 * but the capability itself had been active since 4.12. As migration 376 * support is considered necessary, we only try to enable this for 377 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. 378 */ 379 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() && 380 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { 381 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); 382 } 383 384 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 385 return 0; 386 } 387 388 int kvm_arch_irqchip_create(KVMState *s) 389 { 390 return 0; 391 } 392 393 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 394 { 395 return cpu->cpu_index; 396 } 397 398 int kvm_arch_init_vcpu(CPUState *cs) 399 { 400 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 401 S390CPU *cpu = S390_CPU(cs); 402 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 403 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 404 return 0; 405 } 406 407 int kvm_arch_destroy_vcpu(CPUState *cs) 408 { 409 S390CPU *cpu = S390_CPU(cs); 410 411 g_free(cpu->irqstate); 412 cpu->irqstate = NULL; 413 414 return 0; 415 } 416 417 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) 418 { 419 CPUState *cs = CPU(cpu); 420 421 /* 422 * The reset call is needed here to reset in-kernel vcpu data that 423 * we can't access directly from QEMU (i.e. with older kernels 424 * which don't support sync_regs/ONE_REG). Before this ioctl 425 * cpu_synchronize_state() is called in common kvm code 426 * (kvm-all). 427 */ 428 if (kvm_vcpu_ioctl(cs, type)) { 429 error_report("CPU reset failed on CPU %i type %lx", 430 cs->cpu_index, type); 431 } 432 } 433 434 void kvm_s390_reset_vcpu_initial(S390CPU *cpu) 435 { 436 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 437 } 438 439 void kvm_s390_reset_vcpu_clear(S390CPU *cpu) 440 { 441 if (cap_vcpu_resets) { 442 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); 443 } else { 444 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 445 } 446 } 447 448 void kvm_s390_reset_vcpu_normal(S390CPU *cpu) 449 { 450 if (cap_vcpu_resets) { 451 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); 452 } 453 } 454 455 static int can_sync_regs(CPUState *cs, int regs) 456 { 457 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 458 } 459 460 int kvm_arch_put_registers(CPUState *cs, int level) 461 { 462 S390CPU *cpu = S390_CPU(cs); 463 CPUS390XState *env = &cpu->env; 464 struct kvm_sregs sregs; 465 struct kvm_regs regs; 466 struct kvm_fpu fpu = {}; 467 int r; 468 int i; 469 470 /* always save the PSW and the GPRS*/ 471 cs->kvm_run->psw_addr = env->psw.addr; 472 cs->kvm_run->psw_mask = env->psw.mask; 473 474 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 475 for (i = 0; i < 16; i++) { 476 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 477 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 478 } 479 } else { 480 for (i = 0; i < 16; i++) { 481 regs.gprs[i] = env->regs[i]; 482 } 483 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 484 if (r < 0) { 485 return r; 486 } 487 } 488 489 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 490 for (i = 0; i < 32; i++) { 491 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 492 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 493 } 494 cs->kvm_run->s.regs.fpc = env->fpc; 495 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 496 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 497 for (i = 0; i < 16; i++) { 498 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 499 } 500 cs->kvm_run->s.regs.fpc = env->fpc; 501 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 502 } else { 503 /* Floating point */ 504 for (i = 0; i < 16; i++) { 505 fpu.fprs[i] = *get_freg(env, i); 506 } 507 fpu.fpc = env->fpc; 508 509 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 510 if (r < 0) { 511 return r; 512 } 513 } 514 515 /* Do we need to save more than that? */ 516 if (level == KVM_PUT_RUNTIME_STATE) { 517 return 0; 518 } 519 520 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 521 cs->kvm_run->s.regs.cputm = env->cputm; 522 cs->kvm_run->s.regs.ckc = env->ckc; 523 cs->kvm_run->s.regs.todpr = env->todpr; 524 cs->kvm_run->s.regs.gbea = env->gbea; 525 cs->kvm_run->s.regs.pp = env->pp; 526 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 527 } else { 528 /* 529 * These ONE_REGS are not protected by a capability. As they are only 530 * necessary for migration we just trace a possible error, but don't 531 * return with an error return code. 532 */ 533 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 534 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 535 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 536 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 537 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 538 } 539 540 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 541 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 542 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 543 } 544 545 /* pfault parameters */ 546 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 547 cs->kvm_run->s.regs.pft = env->pfault_token; 548 cs->kvm_run->s.regs.pfs = env->pfault_select; 549 cs->kvm_run->s.regs.pfc = env->pfault_compare; 550 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 551 } else if (cap_async_pf) { 552 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 553 if (r < 0) { 554 return r; 555 } 556 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 557 if (r < 0) { 558 return r; 559 } 560 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 561 if (r < 0) { 562 return r; 563 } 564 } 565 566 /* access registers and control registers*/ 567 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 568 for (i = 0; i < 16; i++) { 569 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 570 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 571 } 572 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 573 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 574 } else { 575 for (i = 0; i < 16; i++) { 576 sregs.acrs[i] = env->aregs[i]; 577 sregs.crs[i] = env->cregs[i]; 578 } 579 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 580 if (r < 0) { 581 return r; 582 } 583 } 584 585 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 586 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 587 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 588 } 589 590 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 591 cs->kvm_run->s.regs.bpbc = env->bpbc; 592 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 593 } 594 595 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 596 cs->kvm_run->s.regs.etoken = env->etoken; 597 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 598 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 599 } 600 601 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 602 cs->kvm_run->s.regs.diag318 = env->diag318_info; 603 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 604 } 605 606 /* Finally the prefix */ 607 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 608 cs->kvm_run->s.regs.prefix = env->psa; 609 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 610 } else { 611 /* prefix is only supported via sync regs */ 612 } 613 return 0; 614 } 615 616 int kvm_arch_get_registers(CPUState *cs) 617 { 618 S390CPU *cpu = S390_CPU(cs); 619 CPUS390XState *env = &cpu->env; 620 struct kvm_sregs sregs; 621 struct kvm_regs regs; 622 struct kvm_fpu fpu; 623 int i, r; 624 625 /* get the PSW */ 626 env->psw.addr = cs->kvm_run->psw_addr; 627 env->psw.mask = cs->kvm_run->psw_mask; 628 629 /* the GPRS */ 630 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 631 for (i = 0; i < 16; i++) { 632 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 633 } 634 } else { 635 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 636 if (r < 0) { 637 return r; 638 } 639 for (i = 0; i < 16; i++) { 640 env->regs[i] = regs.gprs[i]; 641 } 642 } 643 644 /* The ACRS and CRS */ 645 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 646 for (i = 0; i < 16; i++) { 647 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 648 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 649 } 650 } else { 651 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 652 if (r < 0) { 653 return r; 654 } 655 for (i = 0; i < 16; i++) { 656 env->aregs[i] = sregs.acrs[i]; 657 env->cregs[i] = sregs.crs[i]; 658 } 659 } 660 661 /* Floating point and vector registers */ 662 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 663 for (i = 0; i < 32; i++) { 664 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 665 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 666 } 667 env->fpc = cs->kvm_run->s.regs.fpc; 668 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 669 for (i = 0; i < 16; i++) { 670 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 671 } 672 env->fpc = cs->kvm_run->s.regs.fpc; 673 } else { 674 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 675 if (r < 0) { 676 return r; 677 } 678 for (i = 0; i < 16; i++) { 679 *get_freg(env, i) = fpu.fprs[i]; 680 } 681 env->fpc = fpu.fpc; 682 } 683 684 /* The prefix */ 685 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 686 env->psa = cs->kvm_run->s.regs.prefix; 687 } 688 689 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 690 env->cputm = cs->kvm_run->s.regs.cputm; 691 env->ckc = cs->kvm_run->s.regs.ckc; 692 env->todpr = cs->kvm_run->s.regs.todpr; 693 env->gbea = cs->kvm_run->s.regs.gbea; 694 env->pp = cs->kvm_run->s.regs.pp; 695 } else { 696 /* 697 * These ONE_REGS are not protected by a capability. As they are only 698 * necessary for migration we just trace a possible error, but don't 699 * return with an error return code. 700 */ 701 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 702 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 703 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 704 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 705 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 706 } 707 708 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 709 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 710 } 711 712 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 713 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 714 } 715 716 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 717 env->bpbc = cs->kvm_run->s.regs.bpbc; 718 } 719 720 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 721 env->etoken = cs->kvm_run->s.regs.etoken; 722 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 723 } 724 725 /* pfault parameters */ 726 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 727 env->pfault_token = cs->kvm_run->s.regs.pft; 728 env->pfault_select = cs->kvm_run->s.regs.pfs; 729 env->pfault_compare = cs->kvm_run->s.regs.pfc; 730 } else if (cap_async_pf) { 731 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 732 if (r < 0) { 733 return r; 734 } 735 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 736 if (r < 0) { 737 return r; 738 } 739 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 740 if (r < 0) { 741 return r; 742 } 743 } 744 745 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 746 env->diag318_info = cs->kvm_run->s.regs.diag318; 747 } 748 749 return 0; 750 } 751 752 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 753 { 754 int r; 755 struct kvm_device_attr attr = { 756 .group = KVM_S390_VM_TOD, 757 .attr = KVM_S390_VM_TOD_LOW, 758 .addr = (uint64_t)tod_low, 759 }; 760 761 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 762 if (r) { 763 return r; 764 } 765 766 attr.attr = KVM_S390_VM_TOD_HIGH; 767 attr.addr = (uint64_t)tod_high; 768 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 769 } 770 771 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 772 { 773 int r; 774 struct kvm_s390_vm_tod_clock gtod; 775 struct kvm_device_attr attr = { 776 .group = KVM_S390_VM_TOD, 777 .attr = KVM_S390_VM_TOD_EXT, 778 .addr = (uint64_t)>od, 779 }; 780 781 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 782 *tod_high = gtod.epoch_idx; 783 *tod_low = gtod.tod; 784 785 return r; 786 } 787 788 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 789 { 790 int r; 791 struct kvm_device_attr attr = { 792 .group = KVM_S390_VM_TOD, 793 .attr = KVM_S390_VM_TOD_LOW, 794 .addr = (uint64_t)&tod_low, 795 }; 796 797 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 798 if (r) { 799 return r; 800 } 801 802 attr.attr = KVM_S390_VM_TOD_HIGH; 803 attr.addr = (uint64_t)&tod_high; 804 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 805 } 806 807 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 808 { 809 struct kvm_s390_vm_tod_clock gtod = { 810 .epoch_idx = tod_high, 811 .tod = tod_low, 812 }; 813 struct kvm_device_attr attr = { 814 .group = KVM_S390_VM_TOD, 815 .attr = KVM_S390_VM_TOD_EXT, 816 .addr = (uint64_t)>od, 817 }; 818 819 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 820 } 821 822 /** 823 * kvm_s390_mem_op: 824 * @addr: the logical start address in guest memory 825 * @ar: the access register number 826 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 827 * @len: length that should be transferred 828 * @is_write: true = write, false = read 829 * Returns: 0 on success, non-zero if an exception or error occurred 830 * 831 * Use KVM ioctl to read/write from/to guest memory. An access exception 832 * is injected into the vCPU in case of translation errors. 833 */ 834 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 835 int len, bool is_write) 836 { 837 struct kvm_s390_mem_op mem_op = { 838 .gaddr = addr, 839 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 840 .size = len, 841 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 842 : KVM_S390_MEMOP_LOGICAL_READ, 843 .buf = (uint64_t)hostbuf, 844 .ar = ar, 845 }; 846 int ret; 847 848 if (!cap_mem_op) { 849 return -ENOSYS; 850 } 851 if (!hostbuf) { 852 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 853 } 854 855 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 856 if (ret < 0) { 857 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 858 } 859 return ret; 860 } 861 862 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf, 863 int len, bool is_write) 864 { 865 struct kvm_s390_mem_op mem_op = { 866 .sida_offset = offset, 867 .size = len, 868 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE 869 : KVM_S390_MEMOP_SIDA_READ, 870 .buf = (uint64_t)hostbuf, 871 }; 872 int ret; 873 874 if (!cap_mem_op || !cap_protected) { 875 return -ENOSYS; 876 } 877 878 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 879 if (ret < 0) { 880 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 881 abort(); 882 } 883 return ret; 884 } 885 886 static uint8_t const *sw_bp_inst; 887 static uint8_t sw_bp_ilen; 888 889 static void determine_sw_breakpoint_instr(void) 890 { 891 /* DIAG 501 is used for sw breakpoints with old kernels */ 892 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 893 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 894 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 895 896 if (sw_bp_inst) { 897 return; 898 } 899 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 900 sw_bp_inst = diag_501; 901 sw_bp_ilen = sizeof(diag_501); 902 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 903 } else { 904 sw_bp_inst = instr_0x0000; 905 sw_bp_ilen = sizeof(instr_0x0000); 906 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 907 } 908 } 909 910 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 911 { 912 determine_sw_breakpoint_instr(); 913 914 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 915 sw_bp_ilen, 0) || 916 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 917 return -EINVAL; 918 } 919 return 0; 920 } 921 922 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 923 { 924 uint8_t t[MAX_ILEN]; 925 926 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 927 return -EINVAL; 928 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 929 return -EINVAL; 930 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 931 sw_bp_ilen, 1)) { 932 return -EINVAL; 933 } 934 935 return 0; 936 } 937 938 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 939 int len, int type) 940 { 941 int n; 942 943 for (n = 0; n < nb_hw_breakpoints; n++) { 944 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 945 (hw_breakpoints[n].len == len || len == -1)) { 946 return &hw_breakpoints[n]; 947 } 948 } 949 950 return NULL; 951 } 952 953 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 954 { 955 int size; 956 957 if (find_hw_breakpoint(addr, len, type)) { 958 return -EEXIST; 959 } 960 961 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 962 963 if (!hw_breakpoints) { 964 nb_hw_breakpoints = 0; 965 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 966 } else { 967 hw_breakpoints = 968 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 969 } 970 971 if (!hw_breakpoints) { 972 nb_hw_breakpoints = 0; 973 return -ENOMEM; 974 } 975 976 hw_breakpoints[nb_hw_breakpoints].addr = addr; 977 hw_breakpoints[nb_hw_breakpoints].len = len; 978 hw_breakpoints[nb_hw_breakpoints].type = type; 979 980 nb_hw_breakpoints++; 981 982 return 0; 983 } 984 985 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 986 target_ulong len, int type) 987 { 988 switch (type) { 989 case GDB_BREAKPOINT_HW: 990 type = KVM_HW_BP; 991 break; 992 case GDB_WATCHPOINT_WRITE: 993 if (len < 1) { 994 return -EINVAL; 995 } 996 type = KVM_HW_WP_WRITE; 997 break; 998 default: 999 return -ENOSYS; 1000 } 1001 return insert_hw_breakpoint(addr, len, type); 1002 } 1003 1004 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 1005 target_ulong len, int type) 1006 { 1007 int size; 1008 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 1009 1010 if (bp == NULL) { 1011 return -ENOENT; 1012 } 1013 1014 nb_hw_breakpoints--; 1015 if (nb_hw_breakpoints > 0) { 1016 /* 1017 * In order to trim the array, move the last element to the position to 1018 * be removed - if necessary. 1019 */ 1020 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 1021 *bp = hw_breakpoints[nb_hw_breakpoints]; 1022 } 1023 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 1024 hw_breakpoints = 1025 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 1026 } else { 1027 g_free(hw_breakpoints); 1028 hw_breakpoints = NULL; 1029 } 1030 1031 return 0; 1032 } 1033 1034 void kvm_arch_remove_all_hw_breakpoints(void) 1035 { 1036 nb_hw_breakpoints = 0; 1037 g_free(hw_breakpoints); 1038 hw_breakpoints = NULL; 1039 } 1040 1041 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 1042 { 1043 int i; 1044 1045 if (nb_hw_breakpoints > 0) { 1046 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 1047 dbg->arch.hw_bp = hw_breakpoints; 1048 1049 for (i = 0; i < nb_hw_breakpoints; ++i) { 1050 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 1051 hw_breakpoints[i].addr); 1052 } 1053 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1054 } else { 1055 dbg->arch.nr_hw_bp = 0; 1056 dbg->arch.hw_bp = NULL; 1057 } 1058 } 1059 1060 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1061 { 1062 } 1063 1064 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1065 { 1066 return MEMTXATTRS_UNSPECIFIED; 1067 } 1068 1069 int kvm_arch_process_async_events(CPUState *cs) 1070 { 1071 return cs->halted; 1072 } 1073 1074 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1075 struct kvm_s390_interrupt *interrupt) 1076 { 1077 int r = 0; 1078 1079 interrupt->type = irq->type; 1080 switch (irq->type) { 1081 case KVM_S390_INT_VIRTIO: 1082 interrupt->parm = irq->u.ext.ext_params; 1083 /* fall through */ 1084 case KVM_S390_INT_PFAULT_INIT: 1085 case KVM_S390_INT_PFAULT_DONE: 1086 interrupt->parm64 = irq->u.ext.ext_params2; 1087 break; 1088 case KVM_S390_PROGRAM_INT: 1089 interrupt->parm = irq->u.pgm.code; 1090 break; 1091 case KVM_S390_SIGP_SET_PREFIX: 1092 interrupt->parm = irq->u.prefix.address; 1093 break; 1094 case KVM_S390_INT_SERVICE: 1095 interrupt->parm = irq->u.ext.ext_params; 1096 break; 1097 case KVM_S390_MCHK: 1098 interrupt->parm = irq->u.mchk.cr14; 1099 interrupt->parm64 = irq->u.mchk.mcic; 1100 break; 1101 case KVM_S390_INT_EXTERNAL_CALL: 1102 interrupt->parm = irq->u.extcall.code; 1103 break; 1104 case KVM_S390_INT_EMERGENCY: 1105 interrupt->parm = irq->u.emerg.code; 1106 break; 1107 case KVM_S390_SIGP_STOP: 1108 case KVM_S390_RESTART: 1109 break; /* These types have no parameters */ 1110 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1111 interrupt->parm = irq->u.io.subchannel_id << 16; 1112 interrupt->parm |= irq->u.io.subchannel_nr; 1113 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1114 interrupt->parm64 |= irq->u.io.io_int_word; 1115 break; 1116 default: 1117 r = -EINVAL; 1118 break; 1119 } 1120 return r; 1121 } 1122 1123 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1124 { 1125 struct kvm_s390_interrupt kvmint = {}; 1126 int r; 1127 1128 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1129 if (r < 0) { 1130 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1131 exit(1); 1132 } 1133 1134 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1135 if (r < 0) { 1136 fprintf(stderr, "KVM failed to inject interrupt\n"); 1137 exit(1); 1138 } 1139 } 1140 1141 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1142 { 1143 CPUState *cs = CPU(cpu); 1144 int r; 1145 1146 if (cap_s390_irq) { 1147 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1148 if (!r) { 1149 return; 1150 } 1151 error_report("KVM failed to inject interrupt %llx", irq->type); 1152 exit(1); 1153 } 1154 1155 inject_vcpu_irq_legacy(cs, irq); 1156 } 1157 1158 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1159 { 1160 struct kvm_s390_interrupt kvmint = {}; 1161 int r; 1162 1163 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1164 if (r < 0) { 1165 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1166 exit(1); 1167 } 1168 1169 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1170 if (r < 0) { 1171 fprintf(stderr, "KVM failed to inject interrupt\n"); 1172 exit(1); 1173 } 1174 } 1175 1176 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1177 { 1178 struct kvm_s390_irq irq = { 1179 .type = KVM_S390_PROGRAM_INT, 1180 .u.pgm.code = code, 1181 }; 1182 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1183 cpu->env.psw.addr); 1184 kvm_s390_vcpu_interrupt(cpu, &irq); 1185 } 1186 1187 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1188 { 1189 struct kvm_s390_irq irq = { 1190 .type = KVM_S390_PROGRAM_INT, 1191 .u.pgm.code = code, 1192 .u.pgm.trans_exc_code = te_code, 1193 .u.pgm.exc_access_id = te_code & 3, 1194 }; 1195 1196 kvm_s390_vcpu_interrupt(cpu, &irq); 1197 } 1198 1199 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1200 uint16_t ipbh0) 1201 { 1202 CPUS390XState *env = &cpu->env; 1203 uint64_t sccb; 1204 uint32_t code; 1205 int r; 1206 1207 sccb = env->regs[ipbh0 & 0xf]; 1208 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1209 1210 switch (run->s390_sieic.icptcode) { 1211 case ICPT_PV_INSTR_NOTIFICATION: 1212 g_assert(s390_is_pv()); 1213 /* The notification intercepts are currently handled by KVM */ 1214 error_report("unexpected SCLP PV notification"); 1215 exit(1); 1216 break; 1217 case ICPT_PV_INSTR: 1218 g_assert(s390_is_pv()); 1219 sclp_service_call_protected(env, sccb, code); 1220 /* Setting the CC is done by the Ultravisor. */ 1221 break; 1222 case ICPT_INSTRUCTION: 1223 g_assert(!s390_is_pv()); 1224 r = sclp_service_call(env, sccb, code); 1225 if (r < 0) { 1226 kvm_s390_program_interrupt(cpu, -r); 1227 return; 1228 } 1229 setcc(cpu, r); 1230 } 1231 } 1232 1233 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1234 { 1235 CPUS390XState *env = &cpu->env; 1236 int rc = 0; 1237 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1238 1239 switch (ipa1) { 1240 case PRIV_B2_XSCH: 1241 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1242 break; 1243 case PRIV_B2_CSCH: 1244 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1245 break; 1246 case PRIV_B2_HSCH: 1247 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1248 break; 1249 case PRIV_B2_MSCH: 1250 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1251 break; 1252 case PRIV_B2_SSCH: 1253 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1254 break; 1255 case PRIV_B2_STCRW: 1256 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1257 break; 1258 case PRIV_B2_STSCH: 1259 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1260 break; 1261 case PRIV_B2_TSCH: 1262 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1263 fprintf(stderr, "Spurious tsch intercept\n"); 1264 break; 1265 case PRIV_B2_CHSC: 1266 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1267 break; 1268 case PRIV_B2_TPI: 1269 /* This should have been handled by kvm already. */ 1270 fprintf(stderr, "Spurious tpi intercept\n"); 1271 break; 1272 case PRIV_B2_SCHM: 1273 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1274 run->s390_sieic.ipb, RA_IGNORED); 1275 break; 1276 case PRIV_B2_RSCH: 1277 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1278 break; 1279 case PRIV_B2_RCHP: 1280 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1281 break; 1282 case PRIV_B2_STCPS: 1283 /* We do not provide this instruction, it is suppressed. */ 1284 break; 1285 case PRIV_B2_SAL: 1286 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1287 break; 1288 case PRIV_B2_SIGA: 1289 /* Not provided, set CC = 3 for subchannel not operational */ 1290 setcc(cpu, 3); 1291 break; 1292 case PRIV_B2_SCLP_CALL: 1293 kvm_sclp_service_call(cpu, run, ipbh0); 1294 break; 1295 default: 1296 rc = -1; 1297 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1298 break; 1299 } 1300 1301 return rc; 1302 } 1303 1304 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1305 uint8_t *ar) 1306 { 1307 CPUS390XState *env = &cpu->env; 1308 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1309 uint32_t base2 = run->s390_sieic.ipb >> 28; 1310 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1311 ((run->s390_sieic.ipb & 0xff00) << 4); 1312 1313 if (disp2 & 0x80000) { 1314 disp2 += 0xfff00000; 1315 } 1316 if (ar) { 1317 *ar = base2; 1318 } 1319 1320 return (base2 ? env->regs[base2] : 0) + 1321 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1322 } 1323 1324 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1325 uint8_t *ar) 1326 { 1327 CPUS390XState *env = &cpu->env; 1328 uint32_t base2 = run->s390_sieic.ipb >> 28; 1329 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1330 ((run->s390_sieic.ipb & 0xff00) << 4); 1331 1332 if (disp2 & 0x80000) { 1333 disp2 += 0xfff00000; 1334 } 1335 if (ar) { 1336 *ar = base2; 1337 } 1338 1339 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1340 } 1341 1342 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1343 { 1344 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1345 1346 if (s390_has_feat(S390_FEAT_ZPCI)) { 1347 return clp_service_call(cpu, r2, RA_IGNORED); 1348 } else { 1349 return -1; 1350 } 1351 } 1352 1353 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1354 { 1355 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1356 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1357 1358 if (s390_has_feat(S390_FEAT_ZPCI)) { 1359 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1360 } else { 1361 return -1; 1362 } 1363 } 1364 1365 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1366 { 1367 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1368 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1369 1370 if (s390_has_feat(S390_FEAT_ZPCI)) { 1371 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1372 } else { 1373 return -1; 1374 } 1375 } 1376 1377 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1378 { 1379 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1380 uint64_t fiba; 1381 uint8_t ar; 1382 1383 if (s390_has_feat(S390_FEAT_ZPCI)) { 1384 fiba = get_base_disp_rxy(cpu, run, &ar); 1385 1386 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1387 } else { 1388 return -1; 1389 } 1390 } 1391 1392 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1393 { 1394 CPUS390XState *env = &cpu->env; 1395 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1396 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1397 uint8_t isc; 1398 uint16_t mode; 1399 int r; 1400 1401 mode = env->regs[r1] & 0xffff; 1402 isc = (env->regs[r3] >> 27) & 0x7; 1403 r = css_do_sic(env, isc, mode); 1404 if (r) { 1405 kvm_s390_program_interrupt(cpu, -r); 1406 } 1407 1408 return 0; 1409 } 1410 1411 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1412 { 1413 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1414 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1415 1416 if (s390_has_feat(S390_FEAT_ZPCI)) { 1417 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1418 } else { 1419 return -1; 1420 } 1421 } 1422 1423 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1424 { 1425 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1426 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1427 uint64_t gaddr; 1428 uint8_t ar; 1429 1430 if (s390_has_feat(S390_FEAT_ZPCI)) { 1431 gaddr = get_base_disp_rsy(cpu, run, &ar); 1432 1433 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1434 } else { 1435 return -1; 1436 } 1437 } 1438 1439 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1440 { 1441 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1442 uint64_t fiba; 1443 uint8_t ar; 1444 1445 if (s390_has_feat(S390_FEAT_ZPCI)) { 1446 fiba = get_base_disp_rxy(cpu, run, &ar); 1447 1448 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1449 } else { 1450 return -1; 1451 } 1452 } 1453 1454 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1455 { 1456 int r = 0; 1457 1458 switch (ipa1) { 1459 case PRIV_B9_CLP: 1460 r = kvm_clp_service_call(cpu, run); 1461 break; 1462 case PRIV_B9_PCISTG: 1463 r = kvm_pcistg_service_call(cpu, run); 1464 break; 1465 case PRIV_B9_PCILG: 1466 r = kvm_pcilg_service_call(cpu, run); 1467 break; 1468 case PRIV_B9_RPCIT: 1469 r = kvm_rpcit_service_call(cpu, run); 1470 break; 1471 case PRIV_B9_EQBS: 1472 /* just inject exception */ 1473 r = -1; 1474 break; 1475 default: 1476 r = -1; 1477 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1478 break; 1479 } 1480 1481 return r; 1482 } 1483 1484 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1485 { 1486 int r = 0; 1487 1488 switch (ipbl) { 1489 case PRIV_EB_PCISTB: 1490 r = kvm_pcistb_service_call(cpu, run); 1491 break; 1492 case PRIV_EB_SIC: 1493 r = kvm_sic_service_call(cpu, run); 1494 break; 1495 case PRIV_EB_SQBS: 1496 /* just inject exception */ 1497 r = -1; 1498 break; 1499 default: 1500 r = -1; 1501 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1502 break; 1503 } 1504 1505 return r; 1506 } 1507 1508 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1509 { 1510 int r = 0; 1511 1512 switch (ipbl) { 1513 case PRIV_E3_MPCIFC: 1514 r = kvm_mpcifc_service_call(cpu, run); 1515 break; 1516 case PRIV_E3_STPCIFC: 1517 r = kvm_stpcifc_service_call(cpu, run); 1518 break; 1519 default: 1520 r = -1; 1521 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1522 break; 1523 } 1524 1525 return r; 1526 } 1527 1528 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1529 { 1530 CPUS390XState *env = &cpu->env; 1531 int ret; 1532 1533 ret = s390_virtio_hypercall(env); 1534 if (ret == -EINVAL) { 1535 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1536 return 0; 1537 } 1538 1539 return ret; 1540 } 1541 1542 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1543 { 1544 uint64_t r1, r3; 1545 int rc; 1546 1547 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1548 r3 = run->s390_sieic.ipa & 0x000f; 1549 rc = handle_diag_288(&cpu->env, r1, r3); 1550 if (rc) { 1551 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1552 } 1553 } 1554 1555 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1556 { 1557 uint64_t r1, r3; 1558 1559 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1560 r3 = run->s390_sieic.ipa & 0x000f; 1561 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1562 } 1563 1564 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1565 { 1566 CPUS390XState *env = &cpu->env; 1567 unsigned long pc; 1568 1569 pc = env->psw.addr - sw_bp_ilen; 1570 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1571 env->psw.addr = pc; 1572 return EXCP_DEBUG; 1573 } 1574 1575 return -ENOENT; 1576 } 1577 1578 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info) 1579 { 1580 CPUS390XState *env = &S390_CPU(cs)->env; 1581 1582 /* Feat bit is set only if KVM supports sync for diag318 */ 1583 if (s390_has_feat(S390_FEAT_DIAG_318)) { 1584 env->diag318_info = diag318_info; 1585 cs->kvm_run->s.regs.diag318 = diag318_info; 1586 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 1587 /* 1588 * diag 318 info is zeroed during a clear reset and 1589 * diag 308 IPL subcodes. 1590 */ 1591 } 1592 } 1593 1594 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run) 1595 { 1596 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4; 1597 uint64_t diag318_info = run->s.regs.gprs[reg]; 1598 CPUState *t; 1599 1600 /* 1601 * DIAG 318 can only be enabled with KVM support. As such, let's 1602 * ensure a guest cannot execute this instruction erroneously. 1603 */ 1604 if (!s390_has_feat(S390_FEAT_DIAG_318)) { 1605 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1606 return; 1607 } 1608 1609 CPU_FOREACH(t) { 1610 run_on_cpu(t, s390_do_cpu_set_diag318, 1611 RUN_ON_CPU_HOST_ULONG(diag318_info)); 1612 } 1613 } 1614 1615 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1616 1617 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1618 { 1619 int r = 0; 1620 uint16_t func_code; 1621 1622 /* 1623 * For any diagnose call we support, bits 48-63 of the resulting 1624 * address specify the function code; the remainder is ignored. 1625 */ 1626 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1627 switch (func_code) { 1628 case DIAG_TIMEREVENT: 1629 kvm_handle_diag_288(cpu, run); 1630 break; 1631 case DIAG_IPL: 1632 kvm_handle_diag_308(cpu, run); 1633 break; 1634 case DIAG_SET_CONTROL_PROGRAM_CODES: 1635 handle_diag_318(cpu, run); 1636 break; 1637 case DIAG_KVM_HYPERCALL: 1638 r = handle_hypercall(cpu, run); 1639 break; 1640 case DIAG_KVM_BREAKPOINT: 1641 r = handle_sw_breakpoint(cpu, run); 1642 break; 1643 default: 1644 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1645 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1646 break; 1647 } 1648 1649 return r; 1650 } 1651 1652 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1653 { 1654 CPUS390XState *env = &cpu->env; 1655 const uint8_t r1 = ipa1 >> 4; 1656 const uint8_t r3 = ipa1 & 0x0f; 1657 int ret; 1658 uint8_t order; 1659 1660 /* get order code */ 1661 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1662 1663 ret = handle_sigp(env, order, r1, r3); 1664 setcc(cpu, ret); 1665 return 0; 1666 } 1667 1668 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1669 { 1670 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1671 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1672 int r = -1; 1673 1674 DPRINTF("handle_instruction 0x%x 0x%x\n", 1675 run->s390_sieic.ipa, run->s390_sieic.ipb); 1676 switch (ipa0) { 1677 case IPA0_B2: 1678 r = handle_b2(cpu, run, ipa1); 1679 break; 1680 case IPA0_B9: 1681 r = handle_b9(cpu, run, ipa1); 1682 break; 1683 case IPA0_EB: 1684 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1685 break; 1686 case IPA0_E3: 1687 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1688 break; 1689 case IPA0_DIAG: 1690 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1691 break; 1692 case IPA0_SIGP: 1693 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1694 break; 1695 } 1696 1697 if (r < 0) { 1698 r = 0; 1699 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1700 } 1701 1702 return r; 1703 } 1704 1705 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1706 int pswoffset) 1707 { 1708 CPUState *cs = CPU(cpu); 1709 1710 s390_cpu_halt(cpu); 1711 cpu->env.crash_reason = reason; 1712 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1713 } 1714 1715 /* try to detect pgm check loops */ 1716 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1717 { 1718 CPUState *cs = CPU(cpu); 1719 PSW oldpsw, newpsw; 1720 1721 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1722 offsetof(LowCore, program_new_psw)); 1723 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1724 offsetof(LowCore, program_new_psw) + 8); 1725 oldpsw.mask = run->psw_mask; 1726 oldpsw.addr = run->psw_addr; 1727 /* 1728 * Avoid endless loops of operation exceptions, if the pgm new 1729 * PSW will cause a new operation exception. 1730 * The heuristic checks if the pgm new psw is within 6 bytes before 1731 * the faulting psw address (with same DAT, AS settings) and the 1732 * new psw is not a wait psw and the fault was not triggered by 1733 * problem state. In that case go into crashed state. 1734 */ 1735 1736 if (oldpsw.addr - newpsw.addr <= 6 && 1737 !(newpsw.mask & PSW_MASK_WAIT) && 1738 !(oldpsw.mask & PSW_MASK_PSTATE) && 1739 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1740 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1741 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1742 offsetof(LowCore, program_new_psw)); 1743 return EXCP_HALTED; 1744 } 1745 return 0; 1746 } 1747 1748 static int handle_intercept(S390CPU *cpu) 1749 { 1750 CPUState *cs = CPU(cpu); 1751 struct kvm_run *run = cs->kvm_run; 1752 int icpt_code = run->s390_sieic.icptcode; 1753 int r = 0; 1754 1755 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr); 1756 switch (icpt_code) { 1757 case ICPT_INSTRUCTION: 1758 case ICPT_PV_INSTR: 1759 case ICPT_PV_INSTR_NOTIFICATION: 1760 r = handle_instruction(cpu, run); 1761 break; 1762 case ICPT_PROGRAM: 1763 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1764 offsetof(LowCore, program_new_psw)); 1765 r = EXCP_HALTED; 1766 break; 1767 case ICPT_EXT_INT: 1768 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1769 offsetof(LowCore, external_new_psw)); 1770 r = EXCP_HALTED; 1771 break; 1772 case ICPT_WAITPSW: 1773 /* disabled wait, since enabled wait is handled in kernel */ 1774 s390_handle_wait(cpu); 1775 r = EXCP_HALTED; 1776 break; 1777 case ICPT_CPU_STOP: 1778 do_stop_interrupt(&cpu->env); 1779 r = EXCP_HALTED; 1780 break; 1781 case ICPT_OPEREXC: 1782 /* check for break points */ 1783 r = handle_sw_breakpoint(cpu, run); 1784 if (r == -ENOENT) { 1785 /* Then check for potential pgm check loops */ 1786 r = handle_oper_loop(cpu, run); 1787 if (r == 0) { 1788 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1789 } 1790 } 1791 break; 1792 case ICPT_SOFT_INTERCEPT: 1793 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1794 exit(1); 1795 break; 1796 case ICPT_IO: 1797 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1798 exit(1); 1799 break; 1800 default: 1801 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1802 exit(1); 1803 break; 1804 } 1805 1806 return r; 1807 } 1808 1809 static int handle_tsch(S390CPU *cpu) 1810 { 1811 CPUState *cs = CPU(cpu); 1812 struct kvm_run *run = cs->kvm_run; 1813 int ret; 1814 1815 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1816 RA_IGNORED); 1817 if (ret < 0) { 1818 /* 1819 * Failure. 1820 * If an I/O interrupt had been dequeued, we have to reinject it. 1821 */ 1822 if (run->s390_tsch.dequeued) { 1823 s390_io_interrupt(run->s390_tsch.subchannel_id, 1824 run->s390_tsch.subchannel_nr, 1825 run->s390_tsch.io_int_parm, 1826 run->s390_tsch.io_int_word); 1827 } 1828 ret = 0; 1829 } 1830 return ret; 1831 } 1832 1833 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1834 { 1835 const MachineState *ms = MACHINE(qdev_get_machine()); 1836 uint16_t conf_cpus = 0, reserved_cpus = 0; 1837 SysIB_322 sysib; 1838 int del, i; 1839 1840 if (s390_is_pv()) { 1841 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib)); 1842 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1843 return; 1844 } 1845 /* Shift the stack of Extended Names to prepare for our own data */ 1846 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1847 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1848 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1849 * assumed it's not capable of managing Extended Names for lower levels. 1850 */ 1851 for (del = 1; del < sysib.count; del++) { 1852 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1853 break; 1854 } 1855 } 1856 if (del < sysib.count) { 1857 memset(sysib.ext_names[del], 0, 1858 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1859 } 1860 1861 /* count the cpus and split them into configured and reserved ones */ 1862 for (i = 0; i < ms->possible_cpus->len; i++) { 1863 if (ms->possible_cpus->cpus[i].cpu) { 1864 conf_cpus++; 1865 } else { 1866 reserved_cpus++; 1867 } 1868 } 1869 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; 1870 sysib.vm[0].conf_cpus = conf_cpus; 1871 sysib.vm[0].reserved_cpus = reserved_cpus; 1872 1873 /* Insert short machine name in EBCDIC, padded with blanks */ 1874 if (qemu_name) { 1875 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1876 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1877 strlen(qemu_name))); 1878 } 1879 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1880 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1881 * considered by s390 as not capable of providing any Extended Name. 1882 * Therefore if no name was specified on qemu invocation, we go with the 1883 * same "KVMguest" default, which KVM has filled into short name field. 1884 */ 1885 strpadcpy((char *)sysib.ext_names[0], 1886 sizeof(sysib.ext_names[0]), 1887 qemu_name ?: "KVMguest", '\0'); 1888 1889 /* Insert UUID */ 1890 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1891 1892 if (s390_is_pv()) { 1893 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib)); 1894 } else { 1895 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1896 } 1897 } 1898 1899 static int handle_stsi(S390CPU *cpu) 1900 { 1901 CPUState *cs = CPU(cpu); 1902 struct kvm_run *run = cs->kvm_run; 1903 1904 switch (run->s390_stsi.fc) { 1905 case 3: 1906 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1907 return 0; 1908 } 1909 /* Only sysib 3.2.2 needs post-handling for now. */ 1910 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1911 return 0; 1912 default: 1913 return 0; 1914 } 1915 } 1916 1917 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1918 { 1919 CPUState *cs = CPU(cpu); 1920 struct kvm_run *run = cs->kvm_run; 1921 1922 int ret = 0; 1923 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1924 1925 switch (arch_info->type) { 1926 case KVM_HW_WP_WRITE: 1927 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1928 cs->watchpoint_hit = &hw_watchpoint; 1929 hw_watchpoint.vaddr = arch_info->addr; 1930 hw_watchpoint.flags = BP_MEM_WRITE; 1931 ret = EXCP_DEBUG; 1932 } 1933 break; 1934 case KVM_HW_BP: 1935 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1936 ret = EXCP_DEBUG; 1937 } 1938 break; 1939 case KVM_SINGLESTEP: 1940 if (cs->singlestep_enabled) { 1941 ret = EXCP_DEBUG; 1942 } 1943 break; 1944 default: 1945 ret = -ENOSYS; 1946 } 1947 1948 return ret; 1949 } 1950 1951 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1952 { 1953 S390CPU *cpu = S390_CPU(cs); 1954 int ret = 0; 1955 1956 qemu_mutex_lock_iothread(); 1957 1958 kvm_cpu_synchronize_state(cs); 1959 1960 switch (run->exit_reason) { 1961 case KVM_EXIT_S390_SIEIC: 1962 ret = handle_intercept(cpu); 1963 break; 1964 case KVM_EXIT_S390_RESET: 1965 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1966 break; 1967 case KVM_EXIT_S390_TSCH: 1968 ret = handle_tsch(cpu); 1969 break; 1970 case KVM_EXIT_S390_STSI: 1971 ret = handle_stsi(cpu); 1972 break; 1973 case KVM_EXIT_DEBUG: 1974 ret = kvm_arch_handle_debug_exit(cpu); 1975 break; 1976 default: 1977 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1978 break; 1979 } 1980 qemu_mutex_unlock_iothread(); 1981 1982 if (ret == 0) { 1983 ret = EXCP_INTERRUPT; 1984 } 1985 return ret; 1986 } 1987 1988 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1989 { 1990 return true; 1991 } 1992 1993 void kvm_s390_enable_css_support(S390CPU *cpu) 1994 { 1995 int r; 1996 1997 /* Activate host kernel channel subsystem support. */ 1998 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1999 assert(r == 0); 2000 } 2001 2002 void kvm_arch_init_irq_routing(KVMState *s) 2003 { 2004 /* 2005 * Note that while irqchip capabilities generally imply that cpustates 2006 * are handled in-kernel, it is not true for s390 (yet); therefore, we 2007 * have to override the common code kvm_halt_in_kernel_allowed setting. 2008 */ 2009 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2010 kvm_gsi_routing_allowed = true; 2011 kvm_halt_in_kernel_allowed = false; 2012 } 2013 } 2014 2015 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 2016 int vq, bool assign) 2017 { 2018 struct kvm_ioeventfd kick = { 2019 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 2020 KVM_IOEVENTFD_FLAG_DATAMATCH, 2021 .fd = event_notifier_get_fd(notifier), 2022 .datamatch = vq, 2023 .addr = sch, 2024 .len = 8, 2025 }; 2026 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 2027 kick.datamatch); 2028 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 2029 return -ENOSYS; 2030 } 2031 if (!assign) { 2032 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 2033 } 2034 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 2035 } 2036 2037 int kvm_s390_get_ri(void) 2038 { 2039 return cap_ri; 2040 } 2041 2042 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 2043 { 2044 struct kvm_mp_state mp_state = {}; 2045 int ret; 2046 2047 /* the kvm part might not have been initialized yet */ 2048 if (CPU(cpu)->kvm_state == NULL) { 2049 return 0; 2050 } 2051 2052 switch (cpu_state) { 2053 case S390_CPU_STATE_STOPPED: 2054 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2055 break; 2056 case S390_CPU_STATE_CHECK_STOP: 2057 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2058 break; 2059 case S390_CPU_STATE_OPERATING: 2060 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2061 break; 2062 case S390_CPU_STATE_LOAD: 2063 mp_state.mp_state = KVM_MP_STATE_LOAD; 2064 break; 2065 default: 2066 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2067 cpu_state); 2068 exit(1); 2069 } 2070 2071 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2072 if (ret) { 2073 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2074 strerror(-ret)); 2075 } 2076 2077 return ret; 2078 } 2079 2080 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2081 { 2082 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 2083 struct kvm_s390_irq_state irq_state = { 2084 .buf = (uint64_t) cpu->irqstate, 2085 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 2086 }; 2087 CPUState *cs = CPU(cpu); 2088 int32_t bytes; 2089 2090 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2091 return; 2092 } 2093 2094 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2095 if (bytes < 0) { 2096 cpu->irqstate_saved_size = 0; 2097 error_report("Migration of interrupt state failed"); 2098 return; 2099 } 2100 2101 cpu->irqstate_saved_size = bytes; 2102 } 2103 2104 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2105 { 2106 CPUState *cs = CPU(cpu); 2107 struct kvm_s390_irq_state irq_state = { 2108 .buf = (uint64_t) cpu->irqstate, 2109 .len = cpu->irqstate_saved_size, 2110 }; 2111 int r; 2112 2113 if (cpu->irqstate_saved_size == 0) { 2114 return 0; 2115 } 2116 2117 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2118 return -ENOSYS; 2119 } 2120 2121 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2122 if (r) { 2123 error_report("Setting interrupt state failed %d", r); 2124 } 2125 return r; 2126 } 2127 2128 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2129 uint64_t address, uint32_t data, PCIDevice *dev) 2130 { 2131 S390PCIBusDevice *pbdev; 2132 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2133 2134 if (!dev) { 2135 DPRINTF("add_msi_route no pci device\n"); 2136 return -ENODEV; 2137 } 2138 2139 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2140 if (!pbdev) { 2141 DPRINTF("add_msi_route no zpci device\n"); 2142 return -ENODEV; 2143 } 2144 2145 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2146 route->flags = 0; 2147 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2148 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2149 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2150 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2151 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2152 return 0; 2153 } 2154 2155 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2156 int vector, PCIDevice *dev) 2157 { 2158 return 0; 2159 } 2160 2161 int kvm_arch_release_virq_post(int virq) 2162 { 2163 return 0; 2164 } 2165 2166 int kvm_arch_msi_data_to_gsi(uint32_t data) 2167 { 2168 abort(); 2169 } 2170 2171 static int query_cpu_subfunc(S390FeatBitmap features) 2172 { 2173 struct kvm_s390_vm_cpu_subfunc prop = {}; 2174 struct kvm_device_attr attr = { 2175 .group = KVM_S390_VM_CPU_MODEL, 2176 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2177 .addr = (uint64_t) &prop, 2178 }; 2179 int rc; 2180 2181 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2182 if (rc) { 2183 return rc; 2184 } 2185 2186 /* 2187 * We're going to add all subfunctions now, if the corresponding feature 2188 * is available that unlocks the query functions. 2189 */ 2190 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2191 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2192 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2193 } 2194 if (test_bit(S390_FEAT_MSA, features)) { 2195 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2196 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2197 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2198 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2199 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2200 } 2201 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2202 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2203 } 2204 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2205 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2206 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2207 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2208 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2209 } 2210 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2211 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2212 } 2213 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2214 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2215 } 2216 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2217 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2218 } 2219 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2220 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2221 } 2222 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2223 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2224 } 2225 return 0; 2226 } 2227 2228 static int configure_cpu_subfunc(const S390FeatBitmap features) 2229 { 2230 struct kvm_s390_vm_cpu_subfunc prop = {}; 2231 struct kvm_device_attr attr = { 2232 .group = KVM_S390_VM_CPU_MODEL, 2233 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2234 .addr = (uint64_t) &prop, 2235 }; 2236 2237 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2238 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2239 /* hardware support might be missing, IBC will handle most of this */ 2240 return 0; 2241 } 2242 2243 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2244 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2245 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2246 } 2247 if (test_bit(S390_FEAT_MSA, features)) { 2248 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2249 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2250 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2251 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2252 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2253 } 2254 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2255 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2256 } 2257 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2258 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2259 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2260 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2261 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2262 } 2263 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2264 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2265 } 2266 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2267 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2268 } 2269 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2270 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2271 } 2272 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2273 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2274 } 2275 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2276 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2277 } 2278 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2279 } 2280 2281 static int kvm_to_feat[][2] = { 2282 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2283 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2284 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2285 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2286 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2287 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2288 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2289 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2290 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2291 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2292 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2293 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2294 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2295 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2296 }; 2297 2298 static int query_cpu_feat(S390FeatBitmap features) 2299 { 2300 struct kvm_s390_vm_cpu_feat prop = {}; 2301 struct kvm_device_attr attr = { 2302 .group = KVM_S390_VM_CPU_MODEL, 2303 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2304 .addr = (uint64_t) &prop, 2305 }; 2306 int rc; 2307 int i; 2308 2309 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2310 if (rc) { 2311 return rc; 2312 } 2313 2314 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2315 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2316 set_bit(kvm_to_feat[i][1], features); 2317 } 2318 } 2319 return 0; 2320 } 2321 2322 static int configure_cpu_feat(const S390FeatBitmap features) 2323 { 2324 struct kvm_s390_vm_cpu_feat prop = {}; 2325 struct kvm_device_attr attr = { 2326 .group = KVM_S390_VM_CPU_MODEL, 2327 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2328 .addr = (uint64_t) &prop, 2329 }; 2330 int i; 2331 2332 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2333 if (test_bit(kvm_to_feat[i][1], features)) { 2334 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2335 } 2336 } 2337 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2338 } 2339 2340 bool kvm_s390_cpu_models_supported(void) 2341 { 2342 if (!cpu_model_allowed()) { 2343 /* compatibility machines interfere with the cpu model */ 2344 return false; 2345 } 2346 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2347 KVM_S390_VM_CPU_MACHINE) && 2348 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2349 KVM_S390_VM_CPU_PROCESSOR) && 2350 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2351 KVM_S390_VM_CPU_MACHINE_FEAT) && 2352 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2353 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2354 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2355 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2356 } 2357 2358 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2359 { 2360 struct kvm_s390_vm_cpu_machine prop = {}; 2361 struct kvm_device_attr attr = { 2362 .group = KVM_S390_VM_CPU_MODEL, 2363 .attr = KVM_S390_VM_CPU_MACHINE, 2364 .addr = (uint64_t) &prop, 2365 }; 2366 uint16_t unblocked_ibc = 0, cpu_type = 0; 2367 int rc; 2368 2369 memset(model, 0, sizeof(*model)); 2370 2371 if (!kvm_s390_cpu_models_supported()) { 2372 error_setg(errp, "KVM doesn't support CPU models"); 2373 return; 2374 } 2375 2376 /* query the basic cpu model properties */ 2377 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2378 if (rc) { 2379 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2380 return; 2381 } 2382 2383 cpu_type = cpuid_type(prop.cpuid); 2384 if (has_ibc(prop.ibc)) { 2385 model->lowest_ibc = lowest_ibc(prop.ibc); 2386 unblocked_ibc = unblocked_ibc(prop.ibc); 2387 } 2388 model->cpu_id = cpuid_id(prop.cpuid); 2389 model->cpu_id_format = cpuid_format(prop.cpuid); 2390 model->cpu_ver = 0xff; 2391 2392 /* get supported cpu features indicated via STFL(E) */ 2393 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2394 (uint8_t *) prop.fac_mask); 2395 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2396 if (test_bit(S390_FEAT_STFLE, model->features)) { 2397 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2398 } 2399 /* get supported cpu features indicated e.g. via SCLP */ 2400 rc = query_cpu_feat(model->features); 2401 if (rc) { 2402 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2403 return; 2404 } 2405 /* get supported cpu subfunctions indicated via query / test bit */ 2406 rc = query_cpu_subfunc(model->features); 2407 if (rc) { 2408 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2409 return; 2410 } 2411 2412 /* PTFF subfunctions might be indicated although kernel support missing */ 2413 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2414 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2415 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2416 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2417 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2418 } 2419 2420 /* with cpu model support, CMM is only indicated if really available */ 2421 if (kvm_s390_cmma_available()) { 2422 set_bit(S390_FEAT_CMM, model->features); 2423 } else { 2424 /* no cmm -> no cmm nt */ 2425 clear_bit(S390_FEAT_CMM_NT, model->features); 2426 } 2427 2428 /* bpb needs kernel support for migration, VSIE and reset */ 2429 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2430 clear_bit(S390_FEAT_BPB, model->features); 2431 } 2432 2433 /* 2434 * If we have support for protected virtualization, indicate 2435 * the protected virtualization IPL unpack facility. 2436 */ 2437 if (cap_protected) { 2438 set_bit(S390_FEAT_UNPACK, model->features); 2439 } 2440 2441 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2442 set_bit(S390_FEAT_ZPCI, model->features); 2443 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2444 2445 if (s390_known_cpu_type(cpu_type)) { 2446 /* we want the exact model, even if some features are missing */ 2447 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2448 ibc_ec_ga(unblocked_ibc), NULL); 2449 } else { 2450 /* model unknown, e.g. too new - search using features */ 2451 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2452 ibc_ec_ga(unblocked_ibc), 2453 model->features); 2454 } 2455 if (!model->def) { 2456 error_setg(errp, "KVM: host CPU model could not be identified"); 2457 return; 2458 } 2459 /* for now, we can only provide the AP feature with HW support */ 2460 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2461 KVM_S390_VM_CRYPTO_ENABLE_APIE)) { 2462 set_bit(S390_FEAT_AP, model->features); 2463 } 2464 2465 /* 2466 * Extended-Length SCCB is handled entirely within QEMU. 2467 * For PV guests this is completely fenced by the Ultravisor, as Service 2468 * Call error checking and STFLE interpretation are handled via SIE. 2469 */ 2470 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features); 2471 2472 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) { 2473 set_bit(S390_FEAT_DIAG_318, model->features); 2474 } 2475 2476 /* strip of features that are not part of the maximum model */ 2477 bitmap_and(model->features, model->features, model->def->full_feat, 2478 S390_FEAT_MAX); 2479 } 2480 2481 static void kvm_s390_configure_apie(bool interpret) 2482 { 2483 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2484 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2485 2486 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2487 kvm_s390_set_attr(attr); 2488 } 2489 } 2490 2491 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2492 { 2493 struct kvm_s390_vm_cpu_processor prop = { 2494 .fac_list = { 0 }, 2495 }; 2496 struct kvm_device_attr attr = { 2497 .group = KVM_S390_VM_CPU_MODEL, 2498 .attr = KVM_S390_VM_CPU_PROCESSOR, 2499 .addr = (uint64_t) &prop, 2500 }; 2501 int rc; 2502 2503 if (!model) { 2504 /* compatibility handling if cpu models are disabled */ 2505 if (kvm_s390_cmma_available()) { 2506 kvm_s390_enable_cmma(); 2507 } 2508 return; 2509 } 2510 if (!kvm_s390_cpu_models_supported()) { 2511 error_setg(errp, "KVM doesn't support CPU models"); 2512 return; 2513 } 2514 prop.cpuid = s390_cpuid_from_cpu_model(model); 2515 prop.ibc = s390_ibc_from_cpu_model(model); 2516 /* configure cpu features indicated via STFL(e) */ 2517 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2518 (uint8_t *) prop.fac_list); 2519 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2520 if (rc) { 2521 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2522 return; 2523 } 2524 /* configure cpu features indicated e.g. via SCLP */ 2525 rc = configure_cpu_feat(model->features); 2526 if (rc) { 2527 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2528 return; 2529 } 2530 /* configure cpu subfunctions indicated via query / test bit */ 2531 rc = configure_cpu_subfunc(model->features); 2532 if (rc) { 2533 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2534 return; 2535 } 2536 /* enable CMM via CMMA */ 2537 if (test_bit(S390_FEAT_CMM, model->features)) { 2538 kvm_s390_enable_cmma(); 2539 } 2540 2541 if (test_bit(S390_FEAT_AP, model->features)) { 2542 kvm_s390_configure_apie(true); 2543 } 2544 } 2545 2546 void kvm_s390_restart_interrupt(S390CPU *cpu) 2547 { 2548 struct kvm_s390_irq irq = { 2549 .type = KVM_S390_RESTART, 2550 }; 2551 2552 kvm_s390_vcpu_interrupt(cpu, &irq); 2553 } 2554 2555 void kvm_s390_stop_interrupt(S390CPU *cpu) 2556 { 2557 struct kvm_s390_irq irq = { 2558 .type = KVM_S390_SIGP_STOP, 2559 }; 2560 2561 kvm_s390_vcpu_interrupt(cpu, &irq); 2562 } 2563 2564 bool kvm_arch_cpu_check_are_resettable(void) 2565 { 2566 return true; 2567 } 2568