xref: /openbmc/qemu/target/s390x/kvm/kvm.c (revision d447a624)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "sysemu/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "target/s390x/kvm/pv.h"
54 
55 #define kvm_vm_check_mem_attr(s, attr) \
56     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
57 
58 #define IPA0_DIAG                       0x8300
59 #define IPA0_SIGP                       0xae00
60 #define IPA0_B2                         0xb200
61 #define IPA0_B9                         0xb900
62 #define IPA0_EB                         0xeb00
63 #define IPA0_E3                         0xe300
64 
65 #define PRIV_B2_SCLP_CALL               0x20
66 #define PRIV_B2_CSCH                    0x30
67 #define PRIV_B2_HSCH                    0x31
68 #define PRIV_B2_MSCH                    0x32
69 #define PRIV_B2_SSCH                    0x33
70 #define PRIV_B2_STSCH                   0x34
71 #define PRIV_B2_TSCH                    0x35
72 #define PRIV_B2_TPI                     0x36
73 #define PRIV_B2_SAL                     0x37
74 #define PRIV_B2_RSCH                    0x38
75 #define PRIV_B2_STCRW                   0x39
76 #define PRIV_B2_STCPS                   0x3a
77 #define PRIV_B2_RCHP                    0x3b
78 #define PRIV_B2_SCHM                    0x3c
79 #define PRIV_B2_CHSC                    0x5f
80 #define PRIV_B2_SIGA                    0x74
81 #define PRIV_B2_XSCH                    0x76
82 
83 #define PRIV_EB_SQBS                    0x8a
84 #define PRIV_EB_PCISTB                  0xd0
85 #define PRIV_EB_SIC                     0xd1
86 
87 #define PRIV_B9_EQBS                    0x9c
88 #define PRIV_B9_CLP                     0xa0
89 #define PRIV_B9_PCISTG                  0xd0
90 #define PRIV_B9_PCILG                   0xd2
91 #define PRIV_B9_RPCIT                   0xd3
92 
93 #define PRIV_E3_MPCIFC                  0xd0
94 #define PRIV_E3_STPCIFC                 0xd4
95 
96 #define DIAG_TIMEREVENT                 0x288
97 #define DIAG_IPL                        0x308
98 #define DIAG_SET_CONTROL_PROGRAM_CODES  0x318
99 #define DIAG_KVM_HYPERCALL              0x500
100 #define DIAG_KVM_BREAKPOINT             0x501
101 
102 #define ICPT_INSTRUCTION                0x04
103 #define ICPT_PROGRAM                    0x08
104 #define ICPT_EXT_INT                    0x14
105 #define ICPT_WAITPSW                    0x1c
106 #define ICPT_SOFT_INTERCEPT             0x24
107 #define ICPT_CPU_STOP                   0x28
108 #define ICPT_OPEREXC                    0x2c
109 #define ICPT_IO                         0x40
110 #define ICPT_PV_INSTR                   0x68
111 #define ICPT_PV_INSTR_NOTIFICATION      0x6c
112 
113 #define NR_LOCAL_IRQS 32
114 /*
115  * Needs to be big enough to contain max_cpus emergency signals
116  * and in addition NR_LOCAL_IRQS interrupts
117  */
118 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
119                                      (max_cpus + NR_LOCAL_IRQS))
120 /*
121  * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
122  * as the dirty bitmap must be managed by bitops that take an int as
123  * position indicator. This would end at an unaligned  address
124  * (0x7fffff00000). As future variants might provide larger pages
125  * and to make all addresses properly aligned, let us split at 4TB.
126  */
127 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
128 
129 static CPUWatchpoint hw_watchpoint;
130 /*
131  * We don't use a list because this structure is also used to transmit the
132  * hardware breakpoints to the kernel.
133  */
134 static struct kvm_hw_breakpoint *hw_breakpoints;
135 static int nb_hw_breakpoints;
136 
137 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
138     KVM_CAP_LAST_INFO
139 };
140 
141 static int cap_sync_regs;
142 static int cap_async_pf;
143 static int cap_mem_op;
144 static int cap_mem_op_extension;
145 static int cap_s390_irq;
146 static int cap_ri;
147 static int cap_hpage_1m;
148 static int cap_vcpu_resets;
149 static int cap_protected;
150 static int cap_zpci_op;
151 static int cap_protected_dump;
152 
153 static bool mem_op_storage_key_support;
154 
155 static int active_cmma;
156 
157 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
158 {
159     struct kvm_device_attr attr = {
160         .group = KVM_S390_VM_MEM_CTRL,
161         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
162         .addr = (uint64_t) memory_limit,
163     };
164 
165     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
166 }
167 
168 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
169 {
170     int rc;
171 
172     struct kvm_device_attr attr = {
173         .group = KVM_S390_VM_MEM_CTRL,
174         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
175         .addr = (uint64_t) &new_limit,
176     };
177 
178     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
179         return 0;
180     }
181 
182     rc = kvm_s390_query_mem_limit(hw_limit);
183     if (rc) {
184         return rc;
185     } else if (*hw_limit < new_limit) {
186         return -E2BIG;
187     }
188 
189     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
190 }
191 
192 int kvm_s390_cmma_active(void)
193 {
194     return active_cmma;
195 }
196 
197 static bool kvm_s390_cmma_available(void)
198 {
199     static bool initialized, value;
200 
201     if (!initialized) {
202         initialized = true;
203         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
204                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
205     }
206     return value;
207 }
208 
209 void kvm_s390_cmma_reset(void)
210 {
211     int rc;
212     struct kvm_device_attr attr = {
213         .group = KVM_S390_VM_MEM_CTRL,
214         .attr = KVM_S390_VM_MEM_CLR_CMMA,
215     };
216 
217     if (!kvm_s390_cmma_active()) {
218         return;
219     }
220 
221     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
222     trace_kvm_clear_cmma(rc);
223 }
224 
225 static void kvm_s390_enable_cmma(void)
226 {
227     int rc;
228     struct kvm_device_attr attr = {
229         .group = KVM_S390_VM_MEM_CTRL,
230         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
231     };
232 
233     if (cap_hpage_1m) {
234         warn_report("CMM will not be enabled because it is not "
235                     "compatible with huge memory backings.");
236         return;
237     }
238     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
239     active_cmma = !rc;
240     trace_kvm_enable_cmma(rc);
241 }
242 
243 static void kvm_s390_set_attr(uint64_t attr)
244 {
245     struct kvm_device_attr attribute = {
246         .group = KVM_S390_VM_CRYPTO,
247         .attr  = attr,
248     };
249 
250     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
251 
252     if (ret) {
253         error_report("Failed to set crypto device attribute %lu: %s",
254                      attr, strerror(-ret));
255     }
256 }
257 
258 static void kvm_s390_init_aes_kw(void)
259 {
260     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
261 
262     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
263                                  NULL)) {
264             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
265     }
266 
267     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
268             kvm_s390_set_attr(attr);
269     }
270 }
271 
272 static void kvm_s390_init_dea_kw(void)
273 {
274     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
275 
276     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
277                                  NULL)) {
278             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
279     }
280 
281     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
282             kvm_s390_set_attr(attr);
283     }
284 }
285 
286 void kvm_s390_crypto_reset(void)
287 {
288     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
289         kvm_s390_init_aes_kw();
290         kvm_s390_init_dea_kw();
291     }
292 }
293 
294 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
295 {
296     if (pagesize == 4 * KiB) {
297         return;
298     }
299 
300     if (!hpage_1m_allowed()) {
301         error_setg(errp, "This QEMU machine does not support huge page "
302                    "mappings");
303         return;
304     }
305 
306     if (pagesize != 1 * MiB) {
307         error_setg(errp, "Memory backing with 2G pages was specified, "
308                    "but KVM does not support this memory backing");
309         return;
310     }
311 
312     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
313         error_setg(errp, "Memory backing with 1M pages was specified, "
314                    "but KVM does not support this memory backing");
315         return;
316     }
317 
318     cap_hpage_1m = 1;
319 }
320 
321 int kvm_s390_get_hpage_1m(void)
322 {
323     return cap_hpage_1m;
324 }
325 
326 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
327 {
328     MachineClass *mc = MACHINE_CLASS(oc);
329 
330     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
331 }
332 
333 int kvm_arch_get_default_type(MachineState *ms)
334 {
335     return 0;
336 }
337 
338 int kvm_arch_init(MachineState *ms, KVMState *s)
339 {
340     object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
341                          false, NULL);
342 
343     if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
344         error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
345                      "please use kernel 3.15 or newer");
346         return -1;
347     }
348     if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
349         error_report("KVM is missing capability KVM_CAP_S390_COW - "
350                      "unsupported environment");
351         return -1;
352     }
353 
354     cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
355     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
356     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
357     cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
358     mem_op_storage_key_support = cap_mem_op_extension > 0;
359     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
360     cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
361     cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
362     cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
363     cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
364 
365     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
366     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
367     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
368     if (ri_allowed()) {
369         if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
370             cap_ri = 1;
371         }
372     }
373     if (cpu_model_allowed()) {
374         kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
375     }
376 
377     /*
378      * The migration interface for ais was introduced with kernel 4.13
379      * but the capability itself had been active since 4.12. As migration
380      * support is considered necessary, we only try to enable this for
381      * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
382      */
383     if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
384         kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
385         kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
386     }
387 
388     kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
389     return 0;
390 }
391 
392 int kvm_arch_irqchip_create(KVMState *s)
393 {
394     return 0;
395 }
396 
397 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
398 {
399     return cpu->cpu_index;
400 }
401 
402 int kvm_arch_init_vcpu(CPUState *cs)
403 {
404     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
405     S390CPU *cpu = S390_CPU(cs);
406     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
407     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
408     return 0;
409 }
410 
411 int kvm_arch_destroy_vcpu(CPUState *cs)
412 {
413     S390CPU *cpu = S390_CPU(cs);
414 
415     g_free(cpu->irqstate);
416     cpu->irqstate = NULL;
417 
418     return 0;
419 }
420 
421 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
422 {
423     CPUState *cs = CPU(cpu);
424 
425     /*
426      * The reset call is needed here to reset in-kernel vcpu data that
427      * we can't access directly from QEMU (i.e. with older kernels
428      * which don't support sync_regs/ONE_REG).  Before this ioctl
429      * cpu_synchronize_state() is called in common kvm code
430      * (kvm-all).
431      */
432     if (kvm_vcpu_ioctl(cs, type)) {
433         error_report("CPU reset failed on CPU %i type %lx",
434                      cs->cpu_index, type);
435     }
436 }
437 
438 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
439 {
440     kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
441 }
442 
443 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
444 {
445     if (cap_vcpu_resets) {
446         kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
447     } else {
448         kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
449     }
450 }
451 
452 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
453 {
454     if (cap_vcpu_resets) {
455         kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
456     }
457 }
458 
459 static int can_sync_regs(CPUState *cs, int regs)
460 {
461     return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
462 }
463 
464 int kvm_arch_put_registers(CPUState *cs, int level)
465 {
466     S390CPU *cpu = S390_CPU(cs);
467     CPUS390XState *env = &cpu->env;
468     struct kvm_sregs sregs;
469     struct kvm_regs regs;
470     struct kvm_fpu fpu = {};
471     int r;
472     int i;
473 
474     /* always save the PSW  and the GPRS*/
475     cs->kvm_run->psw_addr = env->psw.addr;
476     cs->kvm_run->psw_mask = env->psw.mask;
477 
478     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
479         for (i = 0; i < 16; i++) {
480             cs->kvm_run->s.regs.gprs[i] = env->regs[i];
481             cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
482         }
483     } else {
484         for (i = 0; i < 16; i++) {
485             regs.gprs[i] = env->regs[i];
486         }
487         r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
488         if (r < 0) {
489             return r;
490         }
491     }
492 
493     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
494         for (i = 0; i < 32; i++) {
495             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
496             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
497         }
498         cs->kvm_run->s.regs.fpc = env->fpc;
499         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
500     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
501         for (i = 0; i < 16; i++) {
502             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
503         }
504         cs->kvm_run->s.regs.fpc = env->fpc;
505         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
506     } else {
507         /* Floating point */
508         for (i = 0; i < 16; i++) {
509             fpu.fprs[i] = *get_freg(env, i);
510         }
511         fpu.fpc = env->fpc;
512 
513         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
514         if (r < 0) {
515             return r;
516         }
517     }
518 
519     /* Do we need to save more than that? */
520     if (level == KVM_PUT_RUNTIME_STATE) {
521         return 0;
522     }
523 
524     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
525         cs->kvm_run->s.regs.cputm = env->cputm;
526         cs->kvm_run->s.regs.ckc = env->ckc;
527         cs->kvm_run->s.regs.todpr = env->todpr;
528         cs->kvm_run->s.regs.gbea = env->gbea;
529         cs->kvm_run->s.regs.pp = env->pp;
530         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
531     } else {
532         /*
533          * These ONE_REGS are not protected by a capability. As they are only
534          * necessary for migration we just trace a possible error, but don't
535          * return with an error return code.
536          */
537         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
538         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
539         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
540         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
541         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
542     }
543 
544     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
545         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
546         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
547     }
548 
549     /* pfault parameters */
550     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
551         cs->kvm_run->s.regs.pft = env->pfault_token;
552         cs->kvm_run->s.regs.pfs = env->pfault_select;
553         cs->kvm_run->s.regs.pfc = env->pfault_compare;
554         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
555     } else if (cap_async_pf) {
556         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
557         if (r < 0) {
558             return r;
559         }
560         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
561         if (r < 0) {
562             return r;
563         }
564         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
565         if (r < 0) {
566             return r;
567         }
568     }
569 
570     /* access registers and control registers*/
571     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
572         for (i = 0; i < 16; i++) {
573             cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
574             cs->kvm_run->s.regs.crs[i] = env->cregs[i];
575         }
576         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
577         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
578     } else {
579         for (i = 0; i < 16; i++) {
580             sregs.acrs[i] = env->aregs[i];
581             sregs.crs[i] = env->cregs[i];
582         }
583         r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
584         if (r < 0) {
585             return r;
586         }
587     }
588 
589     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
590         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
591         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
592     }
593 
594     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
595         cs->kvm_run->s.regs.bpbc = env->bpbc;
596         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
597     }
598 
599     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
600         cs->kvm_run->s.regs.etoken = env->etoken;
601         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
602         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
603     }
604 
605     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
606         cs->kvm_run->s.regs.diag318 = env->diag318_info;
607         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
608     }
609 
610     /* Finally the prefix */
611     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
612         cs->kvm_run->s.regs.prefix = env->psa;
613         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
614     } else {
615         /* prefix is only supported via sync regs */
616     }
617     return 0;
618 }
619 
620 int kvm_arch_get_registers(CPUState *cs)
621 {
622     S390CPU *cpu = S390_CPU(cs);
623     CPUS390XState *env = &cpu->env;
624     struct kvm_sregs sregs;
625     struct kvm_regs regs;
626     struct kvm_fpu fpu;
627     int i, r;
628 
629     /* get the PSW */
630     env->psw.addr = cs->kvm_run->psw_addr;
631     env->psw.mask = cs->kvm_run->psw_mask;
632 
633     /* the GPRS */
634     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
635         for (i = 0; i < 16; i++) {
636             env->regs[i] = cs->kvm_run->s.regs.gprs[i];
637         }
638     } else {
639         r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
640         if (r < 0) {
641             return r;
642         }
643          for (i = 0; i < 16; i++) {
644             env->regs[i] = regs.gprs[i];
645         }
646     }
647 
648     /* The ACRS and CRS */
649     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
650         for (i = 0; i < 16; i++) {
651             env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
652             env->cregs[i] = cs->kvm_run->s.regs.crs[i];
653         }
654     } else {
655         r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
656         if (r < 0) {
657             return r;
658         }
659          for (i = 0; i < 16; i++) {
660             env->aregs[i] = sregs.acrs[i];
661             env->cregs[i] = sregs.crs[i];
662         }
663     }
664 
665     /* Floating point and vector registers */
666     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
667         for (i = 0; i < 32; i++) {
668             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
669             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
670         }
671         env->fpc = cs->kvm_run->s.regs.fpc;
672     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
673         for (i = 0; i < 16; i++) {
674             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
675         }
676         env->fpc = cs->kvm_run->s.regs.fpc;
677     } else {
678         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
679         if (r < 0) {
680             return r;
681         }
682         for (i = 0; i < 16; i++) {
683             *get_freg(env, i) = fpu.fprs[i];
684         }
685         env->fpc = fpu.fpc;
686     }
687 
688     /* The prefix */
689     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
690         env->psa = cs->kvm_run->s.regs.prefix;
691     }
692 
693     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
694         env->cputm = cs->kvm_run->s.regs.cputm;
695         env->ckc = cs->kvm_run->s.regs.ckc;
696         env->todpr = cs->kvm_run->s.regs.todpr;
697         env->gbea = cs->kvm_run->s.regs.gbea;
698         env->pp = cs->kvm_run->s.regs.pp;
699     } else {
700         /*
701          * These ONE_REGS are not protected by a capability. As they are only
702          * necessary for migration we just trace a possible error, but don't
703          * return with an error return code.
704          */
705         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
706         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
707         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
708         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
709         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
710     }
711 
712     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
713         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
714     }
715 
716     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
717         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
718     }
719 
720     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
721         env->bpbc = cs->kvm_run->s.regs.bpbc;
722     }
723 
724     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
725         env->etoken = cs->kvm_run->s.regs.etoken;
726         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
727     }
728 
729     /* pfault parameters */
730     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
731         env->pfault_token = cs->kvm_run->s.regs.pft;
732         env->pfault_select = cs->kvm_run->s.regs.pfs;
733         env->pfault_compare = cs->kvm_run->s.regs.pfc;
734     } else if (cap_async_pf) {
735         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
736         if (r < 0) {
737             return r;
738         }
739         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
740         if (r < 0) {
741             return r;
742         }
743         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
744         if (r < 0) {
745             return r;
746         }
747     }
748 
749     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
750         env->diag318_info = cs->kvm_run->s.regs.diag318;
751     }
752 
753     return 0;
754 }
755 
756 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
757 {
758     int r;
759     struct kvm_device_attr attr = {
760         .group = KVM_S390_VM_TOD,
761         .attr = KVM_S390_VM_TOD_LOW,
762         .addr = (uint64_t)tod_low,
763     };
764 
765     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
766     if (r) {
767         return r;
768     }
769 
770     attr.attr = KVM_S390_VM_TOD_HIGH;
771     attr.addr = (uint64_t)tod_high;
772     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
773 }
774 
775 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
776 {
777     int r;
778     struct kvm_s390_vm_tod_clock gtod;
779     struct kvm_device_attr attr = {
780         .group = KVM_S390_VM_TOD,
781         .attr = KVM_S390_VM_TOD_EXT,
782         .addr = (uint64_t)&gtod,
783     };
784 
785     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
786     *tod_high = gtod.epoch_idx;
787     *tod_low  = gtod.tod;
788 
789     return r;
790 }
791 
792 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
793 {
794     int r;
795     struct kvm_device_attr attr = {
796         .group = KVM_S390_VM_TOD,
797         .attr = KVM_S390_VM_TOD_LOW,
798         .addr = (uint64_t)&tod_low,
799     };
800 
801     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
802     if (r) {
803         return r;
804     }
805 
806     attr.attr = KVM_S390_VM_TOD_HIGH;
807     attr.addr = (uint64_t)&tod_high;
808     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
809 }
810 
811 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
812 {
813     struct kvm_s390_vm_tod_clock gtod = {
814         .epoch_idx = tod_high,
815         .tod  = tod_low,
816     };
817     struct kvm_device_attr attr = {
818         .group = KVM_S390_VM_TOD,
819         .attr = KVM_S390_VM_TOD_EXT,
820         .addr = (uint64_t)&gtod,
821     };
822 
823     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
824 }
825 
826 /**
827  * kvm_s390_mem_op:
828  * @addr:      the logical start address in guest memory
829  * @ar:        the access register number
830  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
831  * @len:       length that should be transferred
832  * @is_write:  true = write, false = read
833  * Returns:    0 on success, non-zero if an exception or error occurred
834  *
835  * Use KVM ioctl to read/write from/to guest memory. An access exception
836  * is injected into the vCPU in case of translation errors.
837  */
838 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
839                     int len, bool is_write)
840 {
841     struct kvm_s390_mem_op mem_op = {
842         .gaddr = addr,
843         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
844         .size = len,
845         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
846                        : KVM_S390_MEMOP_LOGICAL_READ,
847         .buf = (uint64_t)hostbuf,
848         .ar = ar,
849         .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
850     };
851     int ret;
852 
853     if (!cap_mem_op) {
854         return -ENOSYS;
855     }
856     if (!hostbuf) {
857         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
858     }
859     if (mem_op_storage_key_support) {
860         mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
861     }
862 
863     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
864     if (ret < 0) {
865         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
866     }
867     return ret;
868 }
869 
870 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
871                        int len, bool is_write)
872 {
873     struct kvm_s390_mem_op mem_op = {
874         .sida_offset = offset,
875         .size = len,
876         .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
877                        : KVM_S390_MEMOP_SIDA_READ,
878         .buf = (uint64_t)hostbuf,
879     };
880     int ret;
881 
882     if (!cap_mem_op || !cap_protected) {
883         return -ENOSYS;
884     }
885 
886     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
887     if (ret < 0) {
888         error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
889         abort();
890     }
891     return ret;
892 }
893 
894 static uint8_t const *sw_bp_inst;
895 static uint8_t sw_bp_ilen;
896 
897 static void determine_sw_breakpoint_instr(void)
898 {
899         /* DIAG 501 is used for sw breakpoints with old kernels */
900         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
901         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
902         static const uint8_t instr_0x0000[] = {0x00, 0x00};
903 
904         if (sw_bp_inst) {
905             return;
906         }
907         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
908             sw_bp_inst = diag_501;
909             sw_bp_ilen = sizeof(diag_501);
910             trace_kvm_sw_breakpoint(4);
911         } else {
912             sw_bp_inst = instr_0x0000;
913             sw_bp_ilen = sizeof(instr_0x0000);
914             trace_kvm_sw_breakpoint(2);
915         }
916 }
917 
918 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
919 {
920     determine_sw_breakpoint_instr();
921 
922     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
923                             sw_bp_ilen, 0) ||
924         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
925         return -EINVAL;
926     }
927     return 0;
928 }
929 
930 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
931 {
932     uint8_t t[MAX_ILEN];
933 
934     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
935         return -EINVAL;
936     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
937         return -EINVAL;
938     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
939                                    sw_bp_ilen, 1)) {
940         return -EINVAL;
941     }
942 
943     return 0;
944 }
945 
946 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
947                                                     int len, int type)
948 {
949     int n;
950 
951     for (n = 0; n < nb_hw_breakpoints; n++) {
952         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
953             (hw_breakpoints[n].len == len || len == -1)) {
954             return &hw_breakpoints[n];
955         }
956     }
957 
958     return NULL;
959 }
960 
961 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
962 {
963     int size;
964 
965     if (find_hw_breakpoint(addr, len, type)) {
966         return -EEXIST;
967     }
968 
969     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
970 
971     if (!hw_breakpoints) {
972         nb_hw_breakpoints = 0;
973         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
974     } else {
975         hw_breakpoints =
976             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
977     }
978 
979     if (!hw_breakpoints) {
980         nb_hw_breakpoints = 0;
981         return -ENOMEM;
982     }
983 
984     hw_breakpoints[nb_hw_breakpoints].addr = addr;
985     hw_breakpoints[nb_hw_breakpoints].len = len;
986     hw_breakpoints[nb_hw_breakpoints].type = type;
987 
988     nb_hw_breakpoints++;
989 
990     return 0;
991 }
992 
993 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
994 {
995     switch (type) {
996     case GDB_BREAKPOINT_HW:
997         type = KVM_HW_BP;
998         break;
999     case GDB_WATCHPOINT_WRITE:
1000         if (len < 1) {
1001             return -EINVAL;
1002         }
1003         type = KVM_HW_WP_WRITE;
1004         break;
1005     default:
1006         return -ENOSYS;
1007     }
1008     return insert_hw_breakpoint(addr, len, type);
1009 }
1010 
1011 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1012 {
1013     int size;
1014     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1015 
1016     if (bp == NULL) {
1017         return -ENOENT;
1018     }
1019 
1020     nb_hw_breakpoints--;
1021     if (nb_hw_breakpoints > 0) {
1022         /*
1023          * In order to trim the array, move the last element to the position to
1024          * be removed - if necessary.
1025          */
1026         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1027             *bp = hw_breakpoints[nb_hw_breakpoints];
1028         }
1029         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1030         hw_breakpoints =
1031              g_realloc(hw_breakpoints, size);
1032     } else {
1033         g_free(hw_breakpoints);
1034         hw_breakpoints = NULL;
1035     }
1036 
1037     return 0;
1038 }
1039 
1040 void kvm_arch_remove_all_hw_breakpoints(void)
1041 {
1042     nb_hw_breakpoints = 0;
1043     g_free(hw_breakpoints);
1044     hw_breakpoints = NULL;
1045 }
1046 
1047 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1048 {
1049     int i;
1050 
1051     if (nb_hw_breakpoints > 0) {
1052         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1053         dbg->arch.hw_bp = hw_breakpoints;
1054 
1055         for (i = 0; i < nb_hw_breakpoints; ++i) {
1056             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1057                                                        hw_breakpoints[i].addr);
1058         }
1059         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1060     } else {
1061         dbg->arch.nr_hw_bp = 0;
1062         dbg->arch.hw_bp = NULL;
1063     }
1064 }
1065 
1066 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1067 {
1068 }
1069 
1070 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1071 {
1072     return MEMTXATTRS_UNSPECIFIED;
1073 }
1074 
1075 int kvm_arch_process_async_events(CPUState *cs)
1076 {
1077     return cs->halted;
1078 }
1079 
1080 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1081                                      struct kvm_s390_interrupt *interrupt)
1082 {
1083     int r = 0;
1084 
1085     interrupt->type = irq->type;
1086     switch (irq->type) {
1087     case KVM_S390_INT_VIRTIO:
1088         interrupt->parm = irq->u.ext.ext_params;
1089         /* fall through */
1090     case KVM_S390_INT_PFAULT_INIT:
1091     case KVM_S390_INT_PFAULT_DONE:
1092         interrupt->parm64 = irq->u.ext.ext_params2;
1093         break;
1094     case KVM_S390_PROGRAM_INT:
1095         interrupt->parm = irq->u.pgm.code;
1096         break;
1097     case KVM_S390_SIGP_SET_PREFIX:
1098         interrupt->parm = irq->u.prefix.address;
1099         break;
1100     case KVM_S390_INT_SERVICE:
1101         interrupt->parm = irq->u.ext.ext_params;
1102         break;
1103     case KVM_S390_MCHK:
1104         interrupt->parm = irq->u.mchk.cr14;
1105         interrupt->parm64 = irq->u.mchk.mcic;
1106         break;
1107     case KVM_S390_INT_EXTERNAL_CALL:
1108         interrupt->parm = irq->u.extcall.code;
1109         break;
1110     case KVM_S390_INT_EMERGENCY:
1111         interrupt->parm = irq->u.emerg.code;
1112         break;
1113     case KVM_S390_SIGP_STOP:
1114     case KVM_S390_RESTART:
1115         break; /* These types have no parameters */
1116     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1117         interrupt->parm = irq->u.io.subchannel_id << 16;
1118         interrupt->parm |= irq->u.io.subchannel_nr;
1119         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1120         interrupt->parm64 |= irq->u.io.io_int_word;
1121         break;
1122     default:
1123         r = -EINVAL;
1124         break;
1125     }
1126     return r;
1127 }
1128 
1129 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1130 {
1131     struct kvm_s390_interrupt kvmint = {};
1132     int r;
1133 
1134     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1135     if (r < 0) {
1136         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1137         exit(1);
1138     }
1139 
1140     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1141     if (r < 0) {
1142         fprintf(stderr, "KVM failed to inject interrupt\n");
1143         exit(1);
1144     }
1145 }
1146 
1147 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1148 {
1149     CPUState *cs = CPU(cpu);
1150     int r;
1151 
1152     if (cap_s390_irq) {
1153         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1154         if (!r) {
1155             return;
1156         }
1157         error_report("KVM failed to inject interrupt %llx", irq->type);
1158         exit(1);
1159     }
1160 
1161     inject_vcpu_irq_legacy(cs, irq);
1162 }
1163 
1164 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1165 {
1166     struct kvm_s390_interrupt kvmint = {};
1167     int r;
1168 
1169     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1170     if (r < 0) {
1171         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1172         exit(1);
1173     }
1174 
1175     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1176     if (r < 0) {
1177         fprintf(stderr, "KVM failed to inject interrupt\n");
1178         exit(1);
1179     }
1180 }
1181 
1182 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1183 {
1184     struct kvm_s390_irq irq = {
1185         .type = KVM_S390_PROGRAM_INT,
1186         .u.pgm.code = code,
1187     };
1188     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1189                   cpu->env.psw.addr);
1190     kvm_s390_vcpu_interrupt(cpu, &irq);
1191 }
1192 
1193 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1194 {
1195     struct kvm_s390_irq irq = {
1196         .type = KVM_S390_PROGRAM_INT,
1197         .u.pgm.code = code,
1198         .u.pgm.trans_exc_code = te_code,
1199         .u.pgm.exc_access_id = te_code & 3,
1200     };
1201 
1202     kvm_s390_vcpu_interrupt(cpu, &irq);
1203 }
1204 
1205 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1206                                  uint16_t ipbh0)
1207 {
1208     CPUS390XState *env = &cpu->env;
1209     uint64_t sccb;
1210     uint32_t code;
1211     int r;
1212 
1213     sccb = env->regs[ipbh0 & 0xf];
1214     code = env->regs[(ipbh0 & 0xf0) >> 4];
1215 
1216     switch (run->s390_sieic.icptcode) {
1217     case ICPT_PV_INSTR_NOTIFICATION:
1218         g_assert(s390_is_pv());
1219         /* The notification intercepts are currently handled by KVM */
1220         error_report("unexpected SCLP PV notification");
1221         exit(1);
1222         break;
1223     case ICPT_PV_INSTR:
1224         g_assert(s390_is_pv());
1225         sclp_service_call_protected(env, sccb, code);
1226         /* Setting the CC is done by the Ultravisor. */
1227         break;
1228     case ICPT_INSTRUCTION:
1229         g_assert(!s390_is_pv());
1230         r = sclp_service_call(env, sccb, code);
1231         if (r < 0) {
1232             kvm_s390_program_interrupt(cpu, -r);
1233             return;
1234         }
1235         setcc(cpu, r);
1236     }
1237 }
1238 
1239 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1240 {
1241     CPUS390XState *env = &cpu->env;
1242     int rc = 0;
1243     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1244 
1245     switch (ipa1) {
1246     case PRIV_B2_XSCH:
1247         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1248         break;
1249     case PRIV_B2_CSCH:
1250         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1251         break;
1252     case PRIV_B2_HSCH:
1253         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1254         break;
1255     case PRIV_B2_MSCH:
1256         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1257         break;
1258     case PRIV_B2_SSCH:
1259         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1260         break;
1261     case PRIV_B2_STCRW:
1262         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1263         break;
1264     case PRIV_B2_STSCH:
1265         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1266         break;
1267     case PRIV_B2_TSCH:
1268         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1269         fprintf(stderr, "Spurious tsch intercept\n");
1270         break;
1271     case PRIV_B2_CHSC:
1272         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1273         break;
1274     case PRIV_B2_TPI:
1275         /* This should have been handled by kvm already. */
1276         fprintf(stderr, "Spurious tpi intercept\n");
1277         break;
1278     case PRIV_B2_SCHM:
1279         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1280                            run->s390_sieic.ipb, RA_IGNORED);
1281         break;
1282     case PRIV_B2_RSCH:
1283         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1284         break;
1285     case PRIV_B2_RCHP:
1286         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1287         break;
1288     case PRIV_B2_STCPS:
1289         /* We do not provide this instruction, it is suppressed. */
1290         break;
1291     case PRIV_B2_SAL:
1292         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1293         break;
1294     case PRIV_B2_SIGA:
1295         /* Not provided, set CC = 3 for subchannel not operational */
1296         setcc(cpu, 3);
1297         break;
1298     case PRIV_B2_SCLP_CALL:
1299         kvm_sclp_service_call(cpu, run, ipbh0);
1300         break;
1301     default:
1302         rc = -1;
1303         trace_kvm_insn_unhandled_priv(ipa1);
1304         break;
1305     }
1306 
1307     return rc;
1308 }
1309 
1310 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1311                                   uint8_t *ar)
1312 {
1313     CPUS390XState *env = &cpu->env;
1314     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1315     uint32_t base2 = run->s390_sieic.ipb >> 28;
1316     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1317                      ((run->s390_sieic.ipb & 0xff00) << 4);
1318 
1319     if (disp2 & 0x80000) {
1320         disp2 += 0xfff00000;
1321     }
1322     if (ar) {
1323         *ar = base2;
1324     }
1325 
1326     return (base2 ? env->regs[base2] : 0) +
1327            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1328 }
1329 
1330 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1331                                   uint8_t *ar)
1332 {
1333     CPUS390XState *env = &cpu->env;
1334     uint32_t base2 = run->s390_sieic.ipb >> 28;
1335     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1336                      ((run->s390_sieic.ipb & 0xff00) << 4);
1337 
1338     if (disp2 & 0x80000) {
1339         disp2 += 0xfff00000;
1340     }
1341     if (ar) {
1342         *ar = base2;
1343     }
1344 
1345     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1346 }
1347 
1348 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1349 {
1350     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1351 
1352     if (s390_has_feat(S390_FEAT_ZPCI)) {
1353         return clp_service_call(cpu, r2, RA_IGNORED);
1354     } else {
1355         return -1;
1356     }
1357 }
1358 
1359 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1360 {
1361     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1362     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1363 
1364     if (s390_has_feat(S390_FEAT_ZPCI)) {
1365         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1366     } else {
1367         return -1;
1368     }
1369 }
1370 
1371 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1372 {
1373     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1374     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1375 
1376     if (s390_has_feat(S390_FEAT_ZPCI)) {
1377         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1378     } else {
1379         return -1;
1380     }
1381 }
1382 
1383 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1384 {
1385     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1386     uint64_t fiba;
1387     uint8_t ar;
1388 
1389     if (s390_has_feat(S390_FEAT_ZPCI)) {
1390         fiba = get_base_disp_rxy(cpu, run, &ar);
1391 
1392         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1393     } else {
1394         return -1;
1395     }
1396 }
1397 
1398 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1399 {
1400     CPUS390XState *env = &cpu->env;
1401     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1402     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1403     uint8_t isc;
1404     uint16_t mode;
1405     int r;
1406 
1407     mode = env->regs[r1] & 0xffff;
1408     isc = (env->regs[r3] >> 27) & 0x7;
1409     r = css_do_sic(env, isc, mode);
1410     if (r) {
1411         kvm_s390_program_interrupt(cpu, -r);
1412     }
1413 
1414     return 0;
1415 }
1416 
1417 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1418 {
1419     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1420     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1421 
1422     if (s390_has_feat(S390_FEAT_ZPCI)) {
1423         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1424     } else {
1425         return -1;
1426     }
1427 }
1428 
1429 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1430 {
1431     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1432     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1433     uint64_t gaddr;
1434     uint8_t ar;
1435 
1436     if (s390_has_feat(S390_FEAT_ZPCI)) {
1437         gaddr = get_base_disp_rsy(cpu, run, &ar);
1438 
1439         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1440     } else {
1441         return -1;
1442     }
1443 }
1444 
1445 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1446 {
1447     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1448     uint64_t fiba;
1449     uint8_t ar;
1450 
1451     if (s390_has_feat(S390_FEAT_ZPCI)) {
1452         fiba = get_base_disp_rxy(cpu, run, &ar);
1453 
1454         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1455     } else {
1456         return -1;
1457     }
1458 }
1459 
1460 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1461 {
1462     int r = 0;
1463 
1464     switch (ipa1) {
1465     case PRIV_B9_CLP:
1466         r = kvm_clp_service_call(cpu, run);
1467         break;
1468     case PRIV_B9_PCISTG:
1469         r = kvm_pcistg_service_call(cpu, run);
1470         break;
1471     case PRIV_B9_PCILG:
1472         r = kvm_pcilg_service_call(cpu, run);
1473         break;
1474     case PRIV_B9_RPCIT:
1475         r = kvm_rpcit_service_call(cpu, run);
1476         break;
1477     case PRIV_B9_EQBS:
1478         /* just inject exception */
1479         r = -1;
1480         break;
1481     default:
1482         r = -1;
1483         trace_kvm_insn_unhandled_priv(ipa1);
1484         break;
1485     }
1486 
1487     return r;
1488 }
1489 
1490 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1491 {
1492     int r = 0;
1493 
1494     switch (ipbl) {
1495     case PRIV_EB_PCISTB:
1496         r = kvm_pcistb_service_call(cpu, run);
1497         break;
1498     case PRIV_EB_SIC:
1499         r = kvm_sic_service_call(cpu, run);
1500         break;
1501     case PRIV_EB_SQBS:
1502         /* just inject exception */
1503         r = -1;
1504         break;
1505     default:
1506         r = -1;
1507         trace_kvm_insn_unhandled_priv(ipbl);
1508         break;
1509     }
1510 
1511     return r;
1512 }
1513 
1514 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1515 {
1516     int r = 0;
1517 
1518     switch (ipbl) {
1519     case PRIV_E3_MPCIFC:
1520         r = kvm_mpcifc_service_call(cpu, run);
1521         break;
1522     case PRIV_E3_STPCIFC:
1523         r = kvm_stpcifc_service_call(cpu, run);
1524         break;
1525     default:
1526         r = -1;
1527         trace_kvm_insn_unhandled_priv(ipbl);
1528         break;
1529     }
1530 
1531     return r;
1532 }
1533 
1534 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1535 {
1536     CPUS390XState *env = &cpu->env;
1537     int ret;
1538 
1539     ret = s390_virtio_hypercall(env);
1540     if (ret == -EINVAL) {
1541         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1542         return 0;
1543     }
1544 
1545     return ret;
1546 }
1547 
1548 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1549 {
1550     uint64_t r1, r3;
1551     int rc;
1552 
1553     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1554     r3 = run->s390_sieic.ipa & 0x000f;
1555     rc = handle_diag_288(&cpu->env, r1, r3);
1556     if (rc) {
1557         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1558     }
1559 }
1560 
1561 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1562 {
1563     uint64_t r1, r3;
1564 
1565     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1566     r3 = run->s390_sieic.ipa & 0x000f;
1567     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1568 }
1569 
1570 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1571 {
1572     CPUS390XState *env = &cpu->env;
1573     unsigned long pc;
1574 
1575     pc = env->psw.addr - sw_bp_ilen;
1576     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1577         env->psw.addr = pc;
1578         return EXCP_DEBUG;
1579     }
1580 
1581     return -ENOENT;
1582 }
1583 
1584 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1585 {
1586     CPUS390XState *env = &S390_CPU(cs)->env;
1587 
1588     /* Feat bit is set only if KVM supports sync for diag318 */
1589     if (s390_has_feat(S390_FEAT_DIAG_318)) {
1590         env->diag318_info = diag318_info;
1591         cs->kvm_run->s.regs.diag318 = diag318_info;
1592         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1593         /*
1594          * diag 318 info is zeroed during a clear reset and
1595          * diag 308 IPL subcodes.
1596          */
1597     }
1598 }
1599 
1600 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1601 {
1602     uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1603     uint64_t diag318_info = run->s.regs.gprs[reg];
1604     CPUState *t;
1605 
1606     /*
1607      * DIAG 318 can only be enabled with KVM support. As such, let's
1608      * ensure a guest cannot execute this instruction erroneously.
1609      */
1610     if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1611         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1612         return;
1613     }
1614 
1615     CPU_FOREACH(t) {
1616         run_on_cpu(t, s390_do_cpu_set_diag318,
1617                    RUN_ON_CPU_HOST_ULONG(diag318_info));
1618     }
1619 }
1620 
1621 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1622 
1623 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1624 {
1625     int r = 0;
1626     uint16_t func_code;
1627 
1628     /*
1629      * For any diagnose call we support, bits 48-63 of the resulting
1630      * address specify the function code; the remainder is ignored.
1631      */
1632     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1633     switch (func_code) {
1634     case DIAG_TIMEREVENT:
1635         kvm_handle_diag_288(cpu, run);
1636         break;
1637     case DIAG_IPL:
1638         kvm_handle_diag_308(cpu, run);
1639         break;
1640     case DIAG_SET_CONTROL_PROGRAM_CODES:
1641         handle_diag_318(cpu, run);
1642         break;
1643     case DIAG_KVM_HYPERCALL:
1644         r = handle_hypercall(cpu, run);
1645         break;
1646     case DIAG_KVM_BREAKPOINT:
1647         r = handle_sw_breakpoint(cpu, run);
1648         break;
1649     default:
1650         trace_kvm_insn_diag(func_code);
1651         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1652         break;
1653     }
1654 
1655     return r;
1656 }
1657 
1658 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1659 {
1660     CPUS390XState *env = &cpu->env;
1661     const uint8_t r1 = ipa1 >> 4;
1662     const uint8_t r3 = ipa1 & 0x0f;
1663     int ret;
1664     uint8_t order;
1665 
1666     /* get order code */
1667     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1668 
1669     ret = handle_sigp(env, order, r1, r3);
1670     setcc(cpu, ret);
1671     return 0;
1672 }
1673 
1674 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1675 {
1676     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1677     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1678     int r = -1;
1679 
1680     trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb);
1681     switch (ipa0) {
1682     case IPA0_B2:
1683         r = handle_b2(cpu, run, ipa1);
1684         break;
1685     case IPA0_B9:
1686         r = handle_b9(cpu, run, ipa1);
1687         break;
1688     case IPA0_EB:
1689         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1690         break;
1691     case IPA0_E3:
1692         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1693         break;
1694     case IPA0_DIAG:
1695         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1696         break;
1697     case IPA0_SIGP:
1698         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1699         break;
1700     }
1701 
1702     if (r < 0) {
1703         r = 0;
1704         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1705     }
1706 
1707     return r;
1708 }
1709 
1710 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1711                                    int pswoffset)
1712 {
1713     CPUState *cs = CPU(cpu);
1714 
1715     s390_cpu_halt(cpu);
1716     cpu->env.crash_reason = reason;
1717     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1718 }
1719 
1720 /* try to detect pgm check loops */
1721 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1722 {
1723     CPUState *cs = CPU(cpu);
1724     PSW oldpsw, newpsw;
1725 
1726     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1727                            offsetof(LowCore, program_new_psw));
1728     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1729                            offsetof(LowCore, program_new_psw) + 8);
1730     oldpsw.mask  = run->psw_mask;
1731     oldpsw.addr  = run->psw_addr;
1732     /*
1733      * Avoid endless loops of operation exceptions, if the pgm new
1734      * PSW will cause a new operation exception.
1735      * The heuristic checks if the pgm new psw is within 6 bytes before
1736      * the faulting psw address (with same DAT, AS settings) and the
1737      * new psw is not a wait psw and the fault was not triggered by
1738      * problem state. In that case go into crashed state.
1739      */
1740 
1741     if (oldpsw.addr - newpsw.addr <= 6 &&
1742         !(newpsw.mask & PSW_MASK_WAIT) &&
1743         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1744         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1745         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1746         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1747                                offsetof(LowCore, program_new_psw));
1748         return EXCP_HALTED;
1749     }
1750     return 0;
1751 }
1752 
1753 static int handle_intercept(S390CPU *cpu)
1754 {
1755     CPUState *cs = CPU(cpu);
1756     struct kvm_run *run = cs->kvm_run;
1757     int icpt_code = run->s390_sieic.icptcode;
1758     int r = 0;
1759 
1760     trace_kvm_intercept(icpt_code, (long)run->psw_addr);
1761     switch (icpt_code) {
1762         case ICPT_INSTRUCTION:
1763         case ICPT_PV_INSTR:
1764         case ICPT_PV_INSTR_NOTIFICATION:
1765             r = handle_instruction(cpu, run);
1766             break;
1767         case ICPT_PROGRAM:
1768             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1769                                    offsetof(LowCore, program_new_psw));
1770             r = EXCP_HALTED;
1771             break;
1772         case ICPT_EXT_INT:
1773             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1774                                    offsetof(LowCore, external_new_psw));
1775             r = EXCP_HALTED;
1776             break;
1777         case ICPT_WAITPSW:
1778             /* disabled wait, since enabled wait is handled in kernel */
1779             s390_handle_wait(cpu);
1780             r = EXCP_HALTED;
1781             break;
1782         case ICPT_CPU_STOP:
1783             do_stop_interrupt(&cpu->env);
1784             r = EXCP_HALTED;
1785             break;
1786         case ICPT_OPEREXC:
1787             /* check for break points */
1788             r = handle_sw_breakpoint(cpu, run);
1789             if (r == -ENOENT) {
1790                 /* Then check for potential pgm check loops */
1791                 r = handle_oper_loop(cpu, run);
1792                 if (r == 0) {
1793                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1794                 }
1795             }
1796             break;
1797         case ICPT_SOFT_INTERCEPT:
1798             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1799             exit(1);
1800             break;
1801         case ICPT_IO:
1802             fprintf(stderr, "KVM unimplemented icpt IO\n");
1803             exit(1);
1804             break;
1805         default:
1806             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1807             exit(1);
1808             break;
1809     }
1810 
1811     return r;
1812 }
1813 
1814 static int handle_tsch(S390CPU *cpu)
1815 {
1816     CPUState *cs = CPU(cpu);
1817     struct kvm_run *run = cs->kvm_run;
1818     int ret;
1819 
1820     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1821                              RA_IGNORED);
1822     if (ret < 0) {
1823         /*
1824          * Failure.
1825          * If an I/O interrupt had been dequeued, we have to reinject it.
1826          */
1827         if (run->s390_tsch.dequeued) {
1828             s390_io_interrupt(run->s390_tsch.subchannel_id,
1829                               run->s390_tsch.subchannel_nr,
1830                               run->s390_tsch.io_int_parm,
1831                               run->s390_tsch.io_int_word);
1832         }
1833         ret = 0;
1834     }
1835     return ret;
1836 }
1837 
1838 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1839 {
1840     const MachineState *ms = MACHINE(qdev_get_machine());
1841     uint16_t conf_cpus = 0, reserved_cpus = 0;
1842     SysIB_322 sysib;
1843     int del, i;
1844 
1845     if (s390_is_pv()) {
1846         s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1847     } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1848         return;
1849     }
1850     /* Shift the stack of Extended Names to prepare for our own data */
1851     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1852             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1853     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1854      * assumed it's not capable of managing Extended Names for lower levels.
1855      */
1856     for (del = 1; del < sysib.count; del++) {
1857         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1858             break;
1859         }
1860     }
1861     if (del < sysib.count) {
1862         memset(sysib.ext_names[del], 0,
1863                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1864     }
1865 
1866     /* count the cpus and split them into configured and reserved ones */
1867     for (i = 0; i < ms->possible_cpus->len; i++) {
1868         if (ms->possible_cpus->cpus[i].cpu) {
1869             conf_cpus++;
1870         } else {
1871             reserved_cpus++;
1872         }
1873     }
1874     sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1875     sysib.vm[0].conf_cpus = conf_cpus;
1876     sysib.vm[0].reserved_cpus = reserved_cpus;
1877 
1878     /* Insert short machine name in EBCDIC, padded with blanks */
1879     if (qemu_name) {
1880         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1881         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1882                                                     strlen(qemu_name)));
1883     }
1884     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1885     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1886      * considered by s390 as not capable of providing any Extended Name.
1887      * Therefore if no name was specified on qemu invocation, we go with the
1888      * same "KVMguest" default, which KVM has filled into short name field.
1889      */
1890     strpadcpy((char *)sysib.ext_names[0],
1891               sizeof(sysib.ext_names[0]),
1892               qemu_name ?: "KVMguest", '\0');
1893 
1894     /* Insert UUID */
1895     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1896 
1897     if (s390_is_pv()) {
1898         s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1899     } else {
1900         s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1901     }
1902 }
1903 
1904 static int handle_stsi(S390CPU *cpu)
1905 {
1906     CPUState *cs = CPU(cpu);
1907     struct kvm_run *run = cs->kvm_run;
1908 
1909     switch (run->s390_stsi.fc) {
1910     case 3:
1911         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1912             return 0;
1913         }
1914         /* Only sysib 3.2.2 needs post-handling for now. */
1915         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1916         return 0;
1917     default:
1918         return 0;
1919     }
1920 }
1921 
1922 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1923 {
1924     CPUState *cs = CPU(cpu);
1925     struct kvm_run *run = cs->kvm_run;
1926 
1927     int ret = 0;
1928     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1929 
1930     switch (arch_info->type) {
1931     case KVM_HW_WP_WRITE:
1932         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1933             cs->watchpoint_hit = &hw_watchpoint;
1934             hw_watchpoint.vaddr = arch_info->addr;
1935             hw_watchpoint.flags = BP_MEM_WRITE;
1936             ret = EXCP_DEBUG;
1937         }
1938         break;
1939     case KVM_HW_BP:
1940         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1941             ret = EXCP_DEBUG;
1942         }
1943         break;
1944     case KVM_SINGLESTEP:
1945         if (cs->singlestep_enabled) {
1946             ret = EXCP_DEBUG;
1947         }
1948         break;
1949     default:
1950         ret = -ENOSYS;
1951     }
1952 
1953     return ret;
1954 }
1955 
1956 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1957 {
1958     S390CPU *cpu = S390_CPU(cs);
1959     int ret = 0;
1960 
1961     qemu_mutex_lock_iothread();
1962 
1963     kvm_cpu_synchronize_state(cs);
1964 
1965     switch (run->exit_reason) {
1966         case KVM_EXIT_S390_SIEIC:
1967             ret = handle_intercept(cpu);
1968             break;
1969         case KVM_EXIT_S390_RESET:
1970             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1971             break;
1972         case KVM_EXIT_S390_TSCH:
1973             ret = handle_tsch(cpu);
1974             break;
1975         case KVM_EXIT_S390_STSI:
1976             ret = handle_stsi(cpu);
1977             break;
1978         case KVM_EXIT_DEBUG:
1979             ret = kvm_arch_handle_debug_exit(cpu);
1980             break;
1981         default:
1982             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1983             break;
1984     }
1985     qemu_mutex_unlock_iothread();
1986 
1987     if (ret == 0) {
1988         ret = EXCP_INTERRUPT;
1989     }
1990     return ret;
1991 }
1992 
1993 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1994 {
1995     return true;
1996 }
1997 
1998 void kvm_s390_enable_css_support(S390CPU *cpu)
1999 {
2000     int r;
2001 
2002     /* Activate host kernel channel subsystem support. */
2003     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2004     assert(r == 0);
2005 }
2006 
2007 void kvm_arch_init_irq_routing(KVMState *s)
2008 {
2009     /*
2010      * Note that while irqchip capabilities generally imply that cpustates
2011      * are handled in-kernel, it is not true for s390 (yet); therefore, we
2012      * have to override the common code kvm_halt_in_kernel_allowed setting.
2013      */
2014     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2015         kvm_gsi_routing_allowed = true;
2016         kvm_halt_in_kernel_allowed = false;
2017     }
2018 }
2019 
2020 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2021                                     int vq, bool assign)
2022 {
2023     struct kvm_ioeventfd kick = {
2024         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2025         KVM_IOEVENTFD_FLAG_DATAMATCH,
2026         .fd = event_notifier_get_fd(notifier),
2027         .datamatch = vq,
2028         .addr = sch,
2029         .len = 8,
2030     };
2031     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2032                                      kick.datamatch);
2033     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2034         return -ENOSYS;
2035     }
2036     if (!assign) {
2037         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2038     }
2039     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2040 }
2041 
2042 int kvm_s390_get_protected_dump(void)
2043 {
2044     return cap_protected_dump;
2045 }
2046 
2047 int kvm_s390_get_ri(void)
2048 {
2049     return cap_ri;
2050 }
2051 
2052 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2053 {
2054     struct kvm_mp_state mp_state = {};
2055     int ret;
2056 
2057     /* the kvm part might not have been initialized yet */
2058     if (CPU(cpu)->kvm_state == NULL) {
2059         return 0;
2060     }
2061 
2062     switch (cpu_state) {
2063     case S390_CPU_STATE_STOPPED:
2064         mp_state.mp_state = KVM_MP_STATE_STOPPED;
2065         break;
2066     case S390_CPU_STATE_CHECK_STOP:
2067         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2068         break;
2069     case S390_CPU_STATE_OPERATING:
2070         mp_state.mp_state = KVM_MP_STATE_OPERATING;
2071         break;
2072     case S390_CPU_STATE_LOAD:
2073         mp_state.mp_state = KVM_MP_STATE_LOAD;
2074         break;
2075     default:
2076         error_report("Requested CPU state is not a valid S390 CPU state: %u",
2077                      cpu_state);
2078         exit(1);
2079     }
2080 
2081     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2082     if (ret) {
2083         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2084                                        strerror(-ret));
2085     }
2086 
2087     return ret;
2088 }
2089 
2090 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2091 {
2092     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2093     struct kvm_s390_irq_state irq_state = {
2094         .buf = (uint64_t) cpu->irqstate,
2095         .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2096     };
2097     CPUState *cs = CPU(cpu);
2098     int32_t bytes;
2099 
2100     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2101         return;
2102     }
2103 
2104     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2105     if (bytes < 0) {
2106         cpu->irqstate_saved_size = 0;
2107         error_report("Migration of interrupt state failed");
2108         return;
2109     }
2110 
2111     cpu->irqstate_saved_size = bytes;
2112 }
2113 
2114 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2115 {
2116     CPUState *cs = CPU(cpu);
2117     struct kvm_s390_irq_state irq_state = {
2118         .buf = (uint64_t) cpu->irqstate,
2119         .len = cpu->irqstate_saved_size,
2120     };
2121     int r;
2122 
2123     if (cpu->irqstate_saved_size == 0) {
2124         return 0;
2125     }
2126 
2127     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2128         return -ENOSYS;
2129     }
2130 
2131     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2132     if (r) {
2133         error_report("Setting interrupt state failed %d", r);
2134     }
2135     return r;
2136 }
2137 
2138 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2139                              uint64_t address, uint32_t data, PCIDevice *dev)
2140 {
2141     S390PCIBusDevice *pbdev;
2142     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2143 
2144     if (!dev) {
2145         trace_kvm_msi_route_fixup("no pci device");
2146         return -ENODEV;
2147     }
2148 
2149     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2150     if (!pbdev) {
2151         trace_kvm_msi_route_fixup("no zpci device");
2152         return -ENODEV;
2153     }
2154 
2155     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2156     route->flags = 0;
2157     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2158     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2159     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2160     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2161     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2162     return 0;
2163 }
2164 
2165 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2166                                 int vector, PCIDevice *dev)
2167 {
2168     return 0;
2169 }
2170 
2171 int kvm_arch_release_virq_post(int virq)
2172 {
2173     return 0;
2174 }
2175 
2176 int kvm_arch_msi_data_to_gsi(uint32_t data)
2177 {
2178     abort();
2179 }
2180 
2181 static int query_cpu_subfunc(S390FeatBitmap features)
2182 {
2183     struct kvm_s390_vm_cpu_subfunc prop = {};
2184     struct kvm_device_attr attr = {
2185         .group = KVM_S390_VM_CPU_MODEL,
2186         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2187         .addr = (uint64_t) &prop,
2188     };
2189     int rc;
2190 
2191     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2192     if (rc) {
2193         return  rc;
2194     }
2195 
2196     /*
2197      * We're going to add all subfunctions now, if the corresponding feature
2198      * is available that unlocks the query functions.
2199      */
2200     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2201     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2202         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2203     }
2204     if (test_bit(S390_FEAT_MSA, features)) {
2205         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2206         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2207         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2208         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2209         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2210     }
2211     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2212         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2213     }
2214     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2215         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2216         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2217         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2218         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2219     }
2220     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2221         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2222     }
2223     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2224         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2225     }
2226     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2227         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2228     }
2229     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2230         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2231     }
2232     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2233         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2234     }
2235     return 0;
2236 }
2237 
2238 static int configure_cpu_subfunc(const S390FeatBitmap features)
2239 {
2240     struct kvm_s390_vm_cpu_subfunc prop = {};
2241     struct kvm_device_attr attr = {
2242         .group = KVM_S390_VM_CPU_MODEL,
2243         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2244         .addr = (uint64_t) &prop,
2245     };
2246 
2247     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2248                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2249         /* hardware support might be missing, IBC will handle most of this */
2250         return 0;
2251     }
2252 
2253     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2254     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2255         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2256     }
2257     if (test_bit(S390_FEAT_MSA, features)) {
2258         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2259         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2260         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2261         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2262         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2263     }
2264     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2265         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2266     }
2267     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2268         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2269         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2270         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2271         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2272     }
2273     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2274         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2275     }
2276     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2277         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2278     }
2279     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2280         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2281     }
2282     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2283         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2284     }
2285     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2286         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2287     }
2288     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2289 }
2290 
2291 static int kvm_to_feat[][2] = {
2292     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2293     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2294     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2295     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2296     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2297     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2298     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2299     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2300     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2301     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2302     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2303     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2304     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2305     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2306 };
2307 
2308 static int query_cpu_feat(S390FeatBitmap features)
2309 {
2310     struct kvm_s390_vm_cpu_feat prop = {};
2311     struct kvm_device_attr attr = {
2312         .group = KVM_S390_VM_CPU_MODEL,
2313         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2314         .addr = (uint64_t) &prop,
2315     };
2316     int rc;
2317     int i;
2318 
2319     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2320     if (rc) {
2321         return  rc;
2322     }
2323 
2324     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2325         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2326             set_bit(kvm_to_feat[i][1], features);
2327         }
2328     }
2329     return 0;
2330 }
2331 
2332 static int configure_cpu_feat(const S390FeatBitmap features)
2333 {
2334     struct kvm_s390_vm_cpu_feat prop = {};
2335     struct kvm_device_attr attr = {
2336         .group = KVM_S390_VM_CPU_MODEL,
2337         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2338         .addr = (uint64_t) &prop,
2339     };
2340     int i;
2341 
2342     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2343         if (test_bit(kvm_to_feat[i][1], features)) {
2344             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2345         }
2346     }
2347     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2348 }
2349 
2350 bool kvm_s390_cpu_models_supported(void)
2351 {
2352     if (!cpu_model_allowed()) {
2353         /* compatibility machines interfere with the cpu model */
2354         return false;
2355     }
2356     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2357                              KVM_S390_VM_CPU_MACHINE) &&
2358            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2359                              KVM_S390_VM_CPU_PROCESSOR) &&
2360            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2361                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2362            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2363                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2364            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2365                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2366 }
2367 
2368 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2369 {
2370     struct kvm_s390_vm_cpu_machine prop = {};
2371     struct kvm_device_attr attr = {
2372         .group = KVM_S390_VM_CPU_MODEL,
2373         .attr = KVM_S390_VM_CPU_MACHINE,
2374         .addr = (uint64_t) &prop,
2375     };
2376     uint16_t unblocked_ibc = 0, cpu_type = 0;
2377     int rc;
2378 
2379     memset(model, 0, sizeof(*model));
2380 
2381     if (!kvm_s390_cpu_models_supported()) {
2382         error_setg(errp, "KVM doesn't support CPU models");
2383         return;
2384     }
2385 
2386     /* query the basic cpu model properties */
2387     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2388     if (rc) {
2389         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2390         return;
2391     }
2392 
2393     cpu_type = cpuid_type(prop.cpuid);
2394     if (has_ibc(prop.ibc)) {
2395         model->lowest_ibc = lowest_ibc(prop.ibc);
2396         unblocked_ibc = unblocked_ibc(prop.ibc);
2397     }
2398     model->cpu_id = cpuid_id(prop.cpuid);
2399     model->cpu_id_format = cpuid_format(prop.cpuid);
2400     model->cpu_ver = 0xff;
2401 
2402     /* get supported cpu features indicated via STFL(E) */
2403     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2404                              (uint8_t *) prop.fac_mask);
2405     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2406     if (test_bit(S390_FEAT_STFLE, model->features)) {
2407         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2408     }
2409     /* get supported cpu features indicated e.g. via SCLP */
2410     rc = query_cpu_feat(model->features);
2411     if (rc) {
2412         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2413         return;
2414     }
2415     /* get supported cpu subfunctions indicated via query / test bit */
2416     rc = query_cpu_subfunc(model->features);
2417     if (rc) {
2418         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2419         return;
2420     }
2421 
2422     /* PTFF subfunctions might be indicated although kernel support missing */
2423     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2424         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2425         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2426         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2427         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2428     }
2429 
2430     /* with cpu model support, CMM is only indicated if really available */
2431     if (kvm_s390_cmma_available()) {
2432         set_bit(S390_FEAT_CMM, model->features);
2433     } else {
2434         /* no cmm -> no cmm nt */
2435         clear_bit(S390_FEAT_CMM_NT, model->features);
2436     }
2437 
2438     /* bpb needs kernel support for migration, VSIE and reset */
2439     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2440         clear_bit(S390_FEAT_BPB, model->features);
2441     }
2442 
2443     /*
2444      * If we have support for protected virtualization, indicate
2445      * the protected virtualization IPL unpack facility.
2446      */
2447     if (cap_protected) {
2448         set_bit(S390_FEAT_UNPACK, model->features);
2449     }
2450 
2451     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2452     set_bit(S390_FEAT_ZPCI, model->features);
2453     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2454 
2455     if (s390_known_cpu_type(cpu_type)) {
2456         /* we want the exact model, even if some features are missing */
2457         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2458                                        ibc_ec_ga(unblocked_ibc), NULL);
2459     } else {
2460         /* model unknown, e.g. too new - search using features */
2461         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2462                                        ibc_ec_ga(unblocked_ibc),
2463                                        model->features);
2464     }
2465     if (!model->def) {
2466         error_setg(errp, "KVM: host CPU model could not be identified");
2467         return;
2468     }
2469     /* for now, we can only provide the AP feature with HW support */
2470     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2471         KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2472         set_bit(S390_FEAT_AP, model->features);
2473     }
2474 
2475     /*
2476      * Extended-Length SCCB is handled entirely within QEMU.
2477      * For PV guests this is completely fenced by the Ultravisor, as Service
2478      * Call error checking and STFLE interpretation are handled via SIE.
2479      */
2480     set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2481 
2482     if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2483         set_bit(S390_FEAT_DIAG_318, model->features);
2484     }
2485 
2486     /* strip of features that are not part of the maximum model */
2487     bitmap_and(model->features, model->features, model->def->full_feat,
2488                S390_FEAT_MAX);
2489 }
2490 
2491 static void kvm_s390_configure_apie(bool interpret)
2492 {
2493     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2494                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2495 
2496     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2497         kvm_s390_set_attr(attr);
2498     }
2499 }
2500 
2501 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2502 {
2503     struct kvm_s390_vm_cpu_processor prop  = {
2504         .fac_list = { 0 },
2505     };
2506     struct kvm_device_attr attr = {
2507         .group = KVM_S390_VM_CPU_MODEL,
2508         .attr = KVM_S390_VM_CPU_PROCESSOR,
2509         .addr = (uint64_t) &prop,
2510     };
2511     int rc;
2512 
2513     if (!model) {
2514         /* compatibility handling if cpu models are disabled */
2515         if (kvm_s390_cmma_available()) {
2516             kvm_s390_enable_cmma();
2517         }
2518         return;
2519     }
2520     if (!kvm_s390_cpu_models_supported()) {
2521         error_setg(errp, "KVM doesn't support CPU models");
2522         return;
2523     }
2524     prop.cpuid = s390_cpuid_from_cpu_model(model);
2525     prop.ibc = s390_ibc_from_cpu_model(model);
2526     /* configure cpu features indicated via STFL(e) */
2527     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2528                          (uint8_t *) prop.fac_list);
2529     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2530     if (rc) {
2531         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2532         return;
2533     }
2534     /* configure cpu features indicated e.g. via SCLP */
2535     rc = configure_cpu_feat(model->features);
2536     if (rc) {
2537         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2538         return;
2539     }
2540     /* configure cpu subfunctions indicated via query / test bit */
2541     rc = configure_cpu_subfunc(model->features);
2542     if (rc) {
2543         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2544         return;
2545     }
2546     /* enable CMM via CMMA */
2547     if (test_bit(S390_FEAT_CMM, model->features)) {
2548         kvm_s390_enable_cmma();
2549     }
2550 
2551     if (test_bit(S390_FEAT_AP, model->features)) {
2552         kvm_s390_configure_apie(true);
2553     }
2554 }
2555 
2556 void kvm_s390_restart_interrupt(S390CPU *cpu)
2557 {
2558     struct kvm_s390_irq irq = {
2559         .type = KVM_S390_RESTART,
2560     };
2561 
2562     kvm_s390_vcpu_interrupt(cpu, &irq);
2563 }
2564 
2565 void kvm_s390_stop_interrupt(S390CPU *cpu)
2566 {
2567     struct kvm_s390_irq irq = {
2568         .type = KVM_S390_SIGP_STOP,
2569     };
2570 
2571     kvm_s390_vcpu_interrupt(cpu, &irq);
2572 }
2573 
2574 bool kvm_arch_cpu_check_are_resettable(void)
2575 {
2576     return true;
2577 }
2578 
2579 int kvm_s390_get_zpci_op(void)
2580 {
2581     return cap_zpci_op;
2582 }
2583 
2584 void kvm_arch_accel_class_init(ObjectClass *oc)
2585 {
2586 }
2587