1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "cpu.h" 28 #include "s390x-internal.h" 29 #include "kvm_s390x.h" 30 #include "sysemu/kvm_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/units.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/mmap-alloc.h" 38 #include "qemu/log.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/hw_accel.h" 41 #include "sysemu/runstate.h" 42 #include "sysemu/device_tree.h" 43 #include "gdbstub/enums.h" 44 #include "exec/ram_addr.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-virtio-hcall.h" 53 #include "target/s390x/kvm/pv.h" 54 55 #define kvm_vm_check_mem_attr(s, attr) \ 56 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 57 58 #define IPA0_DIAG 0x8300 59 #define IPA0_SIGP 0xae00 60 #define IPA0_B2 0xb200 61 #define IPA0_B9 0xb900 62 #define IPA0_EB 0xeb00 63 #define IPA0_E3 0xe300 64 65 #define PRIV_B2_SCLP_CALL 0x20 66 #define PRIV_B2_CSCH 0x30 67 #define PRIV_B2_HSCH 0x31 68 #define PRIV_B2_MSCH 0x32 69 #define PRIV_B2_SSCH 0x33 70 #define PRIV_B2_STSCH 0x34 71 #define PRIV_B2_TSCH 0x35 72 #define PRIV_B2_TPI 0x36 73 #define PRIV_B2_SAL 0x37 74 #define PRIV_B2_RSCH 0x38 75 #define PRIV_B2_STCRW 0x39 76 #define PRIV_B2_STCPS 0x3a 77 #define PRIV_B2_RCHP 0x3b 78 #define PRIV_B2_SCHM 0x3c 79 #define PRIV_B2_CHSC 0x5f 80 #define PRIV_B2_SIGA 0x74 81 #define PRIV_B2_XSCH 0x76 82 83 #define PRIV_EB_SQBS 0x8a 84 #define PRIV_EB_PCISTB 0xd0 85 #define PRIV_EB_SIC 0xd1 86 87 #define PRIV_B9_EQBS 0x9c 88 #define PRIV_B9_CLP 0xa0 89 #define PRIV_B9_PTF 0xa2 90 #define PRIV_B9_PCISTG 0xd0 91 #define PRIV_B9_PCILG 0xd2 92 #define PRIV_B9_RPCIT 0xd3 93 94 #define PRIV_E3_MPCIFC 0xd0 95 #define PRIV_E3_STPCIFC 0xd4 96 97 #define DIAG_TIMEREVENT 0x288 98 #define DIAG_IPL 0x308 99 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318 100 #define DIAG_KVM_HYPERCALL 0x500 101 #define DIAG_KVM_BREAKPOINT 0x501 102 103 #define ICPT_INSTRUCTION 0x04 104 #define ICPT_PROGRAM 0x08 105 #define ICPT_EXT_INT 0x14 106 #define ICPT_WAITPSW 0x1c 107 #define ICPT_SOFT_INTERCEPT 0x24 108 #define ICPT_CPU_STOP 0x28 109 #define ICPT_OPEREXC 0x2c 110 #define ICPT_IO 0x40 111 #define ICPT_PV_INSTR 0x68 112 #define ICPT_PV_INSTR_NOTIFICATION 0x6c 113 114 #define NR_LOCAL_IRQS 32 115 /* 116 * Needs to be big enough to contain max_cpus emergency signals 117 * and in addition NR_LOCAL_IRQS interrupts 118 */ 119 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 120 (max_cpus + NR_LOCAL_IRQS)) 121 /* 122 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 123 * as the dirty bitmap must be managed by bitops that take an int as 124 * position indicator. This would end at an unaligned address 125 * (0x7fffff00000). As future variants might provide larger pages 126 * and to make all addresses properly aligned, let us split at 4TB. 127 */ 128 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 129 130 static CPUWatchpoint hw_watchpoint; 131 /* 132 * We don't use a list because this structure is also used to transmit the 133 * hardware breakpoints to the kernel. 134 */ 135 static struct kvm_hw_breakpoint *hw_breakpoints; 136 static int nb_hw_breakpoints; 137 138 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 139 KVM_CAP_LAST_INFO 140 }; 141 142 static int cap_async_pf; 143 static int cap_mem_op; 144 static int cap_mem_op_extension; 145 static int cap_s390_irq; 146 static int cap_ri; 147 static int cap_hpage_1m; 148 static int cap_vcpu_resets; 149 static int cap_protected; 150 static int cap_zpci_op; 151 static int cap_protected_dump; 152 153 static bool mem_op_storage_key_support; 154 155 static int active_cmma; 156 157 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 158 { 159 struct kvm_device_attr attr = { 160 .group = KVM_S390_VM_MEM_CTRL, 161 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 162 .addr = (uint64_t) memory_limit, 163 }; 164 165 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 166 } 167 168 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 169 { 170 int rc; 171 172 struct kvm_device_attr attr = { 173 .group = KVM_S390_VM_MEM_CTRL, 174 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 175 .addr = (uint64_t) &new_limit, 176 }; 177 178 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 179 return 0; 180 } 181 182 rc = kvm_s390_query_mem_limit(hw_limit); 183 if (rc) { 184 return rc; 185 } else if (*hw_limit < new_limit) { 186 return -E2BIG; 187 } 188 189 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 190 } 191 192 int kvm_s390_cmma_active(void) 193 { 194 return active_cmma; 195 } 196 197 static bool kvm_s390_cmma_available(void) 198 { 199 static bool initialized, value; 200 201 if (!initialized) { 202 initialized = true; 203 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 204 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 205 } 206 return value; 207 } 208 209 void kvm_s390_cmma_reset(void) 210 { 211 int rc; 212 struct kvm_device_attr attr = { 213 .group = KVM_S390_VM_MEM_CTRL, 214 .attr = KVM_S390_VM_MEM_CLR_CMMA, 215 }; 216 217 if (!kvm_s390_cmma_active()) { 218 return; 219 } 220 221 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 222 trace_kvm_clear_cmma(rc); 223 } 224 225 static void kvm_s390_enable_cmma(void) 226 { 227 int rc; 228 struct kvm_device_attr attr = { 229 .group = KVM_S390_VM_MEM_CTRL, 230 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 231 }; 232 233 if (cap_hpage_1m) { 234 warn_report("CMM will not be enabled because it is not " 235 "compatible with huge memory backings."); 236 return; 237 } 238 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 239 active_cmma = !rc; 240 trace_kvm_enable_cmma(rc); 241 } 242 243 static void kvm_s390_set_crypto_attr(uint64_t attr) 244 { 245 struct kvm_device_attr attribute = { 246 .group = KVM_S390_VM_CRYPTO, 247 .attr = attr, 248 }; 249 250 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 251 252 if (ret) { 253 error_report("Failed to set crypto device attribute %lu: %s", 254 attr, strerror(-ret)); 255 } 256 } 257 258 static void kvm_s390_init_aes_kw(void) 259 { 260 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 261 262 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 263 NULL)) { 264 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 265 } 266 267 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 268 kvm_s390_set_crypto_attr(attr); 269 } 270 } 271 272 static void kvm_s390_init_dea_kw(void) 273 { 274 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 275 276 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 277 NULL)) { 278 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 279 } 280 281 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 282 kvm_s390_set_crypto_attr(attr); 283 } 284 } 285 286 void kvm_s390_crypto_reset(void) 287 { 288 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 289 kvm_s390_init_aes_kw(); 290 kvm_s390_init_dea_kw(); 291 } 292 } 293 294 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 295 { 296 if (pagesize == 4 * KiB) { 297 return; 298 } 299 300 if (!hpage_1m_allowed()) { 301 error_setg(errp, "This QEMU machine does not support huge page " 302 "mappings"); 303 return; 304 } 305 306 if (pagesize != 1 * MiB) { 307 error_setg(errp, "Memory backing with 2G pages was specified, " 308 "but KVM does not support this memory backing"); 309 return; 310 } 311 312 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 313 error_setg(errp, "Memory backing with 1M pages was specified, " 314 "but KVM does not support this memory backing"); 315 return; 316 } 317 318 cap_hpage_1m = 1; 319 } 320 321 int kvm_s390_get_hpage_1m(void) 322 { 323 return cap_hpage_1m; 324 } 325 326 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) 327 { 328 MachineClass *mc = MACHINE_CLASS(oc); 329 330 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 331 } 332 333 int kvm_arch_get_default_type(MachineState *ms) 334 { 335 return 0; 336 } 337 338 int kvm_arch_init(MachineState *ms, KVMState *s) 339 { 340 int required_caps[] = { 341 KVM_CAP_DEVICE_CTRL, 342 KVM_CAP_SYNC_REGS, 343 }; 344 345 for (int i = 0; i < ARRAY_SIZE(required_caps); i++) { 346 if (!kvm_check_extension(s, required_caps[i])) { 347 error_report("KVM is missing capability #%d - " 348 "please use kernel 3.15 or newer", required_caps[i]); 349 return -1; 350 } 351 } 352 353 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, 354 false, NULL); 355 356 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) { 357 error_report("KVM is missing capability KVM_CAP_S390_COW - " 358 "unsupported environment"); 359 return -1; 360 } 361 362 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 363 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 364 cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION); 365 mem_op_storage_key_support = cap_mem_op_extension > 0; 366 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 367 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); 368 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED); 369 cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP); 370 cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP); 371 372 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 373 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 374 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 375 kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0); 376 if (ri_allowed()) { 377 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 378 cap_ri = 1; 379 } 380 } 381 if (cpu_model_allowed()) { 382 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0); 383 } 384 385 /* 386 * The migration interface for ais was introduced with kernel 4.13 387 * but the capability itself had been active since 4.12. As migration 388 * support is considered necessary, we only try to enable this for 389 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. 390 */ 391 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() && 392 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { 393 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); 394 } 395 396 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 397 return 0; 398 } 399 400 int kvm_arch_irqchip_create(KVMState *s) 401 { 402 return 0; 403 } 404 405 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 406 { 407 return cpu->cpu_index; 408 } 409 410 int kvm_arch_init_vcpu(CPUState *cs) 411 { 412 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 413 S390CPU *cpu = S390_CPU(cs); 414 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 415 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 416 return 0; 417 } 418 419 int kvm_arch_destroy_vcpu(CPUState *cs) 420 { 421 S390CPU *cpu = S390_CPU(cs); 422 423 g_free(cpu->irqstate); 424 cpu->irqstate = NULL; 425 426 return 0; 427 } 428 429 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) 430 { 431 CPUState *cs = CPU(cpu); 432 433 /* 434 * The reset call is needed here to reset in-kernel vcpu data that 435 * we can't access directly from QEMU (i.e. with older kernels 436 * which don't support sync_regs/ONE_REG). Before this ioctl 437 * cpu_synchronize_state() is called in common kvm code 438 * (kvm-all). 439 */ 440 if (kvm_vcpu_ioctl(cs, type)) { 441 error_report("CPU reset failed on CPU %i type %lx", 442 cs->cpu_index, type); 443 } 444 } 445 446 void kvm_s390_reset_vcpu_initial(S390CPU *cpu) 447 { 448 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 449 } 450 451 void kvm_s390_reset_vcpu_clear(S390CPU *cpu) 452 { 453 if (cap_vcpu_resets) { 454 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); 455 } else { 456 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 457 } 458 } 459 460 void kvm_s390_reset_vcpu_normal(S390CPU *cpu) 461 { 462 if (cap_vcpu_resets) { 463 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); 464 } 465 } 466 467 static int can_sync_regs(CPUState *cs, int regs) 468 { 469 return (cs->kvm_run->kvm_valid_regs & regs) == regs; 470 } 471 472 #define KVM_SYNC_REQUIRED_REGS (KVM_SYNC_GPRS | KVM_SYNC_ACRS | \ 473 KVM_SYNC_CRS | KVM_SYNC_PREFIX) 474 475 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp) 476 { 477 CPUS390XState *env = cpu_env(cs); 478 struct kvm_fpu fpu = {}; 479 int r; 480 int i; 481 482 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS)); 483 484 /* always save the PSW and the GPRS*/ 485 cs->kvm_run->psw_addr = env->psw.addr; 486 cs->kvm_run->psw_mask = env->psw.mask; 487 488 memcpy(cs->kvm_run->s.regs.gprs, env->regs, sizeof(cs->kvm_run->s.regs.gprs)); 489 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 490 491 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 492 for (i = 0; i < 32; i++) { 493 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 494 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 495 } 496 cs->kvm_run->s.regs.fpc = env->fpc; 497 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 498 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 499 for (i = 0; i < 16; i++) { 500 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 501 } 502 cs->kvm_run->s.regs.fpc = env->fpc; 503 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 504 } else { 505 /* Floating point */ 506 for (i = 0; i < 16; i++) { 507 fpu.fprs[i] = *get_freg(env, i); 508 } 509 fpu.fpc = env->fpc; 510 511 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 512 if (r < 0) { 513 return r; 514 } 515 } 516 517 /* Do we need to save more than that? */ 518 if (level == KVM_PUT_RUNTIME_STATE) { 519 return 0; 520 } 521 522 /* 523 * Access registers, control registers and the prefix - these are 524 * always available via kvm_sync_regs in the kernels that we support 525 */ 526 memcpy(cs->kvm_run->s.regs.acrs, env->aregs, sizeof(cs->kvm_run->s.regs.acrs)); 527 memcpy(cs->kvm_run->s.regs.crs, env->cregs, sizeof(cs->kvm_run->s.regs.crs)); 528 cs->kvm_run->s.regs.prefix = env->psa; 529 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_PREFIX; 530 531 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 532 cs->kvm_run->s.regs.cputm = env->cputm; 533 cs->kvm_run->s.regs.ckc = env->ckc; 534 cs->kvm_run->s.regs.todpr = env->todpr; 535 cs->kvm_run->s.regs.gbea = env->gbea; 536 cs->kvm_run->s.regs.pp = env->pp; 537 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 538 } else { 539 /* 540 * These ONE_REGS are not protected by a capability. As they are only 541 * necessary for migration we just trace a possible error, but don't 542 * return with an error return code. 543 */ 544 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 545 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 546 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 547 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 548 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 549 } 550 551 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 552 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 553 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 554 } 555 556 /* pfault parameters */ 557 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 558 cs->kvm_run->s.regs.pft = env->pfault_token; 559 cs->kvm_run->s.regs.pfs = env->pfault_select; 560 cs->kvm_run->s.regs.pfc = env->pfault_compare; 561 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 562 } else if (cap_async_pf) { 563 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 564 if (r < 0) { 565 return r; 566 } 567 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 568 if (r < 0) { 569 return r; 570 } 571 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 572 if (r < 0) { 573 return r; 574 } 575 } 576 577 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 578 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 579 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 580 } 581 582 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 583 cs->kvm_run->s.regs.bpbc = env->bpbc; 584 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 585 } 586 587 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 588 cs->kvm_run->s.regs.etoken = env->etoken; 589 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 590 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 591 } 592 593 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 594 cs->kvm_run->s.regs.diag318 = env->diag318_info; 595 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 596 } 597 598 return 0; 599 } 600 601 int kvm_arch_get_registers(CPUState *cs, Error **errp) 602 { 603 CPUS390XState *env = cpu_env(cs); 604 struct kvm_fpu fpu; 605 int i, r; 606 607 /* get the PSW */ 608 env->psw.addr = cs->kvm_run->psw_addr; 609 env->psw.mask = cs->kvm_run->psw_mask; 610 611 /* the GPRS, ACRS and CRS */ 612 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS)); 613 memcpy(env->regs, cs->kvm_run->s.regs.gprs, sizeof(env->regs)); 614 memcpy(env->aregs, cs->kvm_run->s.regs.acrs, sizeof(env->aregs)); 615 memcpy(env->cregs, cs->kvm_run->s.regs.crs, sizeof(env->cregs)); 616 617 /* The prefix */ 618 env->psa = cs->kvm_run->s.regs.prefix; 619 620 /* Floating point and vector registers */ 621 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 622 for (i = 0; i < 32; i++) { 623 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 624 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 625 } 626 env->fpc = cs->kvm_run->s.regs.fpc; 627 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 628 for (i = 0; i < 16; i++) { 629 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 630 } 631 env->fpc = cs->kvm_run->s.regs.fpc; 632 } else { 633 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 634 if (r < 0) { 635 return r; 636 } 637 for (i = 0; i < 16; i++) { 638 *get_freg(env, i) = fpu.fprs[i]; 639 } 640 env->fpc = fpu.fpc; 641 } 642 643 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 644 env->cputm = cs->kvm_run->s.regs.cputm; 645 env->ckc = cs->kvm_run->s.regs.ckc; 646 env->todpr = cs->kvm_run->s.regs.todpr; 647 env->gbea = cs->kvm_run->s.regs.gbea; 648 env->pp = cs->kvm_run->s.regs.pp; 649 } else { 650 /* 651 * These ONE_REGS are not protected by a capability. As they are only 652 * necessary for migration we just trace a possible error, but don't 653 * return with an error return code. 654 */ 655 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 656 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 657 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 658 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 659 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 660 } 661 662 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 663 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 664 } 665 666 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 667 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 668 } 669 670 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 671 env->bpbc = cs->kvm_run->s.regs.bpbc; 672 } 673 674 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 675 env->etoken = cs->kvm_run->s.regs.etoken; 676 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 677 } 678 679 /* pfault parameters */ 680 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 681 env->pfault_token = cs->kvm_run->s.regs.pft; 682 env->pfault_select = cs->kvm_run->s.regs.pfs; 683 env->pfault_compare = cs->kvm_run->s.regs.pfc; 684 } else if (cap_async_pf) { 685 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 686 if (r < 0) { 687 return r; 688 } 689 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 690 if (r < 0) { 691 return r; 692 } 693 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 694 if (r < 0) { 695 return r; 696 } 697 } 698 699 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 700 env->diag318_info = cs->kvm_run->s.regs.diag318; 701 } 702 703 return 0; 704 } 705 706 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 707 { 708 int r; 709 struct kvm_device_attr attr = { 710 .group = KVM_S390_VM_TOD, 711 .attr = KVM_S390_VM_TOD_LOW, 712 .addr = (uint64_t)tod_low, 713 }; 714 715 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 716 if (r) { 717 return r; 718 } 719 720 attr.attr = KVM_S390_VM_TOD_HIGH; 721 attr.addr = (uint64_t)tod_high; 722 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 723 } 724 725 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 726 { 727 int r; 728 struct kvm_s390_vm_tod_clock gtod; 729 struct kvm_device_attr attr = { 730 .group = KVM_S390_VM_TOD, 731 .attr = KVM_S390_VM_TOD_EXT, 732 .addr = (uint64_t)>od, 733 }; 734 735 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 736 *tod_high = gtod.epoch_idx; 737 *tod_low = gtod.tod; 738 739 return r; 740 } 741 742 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 743 { 744 int r; 745 struct kvm_device_attr attr = { 746 .group = KVM_S390_VM_TOD, 747 .attr = KVM_S390_VM_TOD_LOW, 748 .addr = (uint64_t)&tod_low, 749 }; 750 751 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 752 if (r) { 753 return r; 754 } 755 756 attr.attr = KVM_S390_VM_TOD_HIGH; 757 attr.addr = (uint64_t)&tod_high; 758 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 759 } 760 761 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 762 { 763 struct kvm_s390_vm_tod_clock gtod = { 764 .epoch_idx = tod_high, 765 .tod = tod_low, 766 }; 767 struct kvm_device_attr attr = { 768 .group = KVM_S390_VM_TOD, 769 .attr = KVM_S390_VM_TOD_EXT, 770 .addr = (uint64_t)>od, 771 }; 772 773 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 774 } 775 776 /** 777 * kvm_s390_mem_op: 778 * @addr: the logical start address in guest memory 779 * @ar: the access register number 780 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 781 * @len: length that should be transferred 782 * @is_write: true = write, false = read 783 * Returns: 0 on success, non-zero if an exception or error occurred 784 * 785 * Use KVM ioctl to read/write from/to guest memory. An access exception 786 * is injected into the vCPU in case of translation errors. 787 */ 788 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 789 int len, bool is_write) 790 { 791 struct kvm_s390_mem_op mem_op = { 792 .gaddr = addr, 793 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 794 .size = len, 795 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 796 : KVM_S390_MEMOP_LOGICAL_READ, 797 .buf = (uint64_t)hostbuf, 798 .ar = ar, 799 .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY, 800 }; 801 int ret; 802 803 if (!cap_mem_op) { 804 return -ENOSYS; 805 } 806 if (!hostbuf) { 807 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 808 } 809 if (mem_op_storage_key_support) { 810 mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION; 811 } 812 813 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 814 if (ret < 0) { 815 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 816 } 817 return ret; 818 } 819 820 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf, 821 int len, bool is_write) 822 { 823 struct kvm_s390_mem_op mem_op = { 824 .sida_offset = offset, 825 .size = len, 826 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE 827 : KVM_S390_MEMOP_SIDA_READ, 828 .buf = (uint64_t)hostbuf, 829 }; 830 int ret; 831 832 if (!cap_mem_op || !cap_protected) { 833 return -ENOSYS; 834 } 835 836 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 837 if (ret < 0) { 838 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 839 abort(); 840 } 841 return ret; 842 } 843 844 static uint8_t const *sw_bp_inst; 845 static uint8_t sw_bp_ilen; 846 847 static void determine_sw_breakpoint_instr(void) 848 { 849 /* DIAG 501 is used for sw breakpoints with old kernels */ 850 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 851 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 852 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 853 854 if (sw_bp_inst) { 855 return; 856 } 857 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 858 sw_bp_inst = diag_501; 859 sw_bp_ilen = sizeof(diag_501); 860 trace_kvm_sw_breakpoint(4); 861 } else { 862 sw_bp_inst = instr_0x0000; 863 sw_bp_ilen = sizeof(instr_0x0000); 864 trace_kvm_sw_breakpoint(2); 865 } 866 } 867 868 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 869 { 870 determine_sw_breakpoint_instr(); 871 872 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 873 sw_bp_ilen, 0) || 874 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 875 return -EINVAL; 876 } 877 return 0; 878 } 879 880 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 881 { 882 uint8_t t[MAX_ILEN]; 883 884 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 885 return -EINVAL; 886 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 887 return -EINVAL; 888 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 889 sw_bp_ilen, 1)) { 890 return -EINVAL; 891 } 892 893 return 0; 894 } 895 896 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 897 int len, int type) 898 { 899 int n; 900 901 for (n = 0; n < nb_hw_breakpoints; n++) { 902 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 903 (hw_breakpoints[n].len == len || len == -1)) { 904 return &hw_breakpoints[n]; 905 } 906 } 907 908 return NULL; 909 } 910 911 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 912 { 913 int size; 914 915 if (find_hw_breakpoint(addr, len, type)) { 916 return -EEXIST; 917 } 918 919 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 920 921 if (!hw_breakpoints) { 922 nb_hw_breakpoints = 0; 923 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 924 } else { 925 hw_breakpoints = 926 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 927 } 928 929 if (!hw_breakpoints) { 930 nb_hw_breakpoints = 0; 931 return -ENOMEM; 932 } 933 934 hw_breakpoints[nb_hw_breakpoints].addr = addr; 935 hw_breakpoints[nb_hw_breakpoints].len = len; 936 hw_breakpoints[nb_hw_breakpoints].type = type; 937 938 nb_hw_breakpoints++; 939 940 return 0; 941 } 942 943 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 944 { 945 switch (type) { 946 case GDB_BREAKPOINT_HW: 947 type = KVM_HW_BP; 948 break; 949 case GDB_WATCHPOINT_WRITE: 950 if (len < 1) { 951 return -EINVAL; 952 } 953 type = KVM_HW_WP_WRITE; 954 break; 955 default: 956 return -ENOSYS; 957 } 958 return insert_hw_breakpoint(addr, len, type); 959 } 960 961 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 962 { 963 int size; 964 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 965 966 if (bp == NULL) { 967 return -ENOENT; 968 } 969 970 nb_hw_breakpoints--; 971 if (nb_hw_breakpoints > 0) { 972 /* 973 * In order to trim the array, move the last element to the position to 974 * be removed - if necessary. 975 */ 976 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 977 *bp = hw_breakpoints[nb_hw_breakpoints]; 978 } 979 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 980 hw_breakpoints = 981 g_realloc(hw_breakpoints, size); 982 } else { 983 g_free(hw_breakpoints); 984 hw_breakpoints = NULL; 985 } 986 987 return 0; 988 } 989 990 void kvm_arch_remove_all_hw_breakpoints(void) 991 { 992 nb_hw_breakpoints = 0; 993 g_free(hw_breakpoints); 994 hw_breakpoints = NULL; 995 } 996 997 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 998 { 999 int i; 1000 1001 if (nb_hw_breakpoints > 0) { 1002 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 1003 dbg->arch.hw_bp = hw_breakpoints; 1004 1005 for (i = 0; i < nb_hw_breakpoints; ++i) { 1006 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 1007 hw_breakpoints[i].addr); 1008 } 1009 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1010 } else { 1011 dbg->arch.nr_hw_bp = 0; 1012 dbg->arch.hw_bp = NULL; 1013 } 1014 } 1015 1016 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1017 { 1018 } 1019 1020 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1021 { 1022 return MEMTXATTRS_UNSPECIFIED; 1023 } 1024 1025 int kvm_arch_process_async_events(CPUState *cs) 1026 { 1027 return cs->halted; 1028 } 1029 1030 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1031 struct kvm_s390_interrupt *interrupt) 1032 { 1033 int r = 0; 1034 1035 interrupt->type = irq->type; 1036 switch (irq->type) { 1037 case KVM_S390_INT_VIRTIO: 1038 interrupt->parm = irq->u.ext.ext_params; 1039 /* fall through */ 1040 case KVM_S390_INT_PFAULT_INIT: 1041 case KVM_S390_INT_PFAULT_DONE: 1042 interrupt->parm64 = irq->u.ext.ext_params2; 1043 break; 1044 case KVM_S390_PROGRAM_INT: 1045 interrupt->parm = irq->u.pgm.code; 1046 break; 1047 case KVM_S390_SIGP_SET_PREFIX: 1048 interrupt->parm = irq->u.prefix.address; 1049 break; 1050 case KVM_S390_INT_SERVICE: 1051 interrupt->parm = irq->u.ext.ext_params; 1052 break; 1053 case KVM_S390_MCHK: 1054 interrupt->parm = irq->u.mchk.cr14; 1055 interrupt->parm64 = irq->u.mchk.mcic; 1056 break; 1057 case KVM_S390_INT_EXTERNAL_CALL: 1058 interrupt->parm = irq->u.extcall.code; 1059 break; 1060 case KVM_S390_INT_EMERGENCY: 1061 interrupt->parm = irq->u.emerg.code; 1062 break; 1063 case KVM_S390_SIGP_STOP: 1064 case KVM_S390_RESTART: 1065 break; /* These types have no parameters */ 1066 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1067 interrupt->parm = irq->u.io.subchannel_id << 16; 1068 interrupt->parm |= irq->u.io.subchannel_nr; 1069 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1070 interrupt->parm64 |= irq->u.io.io_int_word; 1071 break; 1072 default: 1073 r = -EINVAL; 1074 break; 1075 } 1076 return r; 1077 } 1078 1079 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1080 { 1081 struct kvm_s390_interrupt kvmint = {}; 1082 int r; 1083 1084 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1085 if (r < 0) { 1086 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1087 exit(1); 1088 } 1089 1090 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1091 if (r < 0) { 1092 fprintf(stderr, "KVM failed to inject interrupt\n"); 1093 exit(1); 1094 } 1095 } 1096 1097 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1098 { 1099 CPUState *cs = CPU(cpu); 1100 int r; 1101 1102 if (cap_s390_irq) { 1103 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1104 if (!r) { 1105 return; 1106 } 1107 error_report("KVM failed to inject interrupt %llx", irq->type); 1108 exit(1); 1109 } 1110 1111 inject_vcpu_irq_legacy(cs, irq); 1112 } 1113 1114 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1115 { 1116 struct kvm_s390_interrupt kvmint = {}; 1117 int r; 1118 1119 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1120 if (r < 0) { 1121 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1122 exit(1); 1123 } 1124 1125 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1126 if (r < 0) { 1127 fprintf(stderr, "KVM failed to inject interrupt\n"); 1128 exit(1); 1129 } 1130 } 1131 1132 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1133 { 1134 struct kvm_s390_irq irq = { 1135 .type = KVM_S390_PROGRAM_INT, 1136 .u.pgm.code = code, 1137 }; 1138 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1139 cpu->env.psw.addr); 1140 kvm_s390_vcpu_interrupt(cpu, &irq); 1141 } 1142 1143 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1144 { 1145 struct kvm_s390_irq irq = { 1146 .type = KVM_S390_PROGRAM_INT, 1147 .u.pgm.code = code, 1148 .u.pgm.trans_exc_code = te_code, 1149 .u.pgm.exc_access_id = te_code & 3, 1150 }; 1151 1152 kvm_s390_vcpu_interrupt(cpu, &irq); 1153 } 1154 1155 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1156 uint16_t ipbh0) 1157 { 1158 CPUS390XState *env = &cpu->env; 1159 uint64_t sccb; 1160 uint32_t code; 1161 int r; 1162 1163 sccb = env->regs[ipbh0 & 0xf]; 1164 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1165 1166 switch (run->s390_sieic.icptcode) { 1167 case ICPT_PV_INSTR_NOTIFICATION: 1168 g_assert(s390_is_pv()); 1169 /* The notification intercepts are currently handled by KVM */ 1170 error_report("unexpected SCLP PV notification"); 1171 exit(1); 1172 break; 1173 case ICPT_PV_INSTR: 1174 g_assert(s390_is_pv()); 1175 sclp_service_call_protected(cpu, sccb, code); 1176 /* Setting the CC is done by the Ultravisor. */ 1177 break; 1178 case ICPT_INSTRUCTION: 1179 g_assert(!s390_is_pv()); 1180 r = sclp_service_call(cpu, sccb, code); 1181 if (r < 0) { 1182 kvm_s390_program_interrupt(cpu, -r); 1183 return; 1184 } 1185 setcc(cpu, r); 1186 } 1187 } 1188 1189 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1190 { 1191 CPUS390XState *env = &cpu->env; 1192 int rc = 0; 1193 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1194 1195 switch (ipa1) { 1196 case PRIV_B2_XSCH: 1197 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1198 break; 1199 case PRIV_B2_CSCH: 1200 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1201 break; 1202 case PRIV_B2_HSCH: 1203 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1204 break; 1205 case PRIV_B2_MSCH: 1206 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1207 break; 1208 case PRIV_B2_SSCH: 1209 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1210 break; 1211 case PRIV_B2_STCRW: 1212 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1213 break; 1214 case PRIV_B2_STSCH: 1215 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1216 break; 1217 case PRIV_B2_TSCH: 1218 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1219 fprintf(stderr, "Spurious tsch intercept\n"); 1220 break; 1221 case PRIV_B2_CHSC: 1222 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1223 break; 1224 case PRIV_B2_TPI: 1225 /* This should have been handled by kvm already. */ 1226 fprintf(stderr, "Spurious tpi intercept\n"); 1227 break; 1228 case PRIV_B2_SCHM: 1229 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1230 run->s390_sieic.ipb, RA_IGNORED); 1231 break; 1232 case PRIV_B2_RSCH: 1233 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1234 break; 1235 case PRIV_B2_RCHP: 1236 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1237 break; 1238 case PRIV_B2_STCPS: 1239 /* We do not provide this instruction, it is suppressed. */ 1240 break; 1241 case PRIV_B2_SAL: 1242 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1243 break; 1244 case PRIV_B2_SIGA: 1245 /* Not provided, set CC = 3 for subchannel not operational */ 1246 setcc(cpu, 3); 1247 break; 1248 case PRIV_B2_SCLP_CALL: 1249 kvm_sclp_service_call(cpu, run, ipbh0); 1250 break; 1251 default: 1252 rc = -1; 1253 trace_kvm_insn_unhandled_priv(ipa1); 1254 break; 1255 } 1256 1257 return rc; 1258 } 1259 1260 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1261 uint8_t *ar) 1262 { 1263 CPUS390XState *env = &cpu->env; 1264 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1265 uint32_t base2 = run->s390_sieic.ipb >> 28; 1266 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1267 ((run->s390_sieic.ipb & 0xff00) << 4); 1268 1269 if (disp2 & 0x80000) { 1270 disp2 += 0xfff00000; 1271 } 1272 if (ar) { 1273 *ar = base2; 1274 } 1275 1276 return (base2 ? env->regs[base2] : 0) + 1277 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1278 } 1279 1280 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1281 uint8_t *ar) 1282 { 1283 CPUS390XState *env = &cpu->env; 1284 uint32_t base2 = run->s390_sieic.ipb >> 28; 1285 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1286 ((run->s390_sieic.ipb & 0xff00) << 4); 1287 1288 if (disp2 & 0x80000) { 1289 disp2 += 0xfff00000; 1290 } 1291 if (ar) { 1292 *ar = base2; 1293 } 1294 1295 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1296 } 1297 1298 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1299 { 1300 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1301 1302 if (s390_has_feat(S390_FEAT_ZPCI)) { 1303 return clp_service_call(cpu, r2, RA_IGNORED); 1304 } else { 1305 return -1; 1306 } 1307 } 1308 1309 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1310 { 1311 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1312 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1313 1314 if (s390_has_feat(S390_FEAT_ZPCI)) { 1315 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1316 } else { 1317 return -1; 1318 } 1319 } 1320 1321 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1322 { 1323 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1324 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1325 1326 if (s390_has_feat(S390_FEAT_ZPCI)) { 1327 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1328 } else { 1329 return -1; 1330 } 1331 } 1332 1333 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1334 { 1335 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1336 uint64_t fiba; 1337 uint8_t ar; 1338 1339 if (s390_has_feat(S390_FEAT_ZPCI)) { 1340 fiba = get_base_disp_rxy(cpu, run, &ar); 1341 1342 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1343 } else { 1344 return -1; 1345 } 1346 } 1347 1348 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1349 { 1350 CPUS390XState *env = &cpu->env; 1351 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1352 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1353 uint8_t isc; 1354 uint16_t mode; 1355 int r; 1356 1357 mode = env->regs[r1] & 0xffff; 1358 isc = (env->regs[r3] >> 27) & 0x7; 1359 r = css_do_sic(cpu, isc, mode); 1360 if (r) { 1361 kvm_s390_program_interrupt(cpu, -r); 1362 } 1363 1364 return 0; 1365 } 1366 1367 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1368 { 1369 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1370 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1371 1372 if (s390_has_feat(S390_FEAT_ZPCI)) { 1373 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1374 } else { 1375 return -1; 1376 } 1377 } 1378 1379 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1380 { 1381 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1382 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1383 uint64_t gaddr; 1384 uint8_t ar; 1385 1386 if (s390_has_feat(S390_FEAT_ZPCI)) { 1387 gaddr = get_base_disp_rsy(cpu, run, &ar); 1388 1389 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1390 } else { 1391 return -1; 1392 } 1393 } 1394 1395 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1396 { 1397 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1398 uint64_t fiba; 1399 uint8_t ar; 1400 1401 if (s390_has_feat(S390_FEAT_ZPCI)) { 1402 fiba = get_base_disp_rxy(cpu, run, &ar); 1403 1404 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1405 } else { 1406 return -1; 1407 } 1408 } 1409 1410 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run) 1411 { 1412 uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f; 1413 1414 s390_handle_ptf(cpu, r1, RA_IGNORED); 1415 } 1416 1417 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1418 { 1419 int r = 0; 1420 1421 switch (ipa1) { 1422 case PRIV_B9_CLP: 1423 r = kvm_clp_service_call(cpu, run); 1424 break; 1425 case PRIV_B9_PCISTG: 1426 r = kvm_pcistg_service_call(cpu, run); 1427 break; 1428 case PRIV_B9_PCILG: 1429 r = kvm_pcilg_service_call(cpu, run); 1430 break; 1431 case PRIV_B9_RPCIT: 1432 r = kvm_rpcit_service_call(cpu, run); 1433 break; 1434 case PRIV_B9_PTF: 1435 kvm_handle_ptf(cpu, run); 1436 break; 1437 case PRIV_B9_EQBS: 1438 /* just inject exception */ 1439 r = -1; 1440 break; 1441 default: 1442 r = -1; 1443 trace_kvm_insn_unhandled_priv(ipa1); 1444 break; 1445 } 1446 1447 return r; 1448 } 1449 1450 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1451 { 1452 int r = 0; 1453 1454 switch (ipbl) { 1455 case PRIV_EB_PCISTB: 1456 r = kvm_pcistb_service_call(cpu, run); 1457 break; 1458 case PRIV_EB_SIC: 1459 r = kvm_sic_service_call(cpu, run); 1460 break; 1461 case PRIV_EB_SQBS: 1462 /* just inject exception */ 1463 r = -1; 1464 break; 1465 default: 1466 r = -1; 1467 trace_kvm_insn_unhandled_priv(ipbl); 1468 break; 1469 } 1470 1471 return r; 1472 } 1473 1474 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1475 { 1476 int r = 0; 1477 1478 switch (ipbl) { 1479 case PRIV_E3_MPCIFC: 1480 r = kvm_mpcifc_service_call(cpu, run); 1481 break; 1482 case PRIV_E3_STPCIFC: 1483 r = kvm_stpcifc_service_call(cpu, run); 1484 break; 1485 default: 1486 r = -1; 1487 trace_kvm_insn_unhandled_priv(ipbl); 1488 break; 1489 } 1490 1491 return r; 1492 } 1493 1494 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1495 { 1496 CPUS390XState *env = &cpu->env; 1497 int ret; 1498 1499 ret = s390_virtio_hypercall(env); 1500 if (ret == -EINVAL) { 1501 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1502 return 0; 1503 } 1504 1505 return ret; 1506 } 1507 1508 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1509 { 1510 uint64_t r1, r3; 1511 int rc; 1512 1513 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1514 r3 = run->s390_sieic.ipa & 0x000f; 1515 rc = handle_diag_288(&cpu->env, r1, r3); 1516 if (rc) { 1517 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1518 } 1519 } 1520 1521 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1522 { 1523 uint64_t r1, r3; 1524 1525 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1526 r3 = run->s390_sieic.ipa & 0x000f; 1527 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1528 } 1529 1530 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1531 { 1532 CPUS390XState *env = &cpu->env; 1533 unsigned long pc; 1534 1535 pc = env->psw.addr - sw_bp_ilen; 1536 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1537 env->psw.addr = pc; 1538 return EXCP_DEBUG; 1539 } 1540 1541 return -ENOENT; 1542 } 1543 1544 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info) 1545 { 1546 CPUS390XState *env = &S390_CPU(cs)->env; 1547 1548 /* Feat bit is set only if KVM supports sync for diag318 */ 1549 if (s390_has_feat(S390_FEAT_DIAG_318)) { 1550 env->diag318_info = diag318_info; 1551 cs->kvm_run->s.regs.diag318 = diag318_info; 1552 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 1553 /* 1554 * diag 318 info is zeroed during a clear reset and 1555 * diag 308 IPL subcodes. 1556 */ 1557 } 1558 } 1559 1560 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run) 1561 { 1562 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4; 1563 uint64_t diag318_info = run->s.regs.gprs[reg]; 1564 CPUState *t; 1565 1566 /* 1567 * DIAG 318 can only be enabled with KVM support. As such, let's 1568 * ensure a guest cannot execute this instruction erroneously. 1569 */ 1570 if (!s390_has_feat(S390_FEAT_DIAG_318)) { 1571 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1572 return; 1573 } 1574 1575 CPU_FOREACH(t) { 1576 run_on_cpu(t, s390_do_cpu_set_diag318, 1577 RUN_ON_CPU_HOST_ULONG(diag318_info)); 1578 } 1579 } 1580 1581 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1582 1583 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1584 { 1585 int r = 0; 1586 uint16_t func_code; 1587 1588 /* 1589 * For any diagnose call we support, bits 48-63 of the resulting 1590 * address specify the function code; the remainder is ignored. 1591 */ 1592 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1593 switch (func_code) { 1594 case DIAG_TIMEREVENT: 1595 kvm_handle_diag_288(cpu, run); 1596 break; 1597 case DIAG_IPL: 1598 kvm_handle_diag_308(cpu, run); 1599 break; 1600 case DIAG_SET_CONTROL_PROGRAM_CODES: 1601 handle_diag_318(cpu, run); 1602 break; 1603 case DIAG_KVM_HYPERCALL: 1604 r = handle_hypercall(cpu, run); 1605 break; 1606 case DIAG_KVM_BREAKPOINT: 1607 r = handle_sw_breakpoint(cpu, run); 1608 break; 1609 default: 1610 trace_kvm_insn_diag(func_code); 1611 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1612 break; 1613 } 1614 1615 return r; 1616 } 1617 1618 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1619 { 1620 CPUS390XState *env = &cpu->env; 1621 const uint8_t r1 = ipa1 >> 4; 1622 const uint8_t r3 = ipa1 & 0x0f; 1623 int ret; 1624 uint8_t order; 1625 1626 /* get order code */ 1627 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1628 1629 ret = handle_sigp(env, order, r1, r3); 1630 setcc(cpu, ret); 1631 return 0; 1632 } 1633 1634 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1635 { 1636 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1637 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1638 int r = -1; 1639 1640 trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb); 1641 switch (ipa0) { 1642 case IPA0_B2: 1643 r = handle_b2(cpu, run, ipa1); 1644 break; 1645 case IPA0_B9: 1646 r = handle_b9(cpu, run, ipa1); 1647 break; 1648 case IPA0_EB: 1649 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1650 break; 1651 case IPA0_E3: 1652 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1653 break; 1654 case IPA0_DIAG: 1655 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1656 break; 1657 case IPA0_SIGP: 1658 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1659 break; 1660 } 1661 1662 if (r < 0) { 1663 r = 0; 1664 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1665 } 1666 1667 return r; 1668 } 1669 1670 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1671 int pswoffset) 1672 { 1673 CPUState *cs = CPU(cpu); 1674 1675 s390_cpu_halt(cpu); 1676 cpu->env.crash_reason = reason; 1677 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1678 } 1679 1680 /* try to detect pgm check loops */ 1681 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1682 { 1683 CPUState *cs = CPU(cpu); 1684 PSW oldpsw, newpsw; 1685 1686 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1687 offsetof(LowCore, program_new_psw)); 1688 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1689 offsetof(LowCore, program_new_psw) + 8); 1690 oldpsw.mask = run->psw_mask; 1691 oldpsw.addr = run->psw_addr; 1692 /* 1693 * Avoid endless loops of operation exceptions, if the pgm new 1694 * PSW will cause a new operation exception. 1695 * The heuristic checks if the pgm new psw is within 6 bytes before 1696 * the faulting psw address (with same DAT, AS settings) and the 1697 * new psw is not a wait psw and the fault was not triggered by 1698 * problem state. In that case go into crashed state. 1699 */ 1700 1701 if (oldpsw.addr - newpsw.addr <= 6 && 1702 !(newpsw.mask & PSW_MASK_WAIT) && 1703 !(oldpsw.mask & PSW_MASK_PSTATE) && 1704 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1705 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1706 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1707 offsetof(LowCore, program_new_psw)); 1708 return EXCP_HALTED; 1709 } 1710 return 0; 1711 } 1712 1713 static int handle_intercept(S390CPU *cpu) 1714 { 1715 CPUState *cs = CPU(cpu); 1716 struct kvm_run *run = cs->kvm_run; 1717 int icpt_code = run->s390_sieic.icptcode; 1718 int r = 0; 1719 1720 trace_kvm_intercept(icpt_code, (long)run->psw_addr); 1721 switch (icpt_code) { 1722 case ICPT_INSTRUCTION: 1723 case ICPT_PV_INSTR: 1724 case ICPT_PV_INSTR_NOTIFICATION: 1725 r = handle_instruction(cpu, run); 1726 break; 1727 case ICPT_PROGRAM: 1728 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1729 offsetof(LowCore, program_new_psw)); 1730 r = EXCP_HALTED; 1731 break; 1732 case ICPT_EXT_INT: 1733 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1734 offsetof(LowCore, external_new_psw)); 1735 r = EXCP_HALTED; 1736 break; 1737 case ICPT_WAITPSW: 1738 /* disabled wait, since enabled wait is handled in kernel */ 1739 s390_handle_wait(cpu); 1740 r = EXCP_HALTED; 1741 break; 1742 case ICPT_CPU_STOP: 1743 do_stop_interrupt(&cpu->env); 1744 r = EXCP_HALTED; 1745 break; 1746 case ICPT_OPEREXC: 1747 /* check for break points */ 1748 r = handle_sw_breakpoint(cpu, run); 1749 if (r == -ENOENT) { 1750 /* Then check for potential pgm check loops */ 1751 r = handle_oper_loop(cpu, run); 1752 if (r == 0) { 1753 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1754 } 1755 } 1756 break; 1757 case ICPT_SOFT_INTERCEPT: 1758 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1759 exit(1); 1760 break; 1761 case ICPT_IO: 1762 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1763 exit(1); 1764 break; 1765 default: 1766 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1767 exit(1); 1768 break; 1769 } 1770 1771 return r; 1772 } 1773 1774 static int handle_tsch(S390CPU *cpu) 1775 { 1776 CPUState *cs = CPU(cpu); 1777 struct kvm_run *run = cs->kvm_run; 1778 int ret; 1779 1780 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1781 RA_IGNORED); 1782 if (ret < 0) { 1783 /* 1784 * Failure. 1785 * If an I/O interrupt had been dequeued, we have to reinject it. 1786 */ 1787 if (run->s390_tsch.dequeued) { 1788 s390_io_interrupt(run->s390_tsch.subchannel_id, 1789 run->s390_tsch.subchannel_nr, 1790 run->s390_tsch.io_int_parm, 1791 run->s390_tsch.io_int_word); 1792 } 1793 ret = 0; 1794 } 1795 return ret; 1796 } 1797 1798 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1799 { 1800 const MachineState *ms = MACHINE(qdev_get_machine()); 1801 uint16_t conf_cpus = 0, reserved_cpus = 0; 1802 SysIB_322 sysib; 1803 int del, i; 1804 1805 if (s390_is_pv()) { 1806 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib)); 1807 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1808 return; 1809 } 1810 /* Shift the stack of Extended Names to prepare for our own data */ 1811 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1812 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1813 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1814 * assumed it's not capable of managing Extended Names for lower levels. 1815 */ 1816 for (del = 1; del < sysib.count; del++) { 1817 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1818 break; 1819 } 1820 } 1821 if (del < sysib.count) { 1822 memset(sysib.ext_names[del], 0, 1823 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1824 } 1825 1826 /* count the cpus and split them into configured and reserved ones */ 1827 for (i = 0; i < ms->possible_cpus->len; i++) { 1828 if (ms->possible_cpus->cpus[i].cpu) { 1829 conf_cpus++; 1830 } else { 1831 reserved_cpus++; 1832 } 1833 } 1834 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; 1835 sysib.vm[0].conf_cpus = conf_cpus; 1836 sysib.vm[0].reserved_cpus = reserved_cpus; 1837 1838 /* Insert short machine name in EBCDIC, padded with blanks */ 1839 if (qemu_name) { 1840 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1841 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1842 strlen(qemu_name))); 1843 } 1844 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1845 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1846 * considered by s390 as not capable of providing any Extended Name. 1847 * Therefore if no name was specified on qemu invocation, we go with the 1848 * same "KVMguest" default, which KVM has filled into short name field. 1849 */ 1850 strpadcpy((char *)sysib.ext_names[0], 1851 sizeof(sysib.ext_names[0]), 1852 qemu_name ?: "KVMguest", '\0'); 1853 1854 /* Insert UUID */ 1855 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1856 1857 if (s390_is_pv()) { 1858 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib)); 1859 } else { 1860 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1861 } 1862 } 1863 1864 static int handle_stsi(S390CPU *cpu) 1865 { 1866 CPUState *cs = CPU(cpu); 1867 struct kvm_run *run = cs->kvm_run; 1868 1869 switch (run->s390_stsi.fc) { 1870 case 3: 1871 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1872 return 0; 1873 } 1874 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1875 return 0; 1876 case 15: 1877 insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr, 1878 run->s390_stsi.ar, RA_IGNORED); 1879 return 0; 1880 default: 1881 return 0; 1882 } 1883 } 1884 1885 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1886 { 1887 CPUState *cs = CPU(cpu); 1888 struct kvm_run *run = cs->kvm_run; 1889 1890 int ret = 0; 1891 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1892 1893 switch (arch_info->type) { 1894 case KVM_HW_WP_WRITE: 1895 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1896 cs->watchpoint_hit = &hw_watchpoint; 1897 hw_watchpoint.vaddr = arch_info->addr; 1898 hw_watchpoint.flags = BP_MEM_WRITE; 1899 ret = EXCP_DEBUG; 1900 } 1901 break; 1902 case KVM_HW_BP: 1903 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1904 ret = EXCP_DEBUG; 1905 } 1906 break; 1907 case KVM_SINGLESTEP: 1908 if (cs->singlestep_enabled) { 1909 ret = EXCP_DEBUG; 1910 } 1911 break; 1912 default: 1913 ret = -ENOSYS; 1914 } 1915 1916 return ret; 1917 } 1918 1919 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1920 { 1921 S390CPU *cpu = S390_CPU(cs); 1922 int ret = 0; 1923 1924 bql_lock(); 1925 1926 kvm_cpu_synchronize_state(cs); 1927 1928 switch (run->exit_reason) { 1929 case KVM_EXIT_S390_SIEIC: 1930 ret = handle_intercept(cpu); 1931 break; 1932 case KVM_EXIT_S390_RESET: 1933 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1934 break; 1935 case KVM_EXIT_S390_TSCH: 1936 ret = handle_tsch(cpu); 1937 break; 1938 case KVM_EXIT_S390_STSI: 1939 ret = handle_stsi(cpu); 1940 break; 1941 case KVM_EXIT_DEBUG: 1942 ret = kvm_arch_handle_debug_exit(cpu); 1943 break; 1944 default: 1945 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1946 break; 1947 } 1948 bql_unlock(); 1949 1950 if (ret == 0) { 1951 ret = EXCP_INTERRUPT; 1952 } 1953 return ret; 1954 } 1955 1956 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1957 { 1958 return true; 1959 } 1960 1961 void kvm_s390_enable_css_support(S390CPU *cpu) 1962 { 1963 int r; 1964 1965 /* Activate host kernel channel subsystem support. */ 1966 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1967 assert(r == 0); 1968 } 1969 1970 void kvm_arch_init_irq_routing(KVMState *s) 1971 { 1972 /* 1973 * Note that while irqchip capabilities generally imply that cpustates 1974 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1975 * have to override the common code kvm_halt_in_kernel_allowed setting. 1976 */ 1977 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1978 kvm_gsi_routing_allowed = true; 1979 kvm_halt_in_kernel_allowed = false; 1980 } 1981 } 1982 1983 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1984 int vq, bool assign) 1985 { 1986 struct kvm_ioeventfd kick = { 1987 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1988 KVM_IOEVENTFD_FLAG_DATAMATCH, 1989 .fd = event_notifier_get_fd(notifier), 1990 .datamatch = vq, 1991 .addr = sch, 1992 .len = 8, 1993 }; 1994 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 1995 kick.datamatch); 1996 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1997 return -ENOSYS; 1998 } 1999 if (!assign) { 2000 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 2001 } 2002 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 2003 } 2004 2005 int kvm_s390_get_protected_dump(void) 2006 { 2007 return cap_protected_dump; 2008 } 2009 2010 int kvm_s390_get_ri(void) 2011 { 2012 return cap_ri; 2013 } 2014 2015 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 2016 { 2017 struct kvm_mp_state mp_state = {}; 2018 int ret; 2019 2020 /* the kvm part might not have been initialized yet */ 2021 if (CPU(cpu)->kvm_state == NULL) { 2022 return 0; 2023 } 2024 2025 switch (cpu_state) { 2026 case S390_CPU_STATE_STOPPED: 2027 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2028 break; 2029 case S390_CPU_STATE_CHECK_STOP: 2030 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2031 break; 2032 case S390_CPU_STATE_OPERATING: 2033 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2034 break; 2035 case S390_CPU_STATE_LOAD: 2036 mp_state.mp_state = KVM_MP_STATE_LOAD; 2037 break; 2038 default: 2039 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2040 cpu_state); 2041 exit(1); 2042 } 2043 2044 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2045 if (ret) { 2046 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2047 strerror(-ret)); 2048 } 2049 2050 return ret; 2051 } 2052 2053 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2054 { 2055 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 2056 struct kvm_s390_irq_state irq_state = { 2057 .buf = (uint64_t) cpu->irqstate, 2058 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 2059 }; 2060 CPUState *cs = CPU(cpu); 2061 int32_t bytes; 2062 2063 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2064 return; 2065 } 2066 2067 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2068 if (bytes < 0) { 2069 cpu->irqstate_saved_size = 0; 2070 error_report("Migration of interrupt state failed"); 2071 return; 2072 } 2073 2074 cpu->irqstate_saved_size = bytes; 2075 } 2076 2077 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2078 { 2079 CPUState *cs = CPU(cpu); 2080 struct kvm_s390_irq_state irq_state = { 2081 .buf = (uint64_t) cpu->irqstate, 2082 .len = cpu->irqstate_saved_size, 2083 }; 2084 int r; 2085 2086 if (cpu->irqstate_saved_size == 0) { 2087 return 0; 2088 } 2089 2090 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2091 return -ENOSYS; 2092 } 2093 2094 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2095 if (r) { 2096 error_report("Setting interrupt state failed %d", r); 2097 } 2098 return r; 2099 } 2100 2101 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2102 uint64_t address, uint32_t data, PCIDevice *dev) 2103 { 2104 S390PCIBusDevice *pbdev; 2105 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2106 2107 if (!dev) { 2108 trace_kvm_msi_route_fixup("no pci device"); 2109 return -ENODEV; 2110 } 2111 2112 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2113 if (!pbdev) { 2114 trace_kvm_msi_route_fixup("no zpci device"); 2115 return -ENODEV; 2116 } 2117 2118 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2119 route->flags = 0; 2120 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2121 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2122 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2123 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2124 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2125 return 0; 2126 } 2127 2128 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2129 int vector, PCIDevice *dev) 2130 { 2131 return 0; 2132 } 2133 2134 int kvm_arch_release_virq_post(int virq) 2135 { 2136 return 0; 2137 } 2138 2139 int kvm_arch_msi_data_to_gsi(uint32_t data) 2140 { 2141 abort(); 2142 } 2143 2144 static int query_cpu_subfunc(S390FeatBitmap features) 2145 { 2146 struct kvm_s390_vm_cpu_subfunc prop = {}; 2147 struct kvm_device_attr attr = { 2148 .group = KVM_S390_VM_CPU_MODEL, 2149 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2150 .addr = (uint64_t) &prop, 2151 }; 2152 int rc; 2153 2154 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2155 if (rc) { 2156 return rc; 2157 } 2158 2159 /* 2160 * We're going to add all subfunctions now, if the corresponding feature 2161 * is available that unlocks the query functions. 2162 */ 2163 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2164 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2165 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2166 } 2167 if (test_bit(S390_FEAT_MSA, features)) { 2168 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2169 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2170 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2171 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2172 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2173 } 2174 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2175 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2176 } 2177 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2178 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2179 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2180 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2181 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2182 } 2183 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2184 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2185 } 2186 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2187 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2188 } 2189 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2190 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2191 } 2192 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2193 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2194 } 2195 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2196 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2197 } 2198 return 0; 2199 } 2200 2201 static int configure_cpu_subfunc(const S390FeatBitmap features) 2202 { 2203 struct kvm_s390_vm_cpu_subfunc prop = {}; 2204 struct kvm_device_attr attr = { 2205 .group = KVM_S390_VM_CPU_MODEL, 2206 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2207 .addr = (uint64_t) &prop, 2208 }; 2209 2210 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2211 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2212 /* hardware support might be missing, IBC will handle most of this */ 2213 return 0; 2214 } 2215 2216 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2217 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2218 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2219 } 2220 if (test_bit(S390_FEAT_MSA, features)) { 2221 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2222 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2223 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2224 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2225 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2226 } 2227 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2228 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2229 } 2230 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2231 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2232 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2233 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2234 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2235 } 2236 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2237 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2238 } 2239 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2240 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2241 } 2242 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2243 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2244 } 2245 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2246 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2247 } 2248 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2249 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2250 } 2251 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2252 } 2253 2254 static bool ap_available(void) 2255 { 2256 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2257 KVM_S390_VM_CRYPTO_ENABLE_APIE); 2258 } 2259 2260 static bool ap_enabled(const S390FeatBitmap features) 2261 { 2262 return test_bit(S390_FEAT_AP, features); 2263 } 2264 2265 static bool uv_feat_supported(void) 2266 { 2267 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2268 KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST); 2269 } 2270 2271 static int query_uv_feat_guest(S390FeatBitmap features) 2272 { 2273 struct kvm_s390_vm_cpu_uv_feat prop = {}; 2274 struct kvm_device_attr attr = { 2275 .group = KVM_S390_VM_CPU_MODEL, 2276 .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST, 2277 .addr = (uint64_t) &prop, 2278 }; 2279 int rc; 2280 2281 /* AP support check is currently the only user of the UV feature test */ 2282 if (!(uv_feat_supported() && ap_available())) { 2283 return 0; 2284 } 2285 2286 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2287 if (rc) { 2288 return rc; 2289 } 2290 2291 if (prop.ap) { 2292 set_bit(S390_FEAT_UV_FEAT_AP, features); 2293 } 2294 if (prop.ap_intr) { 2295 set_bit(S390_FEAT_UV_FEAT_AP_INTR, features); 2296 } 2297 2298 return 0; 2299 } 2300 2301 static int kvm_to_feat[][2] = { 2302 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2303 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2304 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2305 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2306 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2307 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2308 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2309 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2310 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2311 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2312 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2313 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2314 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2315 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2316 }; 2317 2318 static int query_cpu_feat(S390FeatBitmap features) 2319 { 2320 struct kvm_s390_vm_cpu_feat prop = {}; 2321 struct kvm_device_attr attr = { 2322 .group = KVM_S390_VM_CPU_MODEL, 2323 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2324 .addr = (uint64_t) &prop, 2325 }; 2326 int rc; 2327 int i; 2328 2329 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2330 if (rc) { 2331 return rc; 2332 } 2333 2334 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2335 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2336 set_bit(kvm_to_feat[i][1], features); 2337 } 2338 } 2339 return 0; 2340 } 2341 2342 static int configure_cpu_feat(const S390FeatBitmap features) 2343 { 2344 struct kvm_s390_vm_cpu_feat prop = {}; 2345 struct kvm_device_attr attr = { 2346 .group = KVM_S390_VM_CPU_MODEL, 2347 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2348 .addr = (uint64_t) &prop, 2349 }; 2350 int i; 2351 2352 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2353 if (test_bit(kvm_to_feat[i][1], features)) { 2354 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2355 } 2356 } 2357 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2358 } 2359 2360 bool kvm_s390_cpu_models_supported(void) 2361 { 2362 if (!cpu_model_allowed()) { 2363 /* compatibility machines interfere with the cpu model */ 2364 return false; 2365 } 2366 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2367 KVM_S390_VM_CPU_MACHINE) && 2368 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2369 KVM_S390_VM_CPU_PROCESSOR) && 2370 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2371 KVM_S390_VM_CPU_MACHINE_FEAT) && 2372 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2373 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2374 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2375 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2376 } 2377 2378 bool kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2379 { 2380 struct kvm_s390_vm_cpu_machine prop = {}; 2381 struct kvm_device_attr attr = { 2382 .group = KVM_S390_VM_CPU_MODEL, 2383 .attr = KVM_S390_VM_CPU_MACHINE, 2384 .addr = (uint64_t) &prop, 2385 }; 2386 uint16_t unblocked_ibc = 0, cpu_type = 0; 2387 int rc; 2388 2389 memset(model, 0, sizeof(*model)); 2390 2391 if (!kvm_s390_cpu_models_supported()) { 2392 error_setg(errp, "KVM doesn't support CPU models"); 2393 return false; 2394 } 2395 2396 /* query the basic cpu model properties */ 2397 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2398 if (rc) { 2399 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2400 return false; 2401 } 2402 2403 cpu_type = cpuid_type(prop.cpuid); 2404 if (has_ibc(prop.ibc)) { 2405 model->lowest_ibc = lowest_ibc(prop.ibc); 2406 unblocked_ibc = unblocked_ibc(prop.ibc); 2407 } 2408 model->cpu_id = cpuid_id(prop.cpuid); 2409 model->cpu_id_format = cpuid_format(prop.cpuid); 2410 model->cpu_ver = 0xff; 2411 2412 /* get supported cpu features indicated via STFL(E) */ 2413 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2414 (uint8_t *) prop.fac_mask); 2415 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2416 if (test_bit(S390_FEAT_STFLE, model->features)) { 2417 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2418 } 2419 /* get supported cpu features indicated e.g. via SCLP */ 2420 rc = query_cpu_feat(model->features); 2421 if (rc) { 2422 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2423 return false; 2424 } 2425 /* get supported cpu subfunctions indicated via query / test bit */ 2426 rc = query_cpu_subfunc(model->features); 2427 if (rc) { 2428 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2429 return false; 2430 } 2431 2432 /* PTFF subfunctions might be indicated although kernel support missing */ 2433 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2434 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2435 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2436 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2437 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2438 } 2439 2440 /* with cpu model support, CMM is only indicated if really available */ 2441 if (kvm_s390_cmma_available()) { 2442 set_bit(S390_FEAT_CMM, model->features); 2443 } else { 2444 /* no cmm -> no cmm nt */ 2445 clear_bit(S390_FEAT_CMM_NT, model->features); 2446 } 2447 2448 /* bpb needs kernel support for migration, VSIE and reset */ 2449 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2450 clear_bit(S390_FEAT_BPB, model->features); 2451 } 2452 2453 /* 2454 * If we have support for protected virtualization, indicate 2455 * the protected virtualization IPL unpack facility. 2456 */ 2457 if (cap_protected) { 2458 set_bit(S390_FEAT_UNPACK, model->features); 2459 } 2460 2461 /* 2462 * If we have kernel support for CPU Topology indicate the 2463 * configuration-topology facility. 2464 */ 2465 if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) { 2466 set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features); 2467 } 2468 2469 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2470 set_bit(S390_FEAT_ZPCI, model->features); 2471 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2472 2473 if (s390_known_cpu_type(cpu_type)) { 2474 /* we want the exact model, even if some features are missing */ 2475 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2476 ibc_ec_ga(unblocked_ibc), NULL); 2477 } else { 2478 /* model unknown, e.g. too new - search using features */ 2479 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2480 ibc_ec_ga(unblocked_ibc), 2481 model->features); 2482 } 2483 if (!model->def) { 2484 error_setg(errp, "KVM: host CPU model could not be identified"); 2485 return false; 2486 } 2487 /* for now, we can only provide the AP feature with HW support */ 2488 if (ap_available()) { 2489 set_bit(S390_FEAT_AP, model->features); 2490 } 2491 2492 /* 2493 * Extended-Length SCCB is handled entirely within QEMU. 2494 * For PV guests this is completely fenced by the Ultravisor, as Service 2495 * Call error checking and STFLE interpretation are handled via SIE. 2496 */ 2497 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features); 2498 2499 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) { 2500 set_bit(S390_FEAT_DIAG_318, model->features); 2501 } 2502 2503 /* Test for Ultravisor features that influence secure guest behavior */ 2504 query_uv_feat_guest(model->features); 2505 2506 /* strip of features that are not part of the maximum model */ 2507 bitmap_and(model->features, model->features, model->def->full_feat, 2508 S390_FEAT_MAX); 2509 return true; 2510 } 2511 2512 static int configure_uv_feat_guest(const S390FeatBitmap features) 2513 { 2514 struct kvm_s390_vm_cpu_uv_feat uv_feat = {}; 2515 struct kvm_device_attr attribute = { 2516 .group = KVM_S390_VM_CPU_MODEL, 2517 .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST, 2518 .addr = (__u64) &uv_feat, 2519 }; 2520 2521 /* AP support check is currently the only user of the UV feature test */ 2522 if (!(uv_feat_supported() && ap_enabled(features))) { 2523 return 0; 2524 } 2525 2526 if (test_bit(S390_FEAT_UV_FEAT_AP, features)) { 2527 uv_feat.ap = 1; 2528 } 2529 if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) { 2530 uv_feat.ap_intr = 1; 2531 } 2532 2533 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2534 } 2535 2536 static void kvm_s390_configure_apie(bool interpret) 2537 { 2538 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2539 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2540 2541 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2542 kvm_s390_set_crypto_attr(attr); 2543 } 2544 } 2545 2546 bool kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2547 { 2548 struct kvm_s390_vm_cpu_processor prop = { 2549 .fac_list = { 0 }, 2550 }; 2551 struct kvm_device_attr attr = { 2552 .group = KVM_S390_VM_CPU_MODEL, 2553 .attr = KVM_S390_VM_CPU_PROCESSOR, 2554 .addr = (uint64_t) &prop, 2555 }; 2556 int rc; 2557 2558 if (!model) { 2559 /* compatibility handling if cpu models are disabled */ 2560 if (kvm_s390_cmma_available()) { 2561 kvm_s390_enable_cmma(); 2562 } 2563 return true; 2564 } 2565 if (!kvm_s390_cpu_models_supported()) { 2566 error_setg(errp, "KVM doesn't support CPU models"); 2567 return false; 2568 } 2569 prop.cpuid = s390_cpuid_from_cpu_model(model); 2570 prop.ibc = s390_ibc_from_cpu_model(model); 2571 /* configure cpu features indicated via STFL(e) */ 2572 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2573 (uint8_t *) prop.fac_list); 2574 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2575 if (rc) { 2576 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2577 return false; 2578 } 2579 /* configure cpu features indicated e.g. via SCLP */ 2580 rc = configure_cpu_feat(model->features); 2581 if (rc) { 2582 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2583 return false; 2584 } 2585 /* configure cpu subfunctions indicated via query / test bit */ 2586 rc = configure_cpu_subfunc(model->features); 2587 if (rc) { 2588 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2589 return false; 2590 } 2591 /* enable CMM via CMMA */ 2592 if (test_bit(S390_FEAT_CMM, model->features)) { 2593 kvm_s390_enable_cmma(); 2594 } 2595 2596 if (ap_enabled(model->features)) { 2597 kvm_s390_configure_apie(true); 2598 } 2599 2600 /* configure UV-features for the guest indicated via query / test_bit */ 2601 rc = configure_uv_feat_guest(model->features); 2602 if (rc) { 2603 error_setg(errp, "KVM: Error configuring CPU UV features %d", rc); 2604 return false; 2605 } 2606 return true; 2607 } 2608 2609 void kvm_s390_restart_interrupt(S390CPU *cpu) 2610 { 2611 struct kvm_s390_irq irq = { 2612 .type = KVM_S390_RESTART, 2613 }; 2614 2615 kvm_s390_vcpu_interrupt(cpu, &irq); 2616 } 2617 2618 void kvm_s390_stop_interrupt(S390CPU *cpu) 2619 { 2620 struct kvm_s390_irq irq = { 2621 .type = KVM_S390_SIGP_STOP, 2622 }; 2623 2624 kvm_s390_vcpu_interrupt(cpu, &irq); 2625 } 2626 2627 int kvm_s390_get_zpci_op(void) 2628 { 2629 return cap_zpci_op; 2630 } 2631 2632 int kvm_s390_topology_set_mtcr(uint64_t attr) 2633 { 2634 struct kvm_device_attr attribute = { 2635 .group = KVM_S390_VM_CPU_TOPOLOGY, 2636 .attr = attr, 2637 }; 2638 2639 if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) { 2640 return 0; 2641 } 2642 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) { 2643 return -ENOTSUP; 2644 } 2645 2646 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2647 } 2648 2649 void kvm_arch_accel_class_init(ObjectClass *oc) 2650 { 2651 } 2652