1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "s390x-internal.h" 30 #include "kvm_s390x.h" 31 #include "sysemu/kvm_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/timer.h" 36 #include "qemu/units.h" 37 #include "qemu/main-loop.h" 38 #include "qemu/mmap-alloc.h" 39 #include "qemu/log.h" 40 #include "sysemu/sysemu.h" 41 #include "sysemu/hw_accel.h" 42 #include "sysemu/runstate.h" 43 #include "sysemu/device_tree.h" 44 #include "exec/gdbstub.h" 45 #include "exec/ram_addr.h" 46 #include "trace.h" 47 #include "hw/s390x/s390-pci-inst.h" 48 #include "hw/s390x/s390-pci-bus.h" 49 #include "hw/s390x/ipl.h" 50 #include "hw/s390x/ebcdic.h" 51 #include "exec/memattrs.h" 52 #include "hw/s390x/s390-virtio-ccw.h" 53 #include "hw/s390x/s390-virtio-hcall.h" 54 #include "hw/s390x/pv.h" 55 56 #ifndef DEBUG_KVM 57 #define DEBUG_KVM 0 58 #endif 59 60 #define DPRINTF(fmt, ...) do { \ 61 if (DEBUG_KVM) { \ 62 fprintf(stderr, fmt, ## __VA_ARGS__); \ 63 } \ 64 } while (0) 65 66 #define kvm_vm_check_mem_attr(s, attr) \ 67 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 68 69 #define IPA0_DIAG 0x8300 70 #define IPA0_SIGP 0xae00 71 #define IPA0_B2 0xb200 72 #define IPA0_B9 0xb900 73 #define IPA0_EB 0xeb00 74 #define IPA0_E3 0xe300 75 76 #define PRIV_B2_SCLP_CALL 0x20 77 #define PRIV_B2_CSCH 0x30 78 #define PRIV_B2_HSCH 0x31 79 #define PRIV_B2_MSCH 0x32 80 #define PRIV_B2_SSCH 0x33 81 #define PRIV_B2_STSCH 0x34 82 #define PRIV_B2_TSCH 0x35 83 #define PRIV_B2_TPI 0x36 84 #define PRIV_B2_SAL 0x37 85 #define PRIV_B2_RSCH 0x38 86 #define PRIV_B2_STCRW 0x39 87 #define PRIV_B2_STCPS 0x3a 88 #define PRIV_B2_RCHP 0x3b 89 #define PRIV_B2_SCHM 0x3c 90 #define PRIV_B2_CHSC 0x5f 91 #define PRIV_B2_SIGA 0x74 92 #define PRIV_B2_XSCH 0x76 93 94 #define PRIV_EB_SQBS 0x8a 95 #define PRIV_EB_PCISTB 0xd0 96 #define PRIV_EB_SIC 0xd1 97 98 #define PRIV_B9_EQBS 0x9c 99 #define PRIV_B9_CLP 0xa0 100 #define PRIV_B9_PCISTG 0xd0 101 #define PRIV_B9_PCILG 0xd2 102 #define PRIV_B9_RPCIT 0xd3 103 104 #define PRIV_E3_MPCIFC 0xd0 105 #define PRIV_E3_STPCIFC 0xd4 106 107 #define DIAG_TIMEREVENT 0x288 108 #define DIAG_IPL 0x308 109 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318 110 #define DIAG_KVM_HYPERCALL 0x500 111 #define DIAG_KVM_BREAKPOINT 0x501 112 113 #define ICPT_INSTRUCTION 0x04 114 #define ICPT_PROGRAM 0x08 115 #define ICPT_EXT_INT 0x14 116 #define ICPT_WAITPSW 0x1c 117 #define ICPT_SOFT_INTERCEPT 0x24 118 #define ICPT_CPU_STOP 0x28 119 #define ICPT_OPEREXC 0x2c 120 #define ICPT_IO 0x40 121 #define ICPT_PV_INSTR 0x68 122 #define ICPT_PV_INSTR_NOTIFICATION 0x6c 123 124 #define NR_LOCAL_IRQS 32 125 /* 126 * Needs to be big enough to contain max_cpus emergency signals 127 * and in addition NR_LOCAL_IRQS interrupts 128 */ 129 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 130 (max_cpus + NR_LOCAL_IRQS)) 131 /* 132 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 133 * as the dirty bitmap must be managed by bitops that take an int as 134 * position indicator. This would end at an unaligned address 135 * (0x7fffff00000). As future variants might provide larger pages 136 * and to make all addresses properly aligned, let us split at 4TB. 137 */ 138 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 139 140 static CPUWatchpoint hw_watchpoint; 141 /* 142 * We don't use a list because this structure is also used to transmit the 143 * hardware breakpoints to the kernel. 144 */ 145 static struct kvm_hw_breakpoint *hw_breakpoints; 146 static int nb_hw_breakpoints; 147 148 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 149 KVM_CAP_LAST_INFO 150 }; 151 152 static int cap_sync_regs; 153 static int cap_async_pf; 154 static int cap_mem_op; 155 static int cap_s390_irq; 156 static int cap_ri; 157 static int cap_hpage_1m; 158 static int cap_vcpu_resets; 159 static int cap_protected; 160 161 static int active_cmma; 162 163 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 164 { 165 struct kvm_device_attr attr = { 166 .group = KVM_S390_VM_MEM_CTRL, 167 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 168 .addr = (uint64_t) memory_limit, 169 }; 170 171 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 172 } 173 174 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 175 { 176 int rc; 177 178 struct kvm_device_attr attr = { 179 .group = KVM_S390_VM_MEM_CTRL, 180 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 181 .addr = (uint64_t) &new_limit, 182 }; 183 184 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 185 return 0; 186 } 187 188 rc = kvm_s390_query_mem_limit(hw_limit); 189 if (rc) { 190 return rc; 191 } else if (*hw_limit < new_limit) { 192 return -E2BIG; 193 } 194 195 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 196 } 197 198 int kvm_s390_cmma_active(void) 199 { 200 return active_cmma; 201 } 202 203 static bool kvm_s390_cmma_available(void) 204 { 205 static bool initialized, value; 206 207 if (!initialized) { 208 initialized = true; 209 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 210 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 211 } 212 return value; 213 } 214 215 void kvm_s390_cmma_reset(void) 216 { 217 int rc; 218 struct kvm_device_attr attr = { 219 .group = KVM_S390_VM_MEM_CTRL, 220 .attr = KVM_S390_VM_MEM_CLR_CMMA, 221 }; 222 223 if (!kvm_s390_cmma_active()) { 224 return; 225 } 226 227 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 228 trace_kvm_clear_cmma(rc); 229 } 230 231 static void kvm_s390_enable_cmma(void) 232 { 233 int rc; 234 struct kvm_device_attr attr = { 235 .group = KVM_S390_VM_MEM_CTRL, 236 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 237 }; 238 239 if (cap_hpage_1m) { 240 warn_report("CMM will not be enabled because it is not " 241 "compatible with huge memory backings."); 242 return; 243 } 244 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 245 active_cmma = !rc; 246 trace_kvm_enable_cmma(rc); 247 } 248 249 static void kvm_s390_set_attr(uint64_t attr) 250 { 251 struct kvm_device_attr attribute = { 252 .group = KVM_S390_VM_CRYPTO, 253 .attr = attr, 254 }; 255 256 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 257 258 if (ret) { 259 error_report("Failed to set crypto device attribute %lu: %s", 260 attr, strerror(-ret)); 261 } 262 } 263 264 static void kvm_s390_init_aes_kw(void) 265 { 266 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 267 268 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 269 NULL)) { 270 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 271 } 272 273 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 274 kvm_s390_set_attr(attr); 275 } 276 } 277 278 static void kvm_s390_init_dea_kw(void) 279 { 280 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 281 282 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 283 NULL)) { 284 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 285 } 286 287 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 288 kvm_s390_set_attr(attr); 289 } 290 } 291 292 void kvm_s390_crypto_reset(void) 293 { 294 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 295 kvm_s390_init_aes_kw(); 296 kvm_s390_init_dea_kw(); 297 } 298 } 299 300 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 301 { 302 if (pagesize == 4 * KiB) { 303 return; 304 } 305 306 if (!hpage_1m_allowed()) { 307 error_setg(errp, "This QEMU machine does not support huge page " 308 "mappings"); 309 return; 310 } 311 312 if (pagesize != 1 * MiB) { 313 error_setg(errp, "Memory backing with 2G pages was specified, " 314 "but KVM does not support this memory backing"); 315 return; 316 } 317 318 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 319 error_setg(errp, "Memory backing with 1M pages was specified, " 320 "but KVM does not support this memory backing"); 321 return; 322 } 323 324 cap_hpage_1m = 1; 325 } 326 327 int kvm_s390_get_hpage_1m(void) 328 { 329 return cap_hpage_1m; 330 } 331 332 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) 333 { 334 MachineClass *mc = MACHINE_CLASS(oc); 335 336 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 337 } 338 339 int kvm_arch_init(MachineState *ms, KVMState *s) 340 { 341 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, 342 false, NULL); 343 344 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) { 345 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - " 346 "please use kernel 3.15 or newer"); 347 return -1; 348 } 349 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) { 350 error_report("KVM is missing capability KVM_CAP_S390_COW - " 351 "unsupported environment"); 352 return -1; 353 } 354 355 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 356 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 357 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 358 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 359 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); 360 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED); 361 362 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 363 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 364 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 365 if (ri_allowed()) { 366 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 367 cap_ri = 1; 368 } 369 } 370 if (cpu_model_allowed()) { 371 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0); 372 } 373 374 /* 375 * The migration interface for ais was introduced with kernel 4.13 376 * but the capability itself had been active since 4.12. As migration 377 * support is considered necessary, we only try to enable this for 378 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. 379 */ 380 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() && 381 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { 382 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); 383 } 384 385 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 386 return 0; 387 } 388 389 int kvm_arch_irqchip_create(KVMState *s) 390 { 391 return 0; 392 } 393 394 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 395 { 396 return cpu->cpu_index; 397 } 398 399 int kvm_arch_init_vcpu(CPUState *cs) 400 { 401 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 402 S390CPU *cpu = S390_CPU(cs); 403 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 404 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 405 return 0; 406 } 407 408 int kvm_arch_destroy_vcpu(CPUState *cs) 409 { 410 S390CPU *cpu = S390_CPU(cs); 411 412 g_free(cpu->irqstate); 413 cpu->irqstate = NULL; 414 415 return 0; 416 } 417 418 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) 419 { 420 CPUState *cs = CPU(cpu); 421 422 /* 423 * The reset call is needed here to reset in-kernel vcpu data that 424 * we can't access directly from QEMU (i.e. with older kernels 425 * which don't support sync_regs/ONE_REG). Before this ioctl 426 * cpu_synchronize_state() is called in common kvm code 427 * (kvm-all). 428 */ 429 if (kvm_vcpu_ioctl(cs, type)) { 430 error_report("CPU reset failed on CPU %i type %lx", 431 cs->cpu_index, type); 432 } 433 } 434 435 void kvm_s390_reset_vcpu_initial(S390CPU *cpu) 436 { 437 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 438 } 439 440 void kvm_s390_reset_vcpu_clear(S390CPU *cpu) 441 { 442 if (cap_vcpu_resets) { 443 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); 444 } else { 445 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 446 } 447 } 448 449 void kvm_s390_reset_vcpu_normal(S390CPU *cpu) 450 { 451 if (cap_vcpu_resets) { 452 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); 453 } 454 } 455 456 static int can_sync_regs(CPUState *cs, int regs) 457 { 458 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 459 } 460 461 int kvm_arch_put_registers(CPUState *cs, int level) 462 { 463 S390CPU *cpu = S390_CPU(cs); 464 CPUS390XState *env = &cpu->env; 465 struct kvm_sregs sregs; 466 struct kvm_regs regs; 467 struct kvm_fpu fpu = {}; 468 int r; 469 int i; 470 471 /* always save the PSW and the GPRS*/ 472 cs->kvm_run->psw_addr = env->psw.addr; 473 cs->kvm_run->psw_mask = env->psw.mask; 474 475 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 476 for (i = 0; i < 16; i++) { 477 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 478 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 479 } 480 } else { 481 for (i = 0; i < 16; i++) { 482 regs.gprs[i] = env->regs[i]; 483 } 484 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 485 if (r < 0) { 486 return r; 487 } 488 } 489 490 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 491 for (i = 0; i < 32; i++) { 492 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 493 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 494 } 495 cs->kvm_run->s.regs.fpc = env->fpc; 496 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 497 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 498 for (i = 0; i < 16; i++) { 499 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 500 } 501 cs->kvm_run->s.regs.fpc = env->fpc; 502 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 503 } else { 504 /* Floating point */ 505 for (i = 0; i < 16; i++) { 506 fpu.fprs[i] = *get_freg(env, i); 507 } 508 fpu.fpc = env->fpc; 509 510 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 511 if (r < 0) { 512 return r; 513 } 514 } 515 516 /* Do we need to save more than that? */ 517 if (level == KVM_PUT_RUNTIME_STATE) { 518 return 0; 519 } 520 521 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 522 cs->kvm_run->s.regs.cputm = env->cputm; 523 cs->kvm_run->s.regs.ckc = env->ckc; 524 cs->kvm_run->s.regs.todpr = env->todpr; 525 cs->kvm_run->s.regs.gbea = env->gbea; 526 cs->kvm_run->s.regs.pp = env->pp; 527 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 528 } else { 529 /* 530 * These ONE_REGS are not protected by a capability. As they are only 531 * necessary for migration we just trace a possible error, but don't 532 * return with an error return code. 533 */ 534 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 535 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 536 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 537 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 538 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 539 } 540 541 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 542 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 543 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 544 } 545 546 /* pfault parameters */ 547 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 548 cs->kvm_run->s.regs.pft = env->pfault_token; 549 cs->kvm_run->s.regs.pfs = env->pfault_select; 550 cs->kvm_run->s.regs.pfc = env->pfault_compare; 551 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 552 } else if (cap_async_pf) { 553 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 554 if (r < 0) { 555 return r; 556 } 557 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 558 if (r < 0) { 559 return r; 560 } 561 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 562 if (r < 0) { 563 return r; 564 } 565 } 566 567 /* access registers and control registers*/ 568 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 569 for (i = 0; i < 16; i++) { 570 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 571 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 572 } 573 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 574 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 575 } else { 576 for (i = 0; i < 16; i++) { 577 sregs.acrs[i] = env->aregs[i]; 578 sregs.crs[i] = env->cregs[i]; 579 } 580 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 581 if (r < 0) { 582 return r; 583 } 584 } 585 586 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 587 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 588 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 589 } 590 591 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 592 cs->kvm_run->s.regs.bpbc = env->bpbc; 593 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 594 } 595 596 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 597 cs->kvm_run->s.regs.etoken = env->etoken; 598 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 599 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 600 } 601 602 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 603 cs->kvm_run->s.regs.diag318 = env->diag318_info; 604 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 605 } 606 607 /* Finally the prefix */ 608 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 609 cs->kvm_run->s.regs.prefix = env->psa; 610 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 611 } else { 612 /* prefix is only supported via sync regs */ 613 } 614 return 0; 615 } 616 617 int kvm_arch_get_registers(CPUState *cs) 618 { 619 S390CPU *cpu = S390_CPU(cs); 620 CPUS390XState *env = &cpu->env; 621 struct kvm_sregs sregs; 622 struct kvm_regs regs; 623 struct kvm_fpu fpu; 624 int i, r; 625 626 /* get the PSW */ 627 env->psw.addr = cs->kvm_run->psw_addr; 628 env->psw.mask = cs->kvm_run->psw_mask; 629 630 /* the GPRS */ 631 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 632 for (i = 0; i < 16; i++) { 633 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 634 } 635 } else { 636 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 637 if (r < 0) { 638 return r; 639 } 640 for (i = 0; i < 16; i++) { 641 env->regs[i] = regs.gprs[i]; 642 } 643 } 644 645 /* The ACRS and CRS */ 646 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 647 for (i = 0; i < 16; i++) { 648 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 649 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 650 } 651 } else { 652 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 653 if (r < 0) { 654 return r; 655 } 656 for (i = 0; i < 16; i++) { 657 env->aregs[i] = sregs.acrs[i]; 658 env->cregs[i] = sregs.crs[i]; 659 } 660 } 661 662 /* Floating point and vector registers */ 663 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 664 for (i = 0; i < 32; i++) { 665 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 666 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 667 } 668 env->fpc = cs->kvm_run->s.regs.fpc; 669 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 670 for (i = 0; i < 16; i++) { 671 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 672 } 673 env->fpc = cs->kvm_run->s.regs.fpc; 674 } else { 675 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 676 if (r < 0) { 677 return r; 678 } 679 for (i = 0; i < 16; i++) { 680 *get_freg(env, i) = fpu.fprs[i]; 681 } 682 env->fpc = fpu.fpc; 683 } 684 685 /* The prefix */ 686 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 687 env->psa = cs->kvm_run->s.regs.prefix; 688 } 689 690 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 691 env->cputm = cs->kvm_run->s.regs.cputm; 692 env->ckc = cs->kvm_run->s.regs.ckc; 693 env->todpr = cs->kvm_run->s.regs.todpr; 694 env->gbea = cs->kvm_run->s.regs.gbea; 695 env->pp = cs->kvm_run->s.regs.pp; 696 } else { 697 /* 698 * These ONE_REGS are not protected by a capability. As they are only 699 * necessary for migration we just trace a possible error, but don't 700 * return with an error return code. 701 */ 702 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 703 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 704 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 705 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 706 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 707 } 708 709 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 710 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 711 } 712 713 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 714 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 715 } 716 717 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 718 env->bpbc = cs->kvm_run->s.regs.bpbc; 719 } 720 721 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 722 env->etoken = cs->kvm_run->s.regs.etoken; 723 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 724 } 725 726 /* pfault parameters */ 727 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 728 env->pfault_token = cs->kvm_run->s.regs.pft; 729 env->pfault_select = cs->kvm_run->s.regs.pfs; 730 env->pfault_compare = cs->kvm_run->s.regs.pfc; 731 } else if (cap_async_pf) { 732 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 733 if (r < 0) { 734 return r; 735 } 736 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 737 if (r < 0) { 738 return r; 739 } 740 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 741 if (r < 0) { 742 return r; 743 } 744 } 745 746 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 747 env->diag318_info = cs->kvm_run->s.regs.diag318; 748 } 749 750 return 0; 751 } 752 753 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 754 { 755 int r; 756 struct kvm_device_attr attr = { 757 .group = KVM_S390_VM_TOD, 758 .attr = KVM_S390_VM_TOD_LOW, 759 .addr = (uint64_t)tod_low, 760 }; 761 762 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 763 if (r) { 764 return r; 765 } 766 767 attr.attr = KVM_S390_VM_TOD_HIGH; 768 attr.addr = (uint64_t)tod_high; 769 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 770 } 771 772 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 773 { 774 int r; 775 struct kvm_s390_vm_tod_clock gtod; 776 struct kvm_device_attr attr = { 777 .group = KVM_S390_VM_TOD, 778 .attr = KVM_S390_VM_TOD_EXT, 779 .addr = (uint64_t)>od, 780 }; 781 782 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 783 *tod_high = gtod.epoch_idx; 784 *tod_low = gtod.tod; 785 786 return r; 787 } 788 789 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 790 { 791 int r; 792 struct kvm_device_attr attr = { 793 .group = KVM_S390_VM_TOD, 794 .attr = KVM_S390_VM_TOD_LOW, 795 .addr = (uint64_t)&tod_low, 796 }; 797 798 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 799 if (r) { 800 return r; 801 } 802 803 attr.attr = KVM_S390_VM_TOD_HIGH; 804 attr.addr = (uint64_t)&tod_high; 805 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 806 } 807 808 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 809 { 810 struct kvm_s390_vm_tod_clock gtod = { 811 .epoch_idx = tod_high, 812 .tod = tod_low, 813 }; 814 struct kvm_device_attr attr = { 815 .group = KVM_S390_VM_TOD, 816 .attr = KVM_S390_VM_TOD_EXT, 817 .addr = (uint64_t)>od, 818 }; 819 820 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 821 } 822 823 /** 824 * kvm_s390_mem_op: 825 * @addr: the logical start address in guest memory 826 * @ar: the access register number 827 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 828 * @len: length that should be transferred 829 * @is_write: true = write, false = read 830 * Returns: 0 on success, non-zero if an exception or error occurred 831 * 832 * Use KVM ioctl to read/write from/to guest memory. An access exception 833 * is injected into the vCPU in case of translation errors. 834 */ 835 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 836 int len, bool is_write) 837 { 838 struct kvm_s390_mem_op mem_op = { 839 .gaddr = addr, 840 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 841 .size = len, 842 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 843 : KVM_S390_MEMOP_LOGICAL_READ, 844 .buf = (uint64_t)hostbuf, 845 .ar = ar, 846 }; 847 int ret; 848 849 if (!cap_mem_op) { 850 return -ENOSYS; 851 } 852 if (!hostbuf) { 853 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 854 } 855 856 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 857 if (ret < 0) { 858 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 859 } 860 return ret; 861 } 862 863 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf, 864 int len, bool is_write) 865 { 866 struct kvm_s390_mem_op mem_op = { 867 .sida_offset = offset, 868 .size = len, 869 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE 870 : KVM_S390_MEMOP_SIDA_READ, 871 .buf = (uint64_t)hostbuf, 872 }; 873 int ret; 874 875 if (!cap_mem_op || !cap_protected) { 876 return -ENOSYS; 877 } 878 879 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 880 if (ret < 0) { 881 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 882 abort(); 883 } 884 return ret; 885 } 886 887 static uint8_t const *sw_bp_inst; 888 static uint8_t sw_bp_ilen; 889 890 static void determine_sw_breakpoint_instr(void) 891 { 892 /* DIAG 501 is used for sw breakpoints with old kernels */ 893 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 894 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 895 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 896 897 if (sw_bp_inst) { 898 return; 899 } 900 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 901 sw_bp_inst = diag_501; 902 sw_bp_ilen = sizeof(diag_501); 903 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 904 } else { 905 sw_bp_inst = instr_0x0000; 906 sw_bp_ilen = sizeof(instr_0x0000); 907 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 908 } 909 } 910 911 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 912 { 913 determine_sw_breakpoint_instr(); 914 915 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 916 sw_bp_ilen, 0) || 917 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 918 return -EINVAL; 919 } 920 return 0; 921 } 922 923 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 924 { 925 uint8_t t[MAX_ILEN]; 926 927 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 928 return -EINVAL; 929 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 930 return -EINVAL; 931 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 932 sw_bp_ilen, 1)) { 933 return -EINVAL; 934 } 935 936 return 0; 937 } 938 939 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 940 int len, int type) 941 { 942 int n; 943 944 for (n = 0; n < nb_hw_breakpoints; n++) { 945 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 946 (hw_breakpoints[n].len == len || len == -1)) { 947 return &hw_breakpoints[n]; 948 } 949 } 950 951 return NULL; 952 } 953 954 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 955 { 956 int size; 957 958 if (find_hw_breakpoint(addr, len, type)) { 959 return -EEXIST; 960 } 961 962 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 963 964 if (!hw_breakpoints) { 965 nb_hw_breakpoints = 0; 966 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 967 } else { 968 hw_breakpoints = 969 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 970 } 971 972 if (!hw_breakpoints) { 973 nb_hw_breakpoints = 0; 974 return -ENOMEM; 975 } 976 977 hw_breakpoints[nb_hw_breakpoints].addr = addr; 978 hw_breakpoints[nb_hw_breakpoints].len = len; 979 hw_breakpoints[nb_hw_breakpoints].type = type; 980 981 nb_hw_breakpoints++; 982 983 return 0; 984 } 985 986 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 987 target_ulong len, int type) 988 { 989 switch (type) { 990 case GDB_BREAKPOINT_HW: 991 type = KVM_HW_BP; 992 break; 993 case GDB_WATCHPOINT_WRITE: 994 if (len < 1) { 995 return -EINVAL; 996 } 997 type = KVM_HW_WP_WRITE; 998 break; 999 default: 1000 return -ENOSYS; 1001 } 1002 return insert_hw_breakpoint(addr, len, type); 1003 } 1004 1005 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 1006 target_ulong len, int type) 1007 { 1008 int size; 1009 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 1010 1011 if (bp == NULL) { 1012 return -ENOENT; 1013 } 1014 1015 nb_hw_breakpoints--; 1016 if (nb_hw_breakpoints > 0) { 1017 /* 1018 * In order to trim the array, move the last element to the position to 1019 * be removed - if necessary. 1020 */ 1021 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 1022 *bp = hw_breakpoints[nb_hw_breakpoints]; 1023 } 1024 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 1025 hw_breakpoints = 1026 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 1027 } else { 1028 g_free(hw_breakpoints); 1029 hw_breakpoints = NULL; 1030 } 1031 1032 return 0; 1033 } 1034 1035 void kvm_arch_remove_all_hw_breakpoints(void) 1036 { 1037 nb_hw_breakpoints = 0; 1038 g_free(hw_breakpoints); 1039 hw_breakpoints = NULL; 1040 } 1041 1042 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 1043 { 1044 int i; 1045 1046 if (nb_hw_breakpoints > 0) { 1047 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 1048 dbg->arch.hw_bp = hw_breakpoints; 1049 1050 for (i = 0; i < nb_hw_breakpoints; ++i) { 1051 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 1052 hw_breakpoints[i].addr); 1053 } 1054 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1055 } else { 1056 dbg->arch.nr_hw_bp = 0; 1057 dbg->arch.hw_bp = NULL; 1058 } 1059 } 1060 1061 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1062 { 1063 } 1064 1065 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1066 { 1067 return MEMTXATTRS_UNSPECIFIED; 1068 } 1069 1070 int kvm_arch_process_async_events(CPUState *cs) 1071 { 1072 return cs->halted; 1073 } 1074 1075 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1076 struct kvm_s390_interrupt *interrupt) 1077 { 1078 int r = 0; 1079 1080 interrupt->type = irq->type; 1081 switch (irq->type) { 1082 case KVM_S390_INT_VIRTIO: 1083 interrupt->parm = irq->u.ext.ext_params; 1084 /* fall through */ 1085 case KVM_S390_INT_PFAULT_INIT: 1086 case KVM_S390_INT_PFAULT_DONE: 1087 interrupt->parm64 = irq->u.ext.ext_params2; 1088 break; 1089 case KVM_S390_PROGRAM_INT: 1090 interrupt->parm = irq->u.pgm.code; 1091 break; 1092 case KVM_S390_SIGP_SET_PREFIX: 1093 interrupt->parm = irq->u.prefix.address; 1094 break; 1095 case KVM_S390_INT_SERVICE: 1096 interrupt->parm = irq->u.ext.ext_params; 1097 break; 1098 case KVM_S390_MCHK: 1099 interrupt->parm = irq->u.mchk.cr14; 1100 interrupt->parm64 = irq->u.mchk.mcic; 1101 break; 1102 case KVM_S390_INT_EXTERNAL_CALL: 1103 interrupt->parm = irq->u.extcall.code; 1104 break; 1105 case KVM_S390_INT_EMERGENCY: 1106 interrupt->parm = irq->u.emerg.code; 1107 break; 1108 case KVM_S390_SIGP_STOP: 1109 case KVM_S390_RESTART: 1110 break; /* These types have no parameters */ 1111 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1112 interrupt->parm = irq->u.io.subchannel_id << 16; 1113 interrupt->parm |= irq->u.io.subchannel_nr; 1114 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1115 interrupt->parm64 |= irq->u.io.io_int_word; 1116 break; 1117 default: 1118 r = -EINVAL; 1119 break; 1120 } 1121 return r; 1122 } 1123 1124 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1125 { 1126 struct kvm_s390_interrupt kvmint = {}; 1127 int r; 1128 1129 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1130 if (r < 0) { 1131 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1132 exit(1); 1133 } 1134 1135 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1136 if (r < 0) { 1137 fprintf(stderr, "KVM failed to inject interrupt\n"); 1138 exit(1); 1139 } 1140 } 1141 1142 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1143 { 1144 CPUState *cs = CPU(cpu); 1145 int r; 1146 1147 if (cap_s390_irq) { 1148 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1149 if (!r) { 1150 return; 1151 } 1152 error_report("KVM failed to inject interrupt %llx", irq->type); 1153 exit(1); 1154 } 1155 1156 inject_vcpu_irq_legacy(cs, irq); 1157 } 1158 1159 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1160 { 1161 struct kvm_s390_interrupt kvmint = {}; 1162 int r; 1163 1164 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1165 if (r < 0) { 1166 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1167 exit(1); 1168 } 1169 1170 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1171 if (r < 0) { 1172 fprintf(stderr, "KVM failed to inject interrupt\n"); 1173 exit(1); 1174 } 1175 } 1176 1177 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1178 { 1179 struct kvm_s390_irq irq = { 1180 .type = KVM_S390_PROGRAM_INT, 1181 .u.pgm.code = code, 1182 }; 1183 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1184 cpu->env.psw.addr); 1185 kvm_s390_vcpu_interrupt(cpu, &irq); 1186 } 1187 1188 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1189 { 1190 struct kvm_s390_irq irq = { 1191 .type = KVM_S390_PROGRAM_INT, 1192 .u.pgm.code = code, 1193 .u.pgm.trans_exc_code = te_code, 1194 .u.pgm.exc_access_id = te_code & 3, 1195 }; 1196 1197 kvm_s390_vcpu_interrupt(cpu, &irq); 1198 } 1199 1200 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1201 uint16_t ipbh0) 1202 { 1203 CPUS390XState *env = &cpu->env; 1204 uint64_t sccb; 1205 uint32_t code; 1206 int r; 1207 1208 sccb = env->regs[ipbh0 & 0xf]; 1209 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1210 1211 switch (run->s390_sieic.icptcode) { 1212 case ICPT_PV_INSTR_NOTIFICATION: 1213 g_assert(s390_is_pv()); 1214 /* The notification intercepts are currently handled by KVM */ 1215 error_report("unexpected SCLP PV notification"); 1216 exit(1); 1217 break; 1218 case ICPT_PV_INSTR: 1219 g_assert(s390_is_pv()); 1220 sclp_service_call_protected(env, sccb, code); 1221 /* Setting the CC is done by the Ultravisor. */ 1222 break; 1223 case ICPT_INSTRUCTION: 1224 g_assert(!s390_is_pv()); 1225 r = sclp_service_call(env, sccb, code); 1226 if (r < 0) { 1227 kvm_s390_program_interrupt(cpu, -r); 1228 return; 1229 } 1230 setcc(cpu, r); 1231 } 1232 } 1233 1234 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1235 { 1236 CPUS390XState *env = &cpu->env; 1237 int rc = 0; 1238 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1239 1240 switch (ipa1) { 1241 case PRIV_B2_XSCH: 1242 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1243 break; 1244 case PRIV_B2_CSCH: 1245 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1246 break; 1247 case PRIV_B2_HSCH: 1248 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1249 break; 1250 case PRIV_B2_MSCH: 1251 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1252 break; 1253 case PRIV_B2_SSCH: 1254 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1255 break; 1256 case PRIV_B2_STCRW: 1257 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1258 break; 1259 case PRIV_B2_STSCH: 1260 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1261 break; 1262 case PRIV_B2_TSCH: 1263 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1264 fprintf(stderr, "Spurious tsch intercept\n"); 1265 break; 1266 case PRIV_B2_CHSC: 1267 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1268 break; 1269 case PRIV_B2_TPI: 1270 /* This should have been handled by kvm already. */ 1271 fprintf(stderr, "Spurious tpi intercept\n"); 1272 break; 1273 case PRIV_B2_SCHM: 1274 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1275 run->s390_sieic.ipb, RA_IGNORED); 1276 break; 1277 case PRIV_B2_RSCH: 1278 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1279 break; 1280 case PRIV_B2_RCHP: 1281 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1282 break; 1283 case PRIV_B2_STCPS: 1284 /* We do not provide this instruction, it is suppressed. */ 1285 break; 1286 case PRIV_B2_SAL: 1287 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1288 break; 1289 case PRIV_B2_SIGA: 1290 /* Not provided, set CC = 3 for subchannel not operational */ 1291 setcc(cpu, 3); 1292 break; 1293 case PRIV_B2_SCLP_CALL: 1294 kvm_sclp_service_call(cpu, run, ipbh0); 1295 break; 1296 default: 1297 rc = -1; 1298 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1299 break; 1300 } 1301 1302 return rc; 1303 } 1304 1305 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1306 uint8_t *ar) 1307 { 1308 CPUS390XState *env = &cpu->env; 1309 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1310 uint32_t base2 = run->s390_sieic.ipb >> 28; 1311 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1312 ((run->s390_sieic.ipb & 0xff00) << 4); 1313 1314 if (disp2 & 0x80000) { 1315 disp2 += 0xfff00000; 1316 } 1317 if (ar) { 1318 *ar = base2; 1319 } 1320 1321 return (base2 ? env->regs[base2] : 0) + 1322 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1323 } 1324 1325 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1326 uint8_t *ar) 1327 { 1328 CPUS390XState *env = &cpu->env; 1329 uint32_t base2 = run->s390_sieic.ipb >> 28; 1330 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1331 ((run->s390_sieic.ipb & 0xff00) << 4); 1332 1333 if (disp2 & 0x80000) { 1334 disp2 += 0xfff00000; 1335 } 1336 if (ar) { 1337 *ar = base2; 1338 } 1339 1340 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1341 } 1342 1343 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1344 { 1345 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1346 1347 if (s390_has_feat(S390_FEAT_ZPCI)) { 1348 return clp_service_call(cpu, r2, RA_IGNORED); 1349 } else { 1350 return -1; 1351 } 1352 } 1353 1354 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1355 { 1356 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1357 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1358 1359 if (s390_has_feat(S390_FEAT_ZPCI)) { 1360 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1361 } else { 1362 return -1; 1363 } 1364 } 1365 1366 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1367 { 1368 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1369 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1370 1371 if (s390_has_feat(S390_FEAT_ZPCI)) { 1372 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1373 } else { 1374 return -1; 1375 } 1376 } 1377 1378 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1379 { 1380 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1381 uint64_t fiba; 1382 uint8_t ar; 1383 1384 if (s390_has_feat(S390_FEAT_ZPCI)) { 1385 fiba = get_base_disp_rxy(cpu, run, &ar); 1386 1387 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1388 } else { 1389 return -1; 1390 } 1391 } 1392 1393 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1394 { 1395 CPUS390XState *env = &cpu->env; 1396 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1397 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1398 uint8_t isc; 1399 uint16_t mode; 1400 int r; 1401 1402 mode = env->regs[r1] & 0xffff; 1403 isc = (env->regs[r3] >> 27) & 0x7; 1404 r = css_do_sic(env, isc, mode); 1405 if (r) { 1406 kvm_s390_program_interrupt(cpu, -r); 1407 } 1408 1409 return 0; 1410 } 1411 1412 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1413 { 1414 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1415 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1416 1417 if (s390_has_feat(S390_FEAT_ZPCI)) { 1418 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1419 } else { 1420 return -1; 1421 } 1422 } 1423 1424 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1425 { 1426 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1427 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1428 uint64_t gaddr; 1429 uint8_t ar; 1430 1431 if (s390_has_feat(S390_FEAT_ZPCI)) { 1432 gaddr = get_base_disp_rsy(cpu, run, &ar); 1433 1434 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1435 } else { 1436 return -1; 1437 } 1438 } 1439 1440 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1441 { 1442 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1443 uint64_t fiba; 1444 uint8_t ar; 1445 1446 if (s390_has_feat(S390_FEAT_ZPCI)) { 1447 fiba = get_base_disp_rxy(cpu, run, &ar); 1448 1449 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1450 } else { 1451 return -1; 1452 } 1453 } 1454 1455 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1456 { 1457 int r = 0; 1458 1459 switch (ipa1) { 1460 case PRIV_B9_CLP: 1461 r = kvm_clp_service_call(cpu, run); 1462 break; 1463 case PRIV_B9_PCISTG: 1464 r = kvm_pcistg_service_call(cpu, run); 1465 break; 1466 case PRIV_B9_PCILG: 1467 r = kvm_pcilg_service_call(cpu, run); 1468 break; 1469 case PRIV_B9_RPCIT: 1470 r = kvm_rpcit_service_call(cpu, run); 1471 break; 1472 case PRIV_B9_EQBS: 1473 /* just inject exception */ 1474 r = -1; 1475 break; 1476 default: 1477 r = -1; 1478 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1479 break; 1480 } 1481 1482 return r; 1483 } 1484 1485 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1486 { 1487 int r = 0; 1488 1489 switch (ipbl) { 1490 case PRIV_EB_PCISTB: 1491 r = kvm_pcistb_service_call(cpu, run); 1492 break; 1493 case PRIV_EB_SIC: 1494 r = kvm_sic_service_call(cpu, run); 1495 break; 1496 case PRIV_EB_SQBS: 1497 /* just inject exception */ 1498 r = -1; 1499 break; 1500 default: 1501 r = -1; 1502 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1503 break; 1504 } 1505 1506 return r; 1507 } 1508 1509 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1510 { 1511 int r = 0; 1512 1513 switch (ipbl) { 1514 case PRIV_E3_MPCIFC: 1515 r = kvm_mpcifc_service_call(cpu, run); 1516 break; 1517 case PRIV_E3_STPCIFC: 1518 r = kvm_stpcifc_service_call(cpu, run); 1519 break; 1520 default: 1521 r = -1; 1522 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1523 break; 1524 } 1525 1526 return r; 1527 } 1528 1529 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1530 { 1531 CPUS390XState *env = &cpu->env; 1532 int ret; 1533 1534 ret = s390_virtio_hypercall(env); 1535 if (ret == -EINVAL) { 1536 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1537 return 0; 1538 } 1539 1540 return ret; 1541 } 1542 1543 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1544 { 1545 uint64_t r1, r3; 1546 int rc; 1547 1548 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1549 r3 = run->s390_sieic.ipa & 0x000f; 1550 rc = handle_diag_288(&cpu->env, r1, r3); 1551 if (rc) { 1552 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1553 } 1554 } 1555 1556 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1557 { 1558 uint64_t r1, r3; 1559 1560 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1561 r3 = run->s390_sieic.ipa & 0x000f; 1562 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1563 } 1564 1565 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1566 { 1567 CPUS390XState *env = &cpu->env; 1568 unsigned long pc; 1569 1570 pc = env->psw.addr - sw_bp_ilen; 1571 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1572 env->psw.addr = pc; 1573 return EXCP_DEBUG; 1574 } 1575 1576 return -ENOENT; 1577 } 1578 1579 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info) 1580 { 1581 CPUS390XState *env = &S390_CPU(cs)->env; 1582 1583 /* Feat bit is set only if KVM supports sync for diag318 */ 1584 if (s390_has_feat(S390_FEAT_DIAG_318)) { 1585 env->diag318_info = diag318_info; 1586 cs->kvm_run->s.regs.diag318 = diag318_info; 1587 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 1588 } 1589 } 1590 1591 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run) 1592 { 1593 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4; 1594 uint64_t diag318_info = run->s.regs.gprs[reg]; 1595 CPUState *t; 1596 1597 /* 1598 * DIAG 318 can only be enabled with KVM support. As such, let's 1599 * ensure a guest cannot execute this instruction erroneously. 1600 */ 1601 if (!s390_has_feat(S390_FEAT_DIAG_318)) { 1602 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1603 return; 1604 } 1605 1606 CPU_FOREACH(t) { 1607 run_on_cpu(t, s390_do_cpu_set_diag318, 1608 RUN_ON_CPU_HOST_ULONG(diag318_info)); 1609 } 1610 } 1611 1612 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1613 1614 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1615 { 1616 int r = 0; 1617 uint16_t func_code; 1618 1619 /* 1620 * For any diagnose call we support, bits 48-63 of the resulting 1621 * address specify the function code; the remainder is ignored. 1622 */ 1623 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1624 switch (func_code) { 1625 case DIAG_TIMEREVENT: 1626 kvm_handle_diag_288(cpu, run); 1627 break; 1628 case DIAG_IPL: 1629 kvm_handle_diag_308(cpu, run); 1630 break; 1631 case DIAG_SET_CONTROL_PROGRAM_CODES: 1632 handle_diag_318(cpu, run); 1633 break; 1634 case DIAG_KVM_HYPERCALL: 1635 r = handle_hypercall(cpu, run); 1636 break; 1637 case DIAG_KVM_BREAKPOINT: 1638 r = handle_sw_breakpoint(cpu, run); 1639 break; 1640 default: 1641 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1642 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1643 break; 1644 } 1645 1646 return r; 1647 } 1648 1649 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1650 { 1651 CPUS390XState *env = &cpu->env; 1652 const uint8_t r1 = ipa1 >> 4; 1653 const uint8_t r3 = ipa1 & 0x0f; 1654 int ret; 1655 uint8_t order; 1656 1657 /* get order code */ 1658 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1659 1660 ret = handle_sigp(env, order, r1, r3); 1661 setcc(cpu, ret); 1662 return 0; 1663 } 1664 1665 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1666 { 1667 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1668 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1669 int r = -1; 1670 1671 DPRINTF("handle_instruction 0x%x 0x%x\n", 1672 run->s390_sieic.ipa, run->s390_sieic.ipb); 1673 switch (ipa0) { 1674 case IPA0_B2: 1675 r = handle_b2(cpu, run, ipa1); 1676 break; 1677 case IPA0_B9: 1678 r = handle_b9(cpu, run, ipa1); 1679 break; 1680 case IPA0_EB: 1681 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1682 break; 1683 case IPA0_E3: 1684 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1685 break; 1686 case IPA0_DIAG: 1687 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1688 break; 1689 case IPA0_SIGP: 1690 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1691 break; 1692 } 1693 1694 if (r < 0) { 1695 r = 0; 1696 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1697 } 1698 1699 return r; 1700 } 1701 1702 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1703 int pswoffset) 1704 { 1705 CPUState *cs = CPU(cpu); 1706 1707 s390_cpu_halt(cpu); 1708 cpu->env.crash_reason = reason; 1709 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1710 } 1711 1712 /* try to detect pgm check loops */ 1713 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1714 { 1715 CPUState *cs = CPU(cpu); 1716 PSW oldpsw, newpsw; 1717 1718 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1719 offsetof(LowCore, program_new_psw)); 1720 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1721 offsetof(LowCore, program_new_psw) + 8); 1722 oldpsw.mask = run->psw_mask; 1723 oldpsw.addr = run->psw_addr; 1724 /* 1725 * Avoid endless loops of operation exceptions, if the pgm new 1726 * PSW will cause a new operation exception. 1727 * The heuristic checks if the pgm new psw is within 6 bytes before 1728 * the faulting psw address (with same DAT, AS settings) and the 1729 * new psw is not a wait psw and the fault was not triggered by 1730 * problem state. In that case go into crashed state. 1731 */ 1732 1733 if (oldpsw.addr - newpsw.addr <= 6 && 1734 !(newpsw.mask & PSW_MASK_WAIT) && 1735 !(oldpsw.mask & PSW_MASK_PSTATE) && 1736 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1737 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1738 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1739 offsetof(LowCore, program_new_psw)); 1740 return EXCP_HALTED; 1741 } 1742 return 0; 1743 } 1744 1745 static int handle_intercept(S390CPU *cpu) 1746 { 1747 CPUState *cs = CPU(cpu); 1748 struct kvm_run *run = cs->kvm_run; 1749 int icpt_code = run->s390_sieic.icptcode; 1750 int r = 0; 1751 1752 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr); 1753 switch (icpt_code) { 1754 case ICPT_INSTRUCTION: 1755 case ICPT_PV_INSTR: 1756 case ICPT_PV_INSTR_NOTIFICATION: 1757 r = handle_instruction(cpu, run); 1758 break; 1759 case ICPT_PROGRAM: 1760 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1761 offsetof(LowCore, program_new_psw)); 1762 r = EXCP_HALTED; 1763 break; 1764 case ICPT_EXT_INT: 1765 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1766 offsetof(LowCore, external_new_psw)); 1767 r = EXCP_HALTED; 1768 break; 1769 case ICPT_WAITPSW: 1770 /* disabled wait, since enabled wait is handled in kernel */ 1771 s390_handle_wait(cpu); 1772 r = EXCP_HALTED; 1773 break; 1774 case ICPT_CPU_STOP: 1775 do_stop_interrupt(&cpu->env); 1776 r = EXCP_HALTED; 1777 break; 1778 case ICPT_OPEREXC: 1779 /* check for break points */ 1780 r = handle_sw_breakpoint(cpu, run); 1781 if (r == -ENOENT) { 1782 /* Then check for potential pgm check loops */ 1783 r = handle_oper_loop(cpu, run); 1784 if (r == 0) { 1785 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1786 } 1787 } 1788 break; 1789 case ICPT_SOFT_INTERCEPT: 1790 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1791 exit(1); 1792 break; 1793 case ICPT_IO: 1794 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1795 exit(1); 1796 break; 1797 default: 1798 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1799 exit(1); 1800 break; 1801 } 1802 1803 return r; 1804 } 1805 1806 static int handle_tsch(S390CPU *cpu) 1807 { 1808 CPUState *cs = CPU(cpu); 1809 struct kvm_run *run = cs->kvm_run; 1810 int ret; 1811 1812 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1813 RA_IGNORED); 1814 if (ret < 0) { 1815 /* 1816 * Failure. 1817 * If an I/O interrupt had been dequeued, we have to reinject it. 1818 */ 1819 if (run->s390_tsch.dequeued) { 1820 s390_io_interrupt(run->s390_tsch.subchannel_id, 1821 run->s390_tsch.subchannel_nr, 1822 run->s390_tsch.io_int_parm, 1823 run->s390_tsch.io_int_word); 1824 } 1825 ret = 0; 1826 } 1827 return ret; 1828 } 1829 1830 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1831 { 1832 const MachineState *ms = MACHINE(qdev_get_machine()); 1833 uint16_t conf_cpus = 0, reserved_cpus = 0; 1834 SysIB_322 sysib; 1835 int del, i; 1836 1837 if (s390_is_pv()) { 1838 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib)); 1839 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1840 return; 1841 } 1842 /* Shift the stack of Extended Names to prepare for our own data */ 1843 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1844 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1845 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1846 * assumed it's not capable of managing Extended Names for lower levels. 1847 */ 1848 for (del = 1; del < sysib.count; del++) { 1849 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1850 break; 1851 } 1852 } 1853 if (del < sysib.count) { 1854 memset(sysib.ext_names[del], 0, 1855 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1856 } 1857 1858 /* count the cpus and split them into configured and reserved ones */ 1859 for (i = 0; i < ms->possible_cpus->len; i++) { 1860 if (ms->possible_cpus->cpus[i].cpu) { 1861 conf_cpus++; 1862 } else { 1863 reserved_cpus++; 1864 } 1865 } 1866 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; 1867 sysib.vm[0].conf_cpus = conf_cpus; 1868 sysib.vm[0].reserved_cpus = reserved_cpus; 1869 1870 /* Insert short machine name in EBCDIC, padded with blanks */ 1871 if (qemu_name) { 1872 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1873 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1874 strlen(qemu_name))); 1875 } 1876 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1877 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1878 * considered by s390 as not capable of providing any Extended Name. 1879 * Therefore if no name was specified on qemu invocation, we go with the 1880 * same "KVMguest" default, which KVM has filled into short name field. 1881 */ 1882 strpadcpy((char *)sysib.ext_names[0], 1883 sizeof(sysib.ext_names[0]), 1884 qemu_name ?: "KVMguest", '\0'); 1885 1886 /* Insert UUID */ 1887 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1888 1889 if (s390_is_pv()) { 1890 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib)); 1891 } else { 1892 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1893 } 1894 } 1895 1896 static int handle_stsi(S390CPU *cpu) 1897 { 1898 CPUState *cs = CPU(cpu); 1899 struct kvm_run *run = cs->kvm_run; 1900 1901 switch (run->s390_stsi.fc) { 1902 case 3: 1903 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1904 return 0; 1905 } 1906 /* Only sysib 3.2.2 needs post-handling for now. */ 1907 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1908 return 0; 1909 default: 1910 return 0; 1911 } 1912 } 1913 1914 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1915 { 1916 CPUState *cs = CPU(cpu); 1917 struct kvm_run *run = cs->kvm_run; 1918 1919 int ret = 0; 1920 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1921 1922 switch (arch_info->type) { 1923 case KVM_HW_WP_WRITE: 1924 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1925 cs->watchpoint_hit = &hw_watchpoint; 1926 hw_watchpoint.vaddr = arch_info->addr; 1927 hw_watchpoint.flags = BP_MEM_WRITE; 1928 ret = EXCP_DEBUG; 1929 } 1930 break; 1931 case KVM_HW_BP: 1932 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1933 ret = EXCP_DEBUG; 1934 } 1935 break; 1936 case KVM_SINGLESTEP: 1937 if (cs->singlestep_enabled) { 1938 ret = EXCP_DEBUG; 1939 } 1940 break; 1941 default: 1942 ret = -ENOSYS; 1943 } 1944 1945 return ret; 1946 } 1947 1948 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1949 { 1950 S390CPU *cpu = S390_CPU(cs); 1951 int ret = 0; 1952 1953 qemu_mutex_lock_iothread(); 1954 1955 kvm_cpu_synchronize_state(cs); 1956 1957 switch (run->exit_reason) { 1958 case KVM_EXIT_S390_SIEIC: 1959 ret = handle_intercept(cpu); 1960 break; 1961 case KVM_EXIT_S390_RESET: 1962 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1963 break; 1964 case KVM_EXIT_S390_TSCH: 1965 ret = handle_tsch(cpu); 1966 break; 1967 case KVM_EXIT_S390_STSI: 1968 ret = handle_stsi(cpu); 1969 break; 1970 case KVM_EXIT_DEBUG: 1971 ret = kvm_arch_handle_debug_exit(cpu); 1972 break; 1973 default: 1974 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1975 break; 1976 } 1977 qemu_mutex_unlock_iothread(); 1978 1979 if (ret == 0) { 1980 ret = EXCP_INTERRUPT; 1981 } 1982 return ret; 1983 } 1984 1985 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1986 { 1987 return true; 1988 } 1989 1990 void kvm_s390_enable_css_support(S390CPU *cpu) 1991 { 1992 int r; 1993 1994 /* Activate host kernel channel subsystem support. */ 1995 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1996 assert(r == 0); 1997 } 1998 1999 void kvm_arch_init_irq_routing(KVMState *s) 2000 { 2001 /* 2002 * Note that while irqchip capabilities generally imply that cpustates 2003 * are handled in-kernel, it is not true for s390 (yet); therefore, we 2004 * have to override the common code kvm_halt_in_kernel_allowed setting. 2005 */ 2006 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2007 kvm_gsi_routing_allowed = true; 2008 kvm_halt_in_kernel_allowed = false; 2009 } 2010 } 2011 2012 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 2013 int vq, bool assign) 2014 { 2015 struct kvm_ioeventfd kick = { 2016 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 2017 KVM_IOEVENTFD_FLAG_DATAMATCH, 2018 .fd = event_notifier_get_fd(notifier), 2019 .datamatch = vq, 2020 .addr = sch, 2021 .len = 8, 2022 }; 2023 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 2024 kick.datamatch); 2025 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 2026 return -ENOSYS; 2027 } 2028 if (!assign) { 2029 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 2030 } 2031 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 2032 } 2033 2034 int kvm_s390_get_ri(void) 2035 { 2036 return cap_ri; 2037 } 2038 2039 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 2040 { 2041 struct kvm_mp_state mp_state = {}; 2042 int ret; 2043 2044 /* the kvm part might not have been initialized yet */ 2045 if (CPU(cpu)->kvm_state == NULL) { 2046 return 0; 2047 } 2048 2049 switch (cpu_state) { 2050 case S390_CPU_STATE_STOPPED: 2051 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2052 break; 2053 case S390_CPU_STATE_CHECK_STOP: 2054 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2055 break; 2056 case S390_CPU_STATE_OPERATING: 2057 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2058 break; 2059 case S390_CPU_STATE_LOAD: 2060 mp_state.mp_state = KVM_MP_STATE_LOAD; 2061 break; 2062 default: 2063 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2064 cpu_state); 2065 exit(1); 2066 } 2067 2068 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2069 if (ret) { 2070 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2071 strerror(-ret)); 2072 } 2073 2074 return ret; 2075 } 2076 2077 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2078 { 2079 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 2080 struct kvm_s390_irq_state irq_state = { 2081 .buf = (uint64_t) cpu->irqstate, 2082 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 2083 }; 2084 CPUState *cs = CPU(cpu); 2085 int32_t bytes; 2086 2087 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2088 return; 2089 } 2090 2091 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2092 if (bytes < 0) { 2093 cpu->irqstate_saved_size = 0; 2094 error_report("Migration of interrupt state failed"); 2095 return; 2096 } 2097 2098 cpu->irqstate_saved_size = bytes; 2099 } 2100 2101 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2102 { 2103 CPUState *cs = CPU(cpu); 2104 struct kvm_s390_irq_state irq_state = { 2105 .buf = (uint64_t) cpu->irqstate, 2106 .len = cpu->irqstate_saved_size, 2107 }; 2108 int r; 2109 2110 if (cpu->irqstate_saved_size == 0) { 2111 return 0; 2112 } 2113 2114 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2115 return -ENOSYS; 2116 } 2117 2118 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2119 if (r) { 2120 error_report("Setting interrupt state failed %d", r); 2121 } 2122 return r; 2123 } 2124 2125 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2126 uint64_t address, uint32_t data, PCIDevice *dev) 2127 { 2128 S390PCIBusDevice *pbdev; 2129 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2130 2131 if (!dev) { 2132 DPRINTF("add_msi_route no pci device\n"); 2133 return -ENODEV; 2134 } 2135 2136 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2137 if (!pbdev) { 2138 DPRINTF("add_msi_route no zpci device\n"); 2139 return -ENODEV; 2140 } 2141 2142 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2143 route->flags = 0; 2144 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2145 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2146 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2147 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2148 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2149 return 0; 2150 } 2151 2152 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2153 int vector, PCIDevice *dev) 2154 { 2155 return 0; 2156 } 2157 2158 int kvm_arch_release_virq_post(int virq) 2159 { 2160 return 0; 2161 } 2162 2163 int kvm_arch_msi_data_to_gsi(uint32_t data) 2164 { 2165 abort(); 2166 } 2167 2168 static int query_cpu_subfunc(S390FeatBitmap features) 2169 { 2170 struct kvm_s390_vm_cpu_subfunc prop = {}; 2171 struct kvm_device_attr attr = { 2172 .group = KVM_S390_VM_CPU_MODEL, 2173 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2174 .addr = (uint64_t) &prop, 2175 }; 2176 int rc; 2177 2178 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2179 if (rc) { 2180 return rc; 2181 } 2182 2183 /* 2184 * We're going to add all subfunctions now, if the corresponding feature 2185 * is available that unlocks the query functions. 2186 */ 2187 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2188 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2189 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2190 } 2191 if (test_bit(S390_FEAT_MSA, features)) { 2192 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2193 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2194 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2195 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2196 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2197 } 2198 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2199 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2200 } 2201 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2202 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2203 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2204 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2205 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2206 } 2207 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2208 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2209 } 2210 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2211 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2212 } 2213 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2214 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2215 } 2216 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2217 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2218 } 2219 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2220 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2221 } 2222 return 0; 2223 } 2224 2225 static int configure_cpu_subfunc(const S390FeatBitmap features) 2226 { 2227 struct kvm_s390_vm_cpu_subfunc prop = {}; 2228 struct kvm_device_attr attr = { 2229 .group = KVM_S390_VM_CPU_MODEL, 2230 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2231 .addr = (uint64_t) &prop, 2232 }; 2233 2234 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2235 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2236 /* hardware support might be missing, IBC will handle most of this */ 2237 return 0; 2238 } 2239 2240 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2241 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2242 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2243 } 2244 if (test_bit(S390_FEAT_MSA, features)) { 2245 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2246 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2247 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2248 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2249 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2250 } 2251 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2252 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2253 } 2254 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2255 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2256 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2257 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2258 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2259 } 2260 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2261 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2262 } 2263 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2264 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2265 } 2266 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2267 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2268 } 2269 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2270 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2271 } 2272 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2273 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2274 } 2275 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2276 } 2277 2278 static int kvm_to_feat[][2] = { 2279 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2280 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2281 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2282 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2283 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2284 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2285 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2286 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2287 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2288 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2289 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2290 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2291 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2292 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2293 }; 2294 2295 static int query_cpu_feat(S390FeatBitmap features) 2296 { 2297 struct kvm_s390_vm_cpu_feat prop = {}; 2298 struct kvm_device_attr attr = { 2299 .group = KVM_S390_VM_CPU_MODEL, 2300 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2301 .addr = (uint64_t) &prop, 2302 }; 2303 int rc; 2304 int i; 2305 2306 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2307 if (rc) { 2308 return rc; 2309 } 2310 2311 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2312 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2313 set_bit(kvm_to_feat[i][1], features); 2314 } 2315 } 2316 return 0; 2317 } 2318 2319 static int configure_cpu_feat(const S390FeatBitmap features) 2320 { 2321 struct kvm_s390_vm_cpu_feat prop = {}; 2322 struct kvm_device_attr attr = { 2323 .group = KVM_S390_VM_CPU_MODEL, 2324 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2325 .addr = (uint64_t) &prop, 2326 }; 2327 int i; 2328 2329 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2330 if (test_bit(kvm_to_feat[i][1], features)) { 2331 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2332 } 2333 } 2334 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2335 } 2336 2337 bool kvm_s390_cpu_models_supported(void) 2338 { 2339 if (!cpu_model_allowed()) { 2340 /* compatibility machines interfere with the cpu model */ 2341 return false; 2342 } 2343 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2344 KVM_S390_VM_CPU_MACHINE) && 2345 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2346 KVM_S390_VM_CPU_PROCESSOR) && 2347 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2348 KVM_S390_VM_CPU_MACHINE_FEAT) && 2349 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2350 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2351 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2352 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2353 } 2354 2355 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2356 { 2357 struct kvm_s390_vm_cpu_machine prop = {}; 2358 struct kvm_device_attr attr = { 2359 .group = KVM_S390_VM_CPU_MODEL, 2360 .attr = KVM_S390_VM_CPU_MACHINE, 2361 .addr = (uint64_t) &prop, 2362 }; 2363 uint16_t unblocked_ibc = 0, cpu_type = 0; 2364 int rc; 2365 2366 memset(model, 0, sizeof(*model)); 2367 2368 if (!kvm_s390_cpu_models_supported()) { 2369 error_setg(errp, "KVM doesn't support CPU models"); 2370 return; 2371 } 2372 2373 /* query the basic cpu model properties */ 2374 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2375 if (rc) { 2376 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2377 return; 2378 } 2379 2380 cpu_type = cpuid_type(prop.cpuid); 2381 if (has_ibc(prop.ibc)) { 2382 model->lowest_ibc = lowest_ibc(prop.ibc); 2383 unblocked_ibc = unblocked_ibc(prop.ibc); 2384 } 2385 model->cpu_id = cpuid_id(prop.cpuid); 2386 model->cpu_id_format = cpuid_format(prop.cpuid); 2387 model->cpu_ver = 0xff; 2388 2389 /* get supported cpu features indicated via STFL(E) */ 2390 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2391 (uint8_t *) prop.fac_mask); 2392 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2393 if (test_bit(S390_FEAT_STFLE, model->features)) { 2394 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2395 } 2396 /* get supported cpu features indicated e.g. via SCLP */ 2397 rc = query_cpu_feat(model->features); 2398 if (rc) { 2399 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2400 return; 2401 } 2402 /* get supported cpu subfunctions indicated via query / test bit */ 2403 rc = query_cpu_subfunc(model->features); 2404 if (rc) { 2405 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2406 return; 2407 } 2408 2409 /* PTFF subfunctions might be indicated although kernel support missing */ 2410 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2411 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2412 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2413 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2414 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2415 } 2416 2417 /* with cpu model support, CMM is only indicated if really available */ 2418 if (kvm_s390_cmma_available()) { 2419 set_bit(S390_FEAT_CMM, model->features); 2420 } else { 2421 /* no cmm -> no cmm nt */ 2422 clear_bit(S390_FEAT_CMM_NT, model->features); 2423 } 2424 2425 /* bpb needs kernel support for migration, VSIE and reset */ 2426 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2427 clear_bit(S390_FEAT_BPB, model->features); 2428 } 2429 2430 /* 2431 * If we have support for protected virtualization, indicate 2432 * the protected virtualization IPL unpack facility. 2433 */ 2434 if (cap_protected) { 2435 set_bit(S390_FEAT_UNPACK, model->features); 2436 } 2437 2438 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2439 set_bit(S390_FEAT_ZPCI, model->features); 2440 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2441 2442 if (s390_known_cpu_type(cpu_type)) { 2443 /* we want the exact model, even if some features are missing */ 2444 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2445 ibc_ec_ga(unblocked_ibc), NULL); 2446 } else { 2447 /* model unknown, e.g. too new - search using features */ 2448 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2449 ibc_ec_ga(unblocked_ibc), 2450 model->features); 2451 } 2452 if (!model->def) { 2453 error_setg(errp, "KVM: host CPU model could not be identified"); 2454 return; 2455 } 2456 /* for now, we can only provide the AP feature with HW support */ 2457 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2458 KVM_S390_VM_CRYPTO_ENABLE_APIE)) { 2459 set_bit(S390_FEAT_AP, model->features); 2460 } 2461 2462 /* 2463 * Extended-Length SCCB is handled entirely within QEMU. 2464 * For PV guests this is completely fenced by the Ultravisor, as Service 2465 * Call error checking and STFLE interpretation are handled via SIE. 2466 */ 2467 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features); 2468 2469 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) { 2470 set_bit(S390_FEAT_DIAG_318, model->features); 2471 } 2472 2473 /* strip of features that are not part of the maximum model */ 2474 bitmap_and(model->features, model->features, model->def->full_feat, 2475 S390_FEAT_MAX); 2476 } 2477 2478 static void kvm_s390_configure_apie(bool interpret) 2479 { 2480 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2481 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2482 2483 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2484 kvm_s390_set_attr(attr); 2485 } 2486 } 2487 2488 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2489 { 2490 struct kvm_s390_vm_cpu_processor prop = { 2491 .fac_list = { 0 }, 2492 }; 2493 struct kvm_device_attr attr = { 2494 .group = KVM_S390_VM_CPU_MODEL, 2495 .attr = KVM_S390_VM_CPU_PROCESSOR, 2496 .addr = (uint64_t) &prop, 2497 }; 2498 int rc; 2499 2500 if (!model) { 2501 /* compatibility handling if cpu models are disabled */ 2502 if (kvm_s390_cmma_available()) { 2503 kvm_s390_enable_cmma(); 2504 } 2505 return; 2506 } 2507 if (!kvm_s390_cpu_models_supported()) { 2508 error_setg(errp, "KVM doesn't support CPU models"); 2509 return; 2510 } 2511 prop.cpuid = s390_cpuid_from_cpu_model(model); 2512 prop.ibc = s390_ibc_from_cpu_model(model); 2513 /* configure cpu features indicated via STFL(e) */ 2514 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2515 (uint8_t *) prop.fac_list); 2516 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2517 if (rc) { 2518 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2519 return; 2520 } 2521 /* configure cpu features indicated e.g. via SCLP */ 2522 rc = configure_cpu_feat(model->features); 2523 if (rc) { 2524 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2525 return; 2526 } 2527 /* configure cpu subfunctions indicated via query / test bit */ 2528 rc = configure_cpu_subfunc(model->features); 2529 if (rc) { 2530 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2531 return; 2532 } 2533 /* enable CMM via CMMA */ 2534 if (test_bit(S390_FEAT_CMM, model->features)) { 2535 kvm_s390_enable_cmma(); 2536 } 2537 2538 if (test_bit(S390_FEAT_AP, model->features)) { 2539 kvm_s390_configure_apie(true); 2540 } 2541 } 2542 2543 void kvm_s390_restart_interrupt(S390CPU *cpu) 2544 { 2545 struct kvm_s390_irq irq = { 2546 .type = KVM_S390_RESTART, 2547 }; 2548 2549 kvm_s390_vcpu_interrupt(cpu, &irq); 2550 } 2551 2552 void kvm_s390_stop_interrupt(S390CPU *cpu) 2553 { 2554 struct kvm_s390_irq irq = { 2555 .type = KVM_S390_SIGP_STOP, 2556 }; 2557 2558 kvm_s390_vcpu_interrupt(cpu, &irq); 2559 } 2560 2561 bool kvm_arch_cpu_check_are_resettable(void) 2562 { 2563 return true; 2564 } 2565